1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
#include "opencv2/core/core_c.h"
#include "opencv2/ml/ml.hpp"
#include <stdio.h>
static void help()
{
printf("\nThis program demonstrated the use of OpenCV's decision tree function for learning and predicting data\n"
"Usage :\n"
"./mushroom <path to agaricus-lepiota.data>\n"
"\n"
"The sample demonstrates how to build a decision tree for classifying mushrooms.\n"
"It uses the sample base agaricus-lepiota.data from UCI Repository, here is the link:\n"
"\n"
"Newman, D.J. & Hettich, S. & Blake, C.L. & Merz, C.J. (1998).\n"
"UCI Repository of machine learning databases\n"
"[http://www.ics.uci.edu/~mlearn/MLRepository.html].\n"
"Irvine, CA: University of California, Department of Information and Computer Science.\n"
"\n"
"// loads the mushroom database, which is a text file, containing\n"
"// one training sample per row, all the input variables and the output variable are categorical,\n"
"// the values are encoded by characters.\n\n");
}
static int mushroom_read_database( const char* filename, CvMat** data, CvMat** missing, CvMat** responses )
{
const int M = 1024;
FILE* f = fopen( filename, "rt" );
CvMemStorage* storage;
CvSeq* seq;
char buf[M+2], *ptr;
float* el_ptr;
CvSeqReader reader;
int i, j, var_count = 0;
if( !f )
return 0;
// read the first line and determine the number of variables
if( !fgets( buf, M, f ))
{
fclose(f);
return 0;
}
for( ptr = buf; *ptr != '\0'; ptr++ )
var_count += *ptr == ',';
assert( ptr - buf == (var_count+1)*2 );
// create temporary memory storage to store the whole database
el_ptr = new float[var_count+1];
storage = cvCreateMemStorage();
seq = cvCreateSeq( 0, sizeof(*seq), (var_count+1)*sizeof(float), storage );
for(;;)
{
for( i = 0; i <= var_count; i++ )
{
int c = buf[i*2];
el_ptr[i] = c == '?' ? -1.f : (float)c;
}
if( i != var_count+1 )
break;
cvSeqPush( seq, el_ptr );
if( !fgets( buf, M, f ) || !strchr( buf, ',' ) )
break;
}
fclose(f);
// allocate the output matrices and copy the base there
*data = cvCreateMat( seq->total, var_count, CV_32F );
*missing = cvCreateMat( seq->total, var_count, CV_8U );
*responses = cvCreateMat( seq->total, 1, CV_32F );
cvStartReadSeq( seq, &reader );
for( i = 0; i < seq->total; i++ )
{
const float* sdata = (float*)reader.ptr + 1;
float* ddata = data[0]->data.fl + var_count*i;
float* dr = responses[0]->data.fl + i;
uchar* dm = missing[0]->data.ptr + var_count*i;
for( j = 0; j < var_count; j++ )
{
ddata[j] = sdata[j];
dm[j] = sdata[j] < 0;
}
*dr = sdata[-1];
CV_NEXT_SEQ_ELEM( seq->elem_size, reader );
}
cvReleaseMemStorage( &storage );
delete [] el_ptr;
return 1;
}
static CvDTree* mushroom_create_dtree( const CvMat* data, const CvMat* missing,
const CvMat* responses, float p_weight )
{
CvDTree* dtree;
CvMat* var_type;
int i, hr1 = 0, hr2 = 0, p_total = 0;
float priors[] = { 1, p_weight };
var_type = cvCreateMat( data->cols + 1, 1, CV_8U );
cvSet( var_type, cvScalarAll(CV_VAR_CATEGORICAL) ); // all the variables are categorical
dtree = new CvDTree;
dtree->train( data, CV_ROW_SAMPLE, responses, 0, 0, var_type, missing,
CvDTreeParams( 8, // max depth
10, // min sample count
0, // regression accuracy: N/A here
true, // compute surrogate split, as we have missing data
15, // max number of categories (use sub-optimal algorithm for larger numbers)
10, // the number of cross-validation folds
true, // use 1SE rule => smaller tree
true, // throw away the pruned tree branches
priors // the array of priors, the bigger p_weight, the more attention
// to the poisonous mushrooms
// (a mushroom will be judjed to be poisonous with bigger chance)
));
// compute hit-rate on the training database, demonstrates predict usage.
for( i = 0; i < data->rows; i++ )
{
CvMat sample, mask;
cvGetRow( data, &sample, i );
cvGetRow( missing, &mask, i );
double r = dtree->predict( &sample, &mask )->value;
int d = fabs(r - responses->data.fl[i]) >= FLT_EPSILON;
if( d )
{
if( r != 'p' )
hr1++;
else
hr2++;
}
p_total += responses->data.fl[i] == 'p';
}
printf( "Results on the training database:\n"
"\tPoisonous mushrooms mis-predicted: %d (%g%%)\n"
"\tFalse-alarms: %d (%g%%)\n", hr1, (double)hr1*100/p_total,
hr2, (double)hr2*100/(data->rows - p_total) );
cvReleaseMat( &var_type );
return dtree;
}
static const char* var_desc[] =
{
"cap shape (bell=b,conical=c,convex=x,flat=f)",
"cap surface (fibrous=f,grooves=g,scaly=y,smooth=s)",
"cap color (brown=n,buff=b,cinnamon=c,gray=g,green=r,\n\tpink=p,purple=u,red=e,white=w,yellow=y)",
"bruises? (bruises=t,no=f)",
"odor (almond=a,anise=l,creosote=c,fishy=y,foul=f,\n\tmusty=m,none=n,pungent=p,spicy=s)",
"gill attachment (attached=a,descending=d,free=f,notched=n)",
"gill spacing (close=c,crowded=w,distant=d)",
"gill size (broad=b,narrow=n)",
"gill color (black=k,brown=n,buff=b,chocolate=h,gray=g,\n\tgreen=r,orange=o,pink=p,purple=u,red=e,white=w,yellow=y)",
"stalk shape (enlarging=e,tapering=t)",
"stalk root (bulbous=b,club=c,cup=u,equal=e,rhizomorphs=z,rooted=r)",
"stalk surface above ring (ibrous=f,scaly=y,silky=k,smooth=s)",
"stalk surface below ring (ibrous=f,scaly=y,silky=k,smooth=s)",
"stalk color above ring (brown=n,buff=b,cinnamon=c,gray=g,orange=o,\n\tpink=p,red=e,white=w,yellow=y)",
"stalk color below ring (brown=n,buff=b,cinnamon=c,gray=g,orange=o,\n\tpink=p,red=e,white=w,yellow=y)",
"veil type (partial=p,universal=u)",
"veil color (brown=n,orange=o,white=w,yellow=y)",
"ring number (none=n,one=o,two=t)",
"ring type (cobwebby=c,evanescent=e,flaring=f,large=l,\n\tnone=n,pendant=p,sheathing=s,zone=z)",
"spore print color (black=k,brown=n,buff=b,chocolate=h,green=r,\n\torange=o,purple=u,white=w,yellow=y)",
"population (abundant=a,clustered=c,numerous=n,\n\tscattered=s,several=v,solitary=y)",
"habitat (grasses=g,leaves=l,meadows=m,paths=p\n\turban=u,waste=w,woods=d)",
0
};
static void print_variable_importance( CvDTree* dtree )
{
const CvMat* var_importance = dtree->get_var_importance();
int i;
char input[1000];
if( !var_importance )
{
printf( "Error: Variable importance can not be retrieved\n" );
return;
}
printf( "Print variable importance information? (y/n) " );
int values_read = scanf( "%1s", input );
CV_Assert(values_read == 1);
if( input[0] != 'y' && input[0] != 'Y' )
return;
for( i = 0; i < var_importance->cols*var_importance->rows; i++ )
{
double val = var_importance->data.db[i];
char buf[100];
int len = (int)(strchr( var_desc[i], '(' ) - var_desc[i] - 1);
strncpy( buf, var_desc[i], len );
buf[len] = '\0';
printf( "%s", buf );
printf( ": %g%%\n", val*100. );
}
}
static void interactive_classification( CvDTree* dtree )
{
char input[1000];
const CvDTreeNode* root;
CvDTreeTrainData* data;
if( !dtree )
return;
root = dtree->get_root();
data = dtree->get_data();
for(;;)
{
const CvDTreeNode* node;
printf( "Start/Proceed with interactive mushroom classification (y/n): " );
int values_read = scanf( "%1s", input );
CV_Assert(values_read == 1);
if( input[0] != 'y' && input[0] != 'Y' )
break;
printf( "Enter 1-letter answers, '?' for missing/unknown value...\n" );
// custom version of predict
node = root;
for(;;)
{
CvDTreeSplit* split = node->split;
int dir = 0;
if( !node->left || node->Tn <= dtree->get_pruned_tree_idx() || !node->split )
break;
for( ; split != 0; )
{
int vi = split->var_idx, j;
int count = data->cat_count->data.i[vi];
const int* map = data->cat_map->data.i + data->cat_ofs->data.i[vi];
printf( "%s: ", var_desc[vi] );
values_read = scanf( "%1s", input );
CV_Assert(values_read == 1);
if( input[0] == '?' )
{
split = split->next;
continue;
}
// convert the input character to the normalized value of the variable
for( j = 0; j < count; j++ )
if( map[j] == input[0] )
break;
if( j < count )
{
dir = (split->subset[j>>5] & (1 << (j&31))) ? -1 : 1;
if( split->inversed )
dir = -dir;
break;
}
else
printf( "Error: unrecognized value\n" );
}
if( !dir )
{
printf( "Impossible to classify the sample\n");
node = 0;
break;
}
node = dir < 0 ? node->left : node->right;
}
if( node )
printf( "Prediction result: the mushroom is %s\n",
node->class_idx == 0 ? "EDIBLE" : "POISONOUS" );
printf( "\n-----------------------------\n" );
}
}
int main( int argc, char** argv )
{
CvMat *data = 0, *missing = 0, *responses = 0;
CvDTree* dtree;
const char* base_path = argc >= 2 ? argv[1] : "agaricus-lepiota.data";
help();
if( !mushroom_read_database( base_path, &data, &missing, &responses ) )
{
printf( "\nUnable to load the training database\n\n");
help();
return -1;
}
dtree = mushroom_create_dtree( data, missing, responses,
10 // poisonous mushrooms will have 10x higher weight in the decision tree
);
cvReleaseMat( &data );
cvReleaseMat( &missing );
cvReleaseMat( &responses );
print_variable_importance( dtree );
interactive_classification( dtree );
delete dtree;
return 0;
}