orb.cpp 39.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
/*********************************************************************
* Software License Agreement (BSD License)
*
*  Copyright (c) 2009, Willow Garage, Inc.
*  All rights reserved.
*
*  Redistribution and use in source and binary forms, with or without
*  modification, are permitted provided that the following conditions
*  are met:
*
*   * Redistributions of source code must retain the above copyright
*     notice, this list of conditions and the following disclaimer.
*   * Redistributions in binary form must reproduce the above
*     copyright notice, this list of conditions and the following
*     disclaimer in the documentation and/or other materials provided
*     with the distribution.
*   * Neither the name of the Willow Garage nor the names of its
*     contributors may be used to endorse or promote products derived
*     from this software without specific prior written permission.
*
*  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
*  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
*  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
*  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
*  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
*  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
*  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
*  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
*  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
*  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
*  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
*  POSSIBILITY OF SUCH DAMAGE.
*********************************************************************/

/** Authors: Ethan Rublee, Vincent Rabaud, Gary Bradski */

#include "precomp.hpp"
#include <iterator>

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

namespace cv
{

const float HARRIS_K = 0.04f;

/**
 * Function that computes the Harris responses in a
 * blockSize x blockSize patch at given points in an image
 */
static void
HarrisResponses(const Mat& img, vector<KeyPoint>& pts, int blockSize, float harris_k)
{
    CV_Assert( img.type() == CV_8UC1 && blockSize*blockSize <= 2048 );

    size_t ptidx, ptsize = pts.size();

    const uchar* ptr00 = img.ptr<uchar>();
    int step = (int)(img.step/img.elemSize1());
    int r = blockSize/2;

    float scale = (1 << 2) * blockSize * 255.0f;
    scale = 1.0f / scale;
    float scale_sq_sq = scale * scale * scale * scale;

    AutoBuffer<int> ofsbuf(blockSize*blockSize);
    int* ofs = ofsbuf;
    for( int i = 0; i < blockSize; i++ )
        for( int j = 0; j < blockSize; j++ )
            ofs[i*blockSize + j] = (int)(i*step + j);

    for( ptidx = 0; ptidx < ptsize; ptidx++ )
    {
        int x0 = cvRound(pts[ptidx].pt.x - r);
        int y0 = cvRound(pts[ptidx].pt.y - r);

        const uchar* ptr0 = ptr00 + y0*step + x0;
        int a = 0, b = 0, c = 0;

        for( int k = 0; k < blockSize*blockSize; k++ )
        {
            const uchar* ptr = ptr0 + ofs[k];
            int Ix = (ptr[1] - ptr[-1])*2 + (ptr[-step+1] - ptr[-step-1]) + (ptr[step+1] - ptr[step-1]);
            int Iy = (ptr[step] - ptr[-step])*2 + (ptr[step-1] - ptr[-step-1]) + (ptr[step+1] - ptr[-step+1]);
            a += Ix*Ix;
            b += Iy*Iy;
            c += Ix*Iy;
        }
        pts[ptidx].response = ((float)a * b - (float)c * c -
                               harris_k * ((float)a + b) * ((float)a + b))*scale_sq_sq;
    }
}

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

static float IC_Angle(const Mat& image, const int half_k, Point2f pt,
                      const vector<int> & u_max)
{
    int m_01 = 0, m_10 = 0;

    const uchar* center = &image.at<uchar> (cvRound(pt.y), cvRound(pt.x));

    // Treat the center line differently, v=0
    for (int u = -half_k; u <= half_k; ++u)
        m_10 += u * center[u];

    // Go line by line in the circular patch
    int step = (int)image.step1();
    for (int v = 1; v <= half_k; ++v)
    {
        // Proceed over the two lines
        int v_sum = 0;
        int d = u_max[v];
        for (int u = -d; u <= d; ++u)
        {
            int val_plus = center[u + v*step], val_minus = center[u - v*step];
            v_sum += (val_plus - val_minus);
            m_10 += u * (val_plus + val_minus);
        }
        m_01 += v * v_sum;
    }

    return fastAtan2((float)m_01, (float)m_10);
}

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

static void computeOrbDescriptor(const KeyPoint& kpt,
                                 const Mat& img, const Point* pattern,
                                 uchar* desc, int dsize, int WTA_K)
{
    float angle = kpt.angle;
    //angle = cvFloor(angle/12)*12.f;
    angle *= (float)(CV_PI/180.f);
    float a = (float)cos(angle), b = (float)sin(angle);

    const uchar* center = &img.at<uchar>(cvRound(kpt.pt.y), cvRound(kpt.pt.x));
    int step = (int)img.step;

    float x, y;
    int ix, iy;
#if 1
    #define GET_VALUE(idx) \
           (x = pattern[idx].x*a - pattern[idx].y*b, \
            y = pattern[idx].x*b + pattern[idx].y*a, \
            ix = cvRound(x), \
            iy = cvRound(y), \
            *(center + iy*step + ix) )
#else
    #define GET_VALUE(idx) \
        (x = pattern[idx].x*a - pattern[idx].y*b, \
        y = pattern[idx].x*b + pattern[idx].y*a, \
        ix = cvFloor(x), iy = cvFloor(y), \
        x -= ix, y -= iy, \
        cvRound(center[iy*step + ix]*(1-x)*(1-y) + center[(iy+1)*step + ix]*(1-x)*y + \
                center[iy*step + ix+1]*x*(1-y) + center[(iy+1)*step + ix+1]*x*y))
#endif

    if( WTA_K == 2 )
    {
        for (int i = 0; i < dsize; ++i, pattern += 16)
        {
            int t0, t1, val;
            t0 = GET_VALUE(0); t1 = GET_VALUE(1);
            val = t0 < t1;
            t0 = GET_VALUE(2); t1 = GET_VALUE(3);
            val |= (t0 < t1) << 1;
            t0 = GET_VALUE(4); t1 = GET_VALUE(5);
            val |= (t0 < t1) << 2;
            t0 = GET_VALUE(6); t1 = GET_VALUE(7);
            val |= (t0 < t1) << 3;
            t0 = GET_VALUE(8); t1 = GET_VALUE(9);
            val |= (t0 < t1) << 4;
            t0 = GET_VALUE(10); t1 = GET_VALUE(11);
            val |= (t0 < t1) << 5;
            t0 = GET_VALUE(12); t1 = GET_VALUE(13);
            val |= (t0 < t1) << 6;
            t0 = GET_VALUE(14); t1 = GET_VALUE(15);
            val |= (t0 < t1) << 7;

            desc[i] = (uchar)val;
        }
    }
    else if( WTA_K == 3 )
    {
        for (int i = 0; i < dsize; ++i, pattern += 12)
        {
            int t0, t1, t2, val;
            t0 = GET_VALUE(0); t1 = GET_VALUE(1); t2 = GET_VALUE(2);
            val = t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0);

            t0 = GET_VALUE(3); t1 = GET_VALUE(4); t2 = GET_VALUE(5);
            val |= (t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0)) << 2;

            t0 = GET_VALUE(6); t1 = GET_VALUE(7); t2 = GET_VALUE(8);
            val |= (t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0)) << 4;

            t0 = GET_VALUE(9); t1 = GET_VALUE(10); t2 = GET_VALUE(11);
            val |= (t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0)) << 6;

            desc[i] = (uchar)val;
        }
    }
    else if( WTA_K == 4 )
    {
        for (int i = 0; i < dsize; ++i, pattern += 16)
        {
            int t0, t1, t2, t3, u, v, k, val;
            t0 = GET_VALUE(0); t1 = GET_VALUE(1);
            t2 = GET_VALUE(2); t3 = GET_VALUE(3);
            u = 0, v = 2;
            if( t1 > t0 ) t0 = t1, u = 1;
            if( t3 > t2 ) t2 = t3, v = 3;
            k = t0 > t2 ? u : v;
            val = k;

            t0 = GET_VALUE(4); t1 = GET_VALUE(5);
            t2 = GET_VALUE(6); t3 = GET_VALUE(7);
            u = 0, v = 2;
            if( t1 > t0 ) t0 = t1, u = 1;
            if( t3 > t2 ) t2 = t3, v = 3;
            k = t0 > t2 ? u : v;
            val |= k << 2;

            t0 = GET_VALUE(8); t1 = GET_VALUE(9);
            t2 = GET_VALUE(10); t3 = GET_VALUE(11);
            u = 0, v = 2;
            if( t1 > t0 ) t0 = t1, u = 1;
            if( t3 > t2 ) t2 = t3, v = 3;
            k = t0 > t2 ? u : v;
            val |= k << 4;

            t0 = GET_VALUE(12); t1 = GET_VALUE(13);
            t2 = GET_VALUE(14); t3 = GET_VALUE(15);
            u = 0, v = 2;
            if( t1 > t0 ) t0 = t1, u = 1;
            if( t3 > t2 ) t2 = t3, v = 3;
            k = t0 > t2 ? u : v;
            val |= k << 6;

            desc[i] = (uchar)val;
        }
    }
    else
        CV_Error( CV_StsBadSize, "Wrong WTA_K. It can be only 2, 3 or 4." );

    #undef GET_VALUE
}


static void initializeOrbPattern( const Point* pattern0, vector<Point>& pattern, int ntuples, int tupleSize, int poolSize )
{
    RNG rng(0x12345678);
    int i, k, k1;
    pattern.resize(ntuples*tupleSize);

    for( i = 0; i < ntuples; i++ )
    {
        for( k = 0; k < tupleSize; k++ )
        {
            for(;;)
            {
                int idx = rng.uniform(0, poolSize);
                Point pt = pattern0[idx];
                for( k1 = 0; k1 < k; k1++ )
                    if( pattern[tupleSize*i + k1] == pt )
                        break;
                if( k1 == k )
                {
                    pattern[tupleSize*i + k] = pt;
                    break;
                }
            }
        }
    }
}

static int bit_pattern_31_[256*4] =
{
    8,-3, 9,5/*mean (0), correlation (0)*/,
    4,2, 7,-12/*mean (1.12461e-05), correlation (0.0437584)*/,
    -11,9, -8,2/*mean (3.37382e-05), correlation (0.0617409)*/,
    7,-12, 12,-13/*mean (5.62303e-05), correlation (0.0636977)*/,
    2,-13, 2,12/*mean (0.000134953), correlation (0.085099)*/,
    1,-7, 1,6/*mean (0.000528565), correlation (0.0857175)*/,
    -2,-10, -2,-4/*mean (0.0188821), correlation (0.0985774)*/,
    -13,-13, -11,-8/*mean (0.0363135), correlation (0.0899616)*/,
    -13,-3, -12,-9/*mean (0.121806), correlation (0.099849)*/,
    10,4, 11,9/*mean (0.122065), correlation (0.093285)*/,
    -13,-8, -8,-9/*mean (0.162787), correlation (0.0942748)*/,
    -11,7, -9,12/*mean (0.21561), correlation (0.0974438)*/,
    7,7, 12,6/*mean (0.160583), correlation (0.130064)*/,
    -4,-5, -3,0/*mean (0.228171), correlation (0.132998)*/,
    -13,2, -12,-3/*mean (0.00997526), correlation (0.145926)*/,
    -9,0, -7,5/*mean (0.198234), correlation (0.143636)*/,
    12,-6, 12,-1/*mean (0.0676226), correlation (0.16689)*/,
    -3,6, -2,12/*mean (0.166847), correlation (0.171682)*/,
    -6,-13, -4,-8/*mean (0.101215), correlation (0.179716)*/,
    11,-13, 12,-8/*mean (0.200641), correlation (0.192279)*/,
    4,7, 5,1/*mean (0.205106), correlation (0.186848)*/,
    5,-3, 10,-3/*mean (0.234908), correlation (0.192319)*/,
    3,-7, 6,12/*mean (0.0709964), correlation (0.210872)*/,
    -8,-7, -6,-2/*mean (0.0939834), correlation (0.212589)*/,
    -2,11, -1,-10/*mean (0.127778), correlation (0.20866)*/,
    -13,12, -8,10/*mean (0.14783), correlation (0.206356)*/,
    -7,3, -5,-3/*mean (0.182141), correlation (0.198942)*/,
    -4,2, -3,7/*mean (0.188237), correlation (0.21384)*/,
    -10,-12, -6,11/*mean (0.14865), correlation (0.23571)*/,
    5,-12, 6,-7/*mean (0.222312), correlation (0.23324)*/,
    5,-6, 7,-1/*mean (0.229082), correlation (0.23389)*/,
    1,0, 4,-5/*mean (0.241577), correlation (0.215286)*/,
    9,11, 11,-13/*mean (0.00338507), correlation (0.251373)*/,
    4,7, 4,12/*mean (0.131005), correlation (0.257622)*/,
    2,-1, 4,4/*mean (0.152755), correlation (0.255205)*/,
    -4,-12, -2,7/*mean (0.182771), correlation (0.244867)*/,
    -8,-5, -7,-10/*mean (0.186898), correlation (0.23901)*/,
    4,11, 9,12/*mean (0.226226), correlation (0.258255)*/,
    0,-8, 1,-13/*mean (0.0897886), correlation (0.274827)*/,
    -13,-2, -8,2/*mean (0.148774), correlation (0.28065)*/,
    -3,-2, -2,3/*mean (0.153048), correlation (0.283063)*/,
    -6,9, -4,-9/*mean (0.169523), correlation (0.278248)*/,
    8,12, 10,7/*mean (0.225337), correlation (0.282851)*/,
    0,9, 1,3/*mean (0.226687), correlation (0.278734)*/,
    7,-5, 11,-10/*mean (0.00693882), correlation (0.305161)*/,
    -13,-6, -11,0/*mean (0.0227283), correlation (0.300181)*/,
    10,7, 12,1/*mean (0.125517), correlation (0.31089)*/,
    -6,-3, -6,12/*mean (0.131748), correlation (0.312779)*/,
    10,-9, 12,-4/*mean (0.144827), correlation (0.292797)*/,
    -13,8, -8,-12/*mean (0.149202), correlation (0.308918)*/,
    -13,0, -8,-4/*mean (0.160909), correlation (0.310013)*/,
    3,3, 7,8/*mean (0.177755), correlation (0.309394)*/,
    5,7, 10,-7/*mean (0.212337), correlation (0.310315)*/,
    -1,7, 1,-12/*mean (0.214429), correlation (0.311933)*/,
    3,-10, 5,6/*mean (0.235807), correlation (0.313104)*/,
    2,-4, 3,-10/*mean (0.00494827), correlation (0.344948)*/,
    -13,0, -13,5/*mean (0.0549145), correlation (0.344675)*/,
    -13,-7, -12,12/*mean (0.103385), correlation (0.342715)*/,
    -13,3, -11,8/*mean (0.134222), correlation (0.322922)*/,
    -7,12, -4,7/*mean (0.153284), correlation (0.337061)*/,
    6,-10, 12,8/*mean (0.154881), correlation (0.329257)*/,
    -9,-1, -7,-6/*mean (0.200967), correlation (0.33312)*/,
    -2,-5, 0,12/*mean (0.201518), correlation (0.340635)*/,
    -12,5, -7,5/*mean (0.207805), correlation (0.335631)*/,
    3,-10, 8,-13/*mean (0.224438), correlation (0.34504)*/,
    -7,-7, -4,5/*mean (0.239361), correlation (0.338053)*/,
    -3,-2, -1,-7/*mean (0.240744), correlation (0.344322)*/,
    2,9, 5,-11/*mean (0.242949), correlation (0.34145)*/,
    -11,-13, -5,-13/*mean (0.244028), correlation (0.336861)*/,
    -1,6, 0,-1/*mean (0.247571), correlation (0.343684)*/,
    5,-3, 5,2/*mean (0.000697256), correlation (0.357265)*/,
    -4,-13, -4,12/*mean (0.00213675), correlation (0.373827)*/,
    -9,-6, -9,6/*mean (0.0126856), correlation (0.373938)*/,
    -12,-10, -8,-4/*mean (0.0152497), correlation (0.364237)*/,
    10,2, 12,-3/*mean (0.0299933), correlation (0.345292)*/,
    7,12, 12,12/*mean (0.0307242), correlation (0.366299)*/,
    -7,-13, -6,5/*mean (0.0534975), correlation (0.368357)*/,
    -4,9, -3,4/*mean (0.099865), correlation (0.372276)*/,
    7,-1, 12,2/*mean (0.117083), correlation (0.364529)*/,
    -7,6, -5,1/*mean (0.126125), correlation (0.369606)*/,
    -13,11, -12,5/*mean (0.130364), correlation (0.358502)*/,
    -3,7, -2,-6/*mean (0.131691), correlation (0.375531)*/,
    7,-8, 12,-7/*mean (0.160166), correlation (0.379508)*/,
    -13,-7, -11,-12/*mean (0.167848), correlation (0.353343)*/,
    1,-3, 12,12/*mean (0.183378), correlation (0.371916)*/,
    2,-6, 3,0/*mean (0.228711), correlation (0.371761)*/,
    -4,3, -2,-13/*mean (0.247211), correlation (0.364063)*/,
    -1,-13, 1,9/*mean (0.249325), correlation (0.378139)*/,
    7,1, 8,-6/*mean (0.000652272), correlation (0.411682)*/,
    1,-1, 3,12/*mean (0.00248538), correlation (0.392988)*/,
    9,1, 12,6/*mean (0.0206815), correlation (0.386106)*/,
    -1,-9, -1,3/*mean (0.0364485), correlation (0.410752)*/,
    -13,-13, -10,5/*mean (0.0376068), correlation (0.398374)*/,
    7,7, 10,12/*mean (0.0424202), correlation (0.405663)*/,
    12,-5, 12,9/*mean (0.0942645), correlation (0.410422)*/,
    6,3, 7,11/*mean (0.1074), correlation (0.413224)*/,
    5,-13, 6,10/*mean (0.109256), correlation (0.408646)*/,
    2,-12, 2,3/*mean (0.131691), correlation (0.416076)*/,
    3,8, 4,-6/*mean (0.165081), correlation (0.417569)*/,
    2,6, 12,-13/*mean (0.171874), correlation (0.408471)*/,
    9,-12, 10,3/*mean (0.175146), correlation (0.41296)*/,
    -8,4, -7,9/*mean (0.183682), correlation (0.402956)*/,
    -11,12, -4,-6/*mean (0.184672), correlation (0.416125)*/,
    1,12, 2,-8/*mean (0.191487), correlation (0.386696)*/,
    6,-9, 7,-4/*mean (0.192668), correlation (0.394771)*/,
    2,3, 3,-2/*mean (0.200157), correlation (0.408303)*/,
    6,3, 11,0/*mean (0.204588), correlation (0.411762)*/,
    3,-3, 8,-8/*mean (0.205904), correlation (0.416294)*/,
    7,8, 9,3/*mean (0.213237), correlation (0.409306)*/,
    -11,-5, -6,-4/*mean (0.243444), correlation (0.395069)*/,
    -10,11, -5,10/*mean (0.247672), correlation (0.413392)*/,
    -5,-8, -3,12/*mean (0.24774), correlation (0.411416)*/,
    -10,5, -9,0/*mean (0.00213675), correlation (0.454003)*/,
    8,-1, 12,-6/*mean (0.0293635), correlation (0.455368)*/,
    4,-6, 6,-11/*mean (0.0404971), correlation (0.457393)*/,
    -10,12, -8,7/*mean (0.0481107), correlation (0.448364)*/,
    4,-2, 6,7/*mean (0.050641), correlation (0.455019)*/,
    -2,0, -2,12/*mean (0.0525978), correlation (0.44338)*/,
    -5,-8, -5,2/*mean (0.0629667), correlation (0.457096)*/,
    7,-6, 10,12/*mean (0.0653846), correlation (0.445623)*/,
    -9,-13, -8,-8/*mean (0.0858749), correlation (0.449789)*/,
    -5,-13, -5,-2/*mean (0.122402), correlation (0.450201)*/,
    8,-8, 9,-13/*mean (0.125416), correlation (0.453224)*/,
    -9,-11, -9,0/*mean (0.130128), correlation (0.458724)*/,
    1,-8, 1,-2/*mean (0.132467), correlation (0.440133)*/,
    7,-4, 9,1/*mean (0.132692), correlation (0.454)*/,
    -2,1, -1,-4/*mean (0.135695), correlation (0.455739)*/,
    11,-6, 12,-11/*mean (0.142904), correlation (0.446114)*/,
    -12,-9, -6,4/*mean (0.146165), correlation (0.451473)*/,
    3,7, 7,12/*mean (0.147627), correlation (0.456643)*/,
    5,5, 10,8/*mean (0.152901), correlation (0.455036)*/,
    0,-4, 2,8/*mean (0.167083), correlation (0.459315)*/,
    -9,12, -5,-13/*mean (0.173234), correlation (0.454706)*/,
    0,7, 2,12/*mean (0.18312), correlation (0.433855)*/,
    -1,2, 1,7/*mean (0.185504), correlation (0.443838)*/,
    5,11, 7,-9/*mean (0.185706), correlation (0.451123)*/,
    3,5, 6,-8/*mean (0.188968), correlation (0.455808)*/,
    -13,-4, -8,9/*mean (0.191667), correlation (0.459128)*/,
    -5,9, -3,-3/*mean (0.193196), correlation (0.458364)*/,
    -4,-7, -3,-12/*mean (0.196536), correlation (0.455782)*/,
    6,5, 8,0/*mean (0.1972), correlation (0.450481)*/,
    -7,6, -6,12/*mean (0.199438), correlation (0.458156)*/,
    -13,6, -5,-2/*mean (0.211224), correlation (0.449548)*/,
    1,-10, 3,10/*mean (0.211718), correlation (0.440606)*/,
    4,1, 8,-4/*mean (0.213034), correlation (0.443177)*/,
    -2,-2, 2,-13/*mean (0.234334), correlation (0.455304)*/,
    2,-12, 12,12/*mean (0.235684), correlation (0.443436)*/,
    -2,-13, 0,-6/*mean (0.237674), correlation (0.452525)*/,
    4,1, 9,3/*mean (0.23962), correlation (0.444824)*/,
    -6,-10, -3,-5/*mean (0.248459), correlation (0.439621)*/,
    -3,-13, -1,1/*mean (0.249505), correlation (0.456666)*/,
    7,5, 12,-11/*mean (0.00119208), correlation (0.495466)*/,
    4,-2, 5,-7/*mean (0.00372245), correlation (0.484214)*/,
    -13,9, -9,-5/*mean (0.00741116), correlation (0.499854)*/,
    7,1, 8,6/*mean (0.0208952), correlation (0.499773)*/,
    7,-8, 7,6/*mean (0.0220085), correlation (0.501609)*/,
    -7,-4, -7,1/*mean (0.0233806), correlation (0.496568)*/,
    -8,11, -7,-8/*mean (0.0236505), correlation (0.489719)*/,
    -13,6, -12,-8/*mean (0.0268781), correlation (0.503487)*/,
    2,4, 3,9/*mean (0.0323324), correlation (0.501938)*/,
    10,-5, 12,3/*mean (0.0399235), correlation (0.494029)*/,
    -6,-5, -6,7/*mean (0.0420153), correlation (0.486579)*/,
    8,-3, 9,-8/*mean (0.0548021), correlation (0.484237)*/,
    2,-12, 2,8/*mean (0.0616622), correlation (0.496642)*/,
    -11,-2, -10,3/*mean (0.0627755), correlation (0.498563)*/,
    -12,-13, -7,-9/*mean (0.0829622), correlation (0.495491)*/,
    -11,0, -10,-5/*mean (0.0843342), correlation (0.487146)*/,
    5,-3, 11,8/*mean (0.0929937), correlation (0.502315)*/,
    -2,-13, -1,12/*mean (0.113327), correlation (0.48941)*/,
    -1,-8, 0,9/*mean (0.132119), correlation (0.467268)*/,
    -13,-11, -12,-5/*mean (0.136269), correlation (0.498771)*/,
    -10,-2, -10,11/*mean (0.142173), correlation (0.498714)*/,
    -3,9, -2,-13/*mean (0.144141), correlation (0.491973)*/,
    2,-3, 3,2/*mean (0.14892), correlation (0.500782)*/,
    -9,-13, -4,0/*mean (0.150371), correlation (0.498211)*/,
    -4,6, -3,-10/*mean (0.152159), correlation (0.495547)*/,
    -4,12, -2,-7/*mean (0.156152), correlation (0.496925)*/,
    -6,-11, -4,9/*mean (0.15749), correlation (0.499222)*/,
    6,-3, 6,11/*mean (0.159211), correlation (0.503821)*/,
    -13,11, -5,5/*mean (0.162427), correlation (0.501907)*/,
    11,11, 12,6/*mean (0.16652), correlation (0.497632)*/,
    7,-5, 12,-2/*mean (0.169141), correlation (0.484474)*/,
    -1,12, 0,7/*mean (0.169456), correlation (0.495339)*/,
    -4,-8, -3,-2/*mean (0.171457), correlation (0.487251)*/,
    -7,1, -6,7/*mean (0.175), correlation (0.500024)*/,
    -13,-12, -8,-13/*mean (0.175866), correlation (0.497523)*/,
    -7,-2, -6,-8/*mean (0.178273), correlation (0.501854)*/,
    -8,5, -6,-9/*mean (0.181107), correlation (0.494888)*/,
    -5,-1, -4,5/*mean (0.190227), correlation (0.482557)*/,
    -13,7, -8,10/*mean (0.196739), correlation (0.496503)*/,
    1,5, 5,-13/*mean (0.19973), correlation (0.499759)*/,
    1,0, 10,-13/*mean (0.204465), correlation (0.49873)*/,
    9,12, 10,-1/*mean (0.209334), correlation (0.49063)*/,
    5,-8, 10,-9/*mean (0.211134), correlation (0.503011)*/,
    -1,11, 1,-13/*mean (0.212), correlation (0.499414)*/,
    -9,-3, -6,2/*mean (0.212168), correlation (0.480739)*/,
    -1,-10, 1,12/*mean (0.212731), correlation (0.502523)*/,
    -13,1, -8,-10/*mean (0.21327), correlation (0.489786)*/,
    8,-11, 10,-6/*mean (0.214159), correlation (0.488246)*/,
    2,-13, 3,-6/*mean (0.216993), correlation (0.50287)*/,
    7,-13, 12,-9/*mean (0.223639), correlation (0.470502)*/,
    -10,-10, -5,-7/*mean (0.224089), correlation (0.500852)*/,
    -10,-8, -8,-13/*mean (0.228666), correlation (0.502629)*/,
    4,-6, 8,5/*mean (0.22906), correlation (0.498305)*/,
    3,12, 8,-13/*mean (0.233378), correlation (0.503825)*/,
    -4,2, -3,-3/*mean (0.234323), correlation (0.476692)*/,
    5,-13, 10,-12/*mean (0.236392), correlation (0.475462)*/,
    4,-13, 5,-1/*mean (0.236842), correlation (0.504132)*/,
    -9,9, -4,3/*mean (0.236977), correlation (0.497739)*/,
    0,3, 3,-9/*mean (0.24314), correlation (0.499398)*/,
    -12,1, -6,1/*mean (0.243297), correlation (0.489447)*/,
    3,2, 4,-8/*mean (0.00155196), correlation (0.553496)*/,
    -10,-10, -10,9/*mean (0.00239541), correlation (0.54297)*/,
    8,-13, 12,12/*mean (0.0034413), correlation (0.544361)*/,
    -8,-12, -6,-5/*mean (0.003565), correlation (0.551225)*/,
    2,2, 3,7/*mean (0.00835583), correlation (0.55285)*/,
    10,6, 11,-8/*mean (0.00885065), correlation (0.540913)*/,
    6,8, 8,-12/*mean (0.0101552), correlation (0.551085)*/,
    -7,10, -6,5/*mean (0.0102227), correlation (0.533635)*/,
    -3,-9, -3,9/*mean (0.0110211), correlation (0.543121)*/,
    -1,-13, -1,5/*mean (0.0113473), correlation (0.550173)*/,
    -3,-7, -3,4/*mean (0.0140913), correlation (0.554774)*/,
    -8,-2, -8,3/*mean (0.017049), correlation (0.55461)*/,
    4,2, 12,12/*mean (0.01778), correlation (0.546921)*/,
    2,-5, 3,11/*mean (0.0224022), correlation (0.549667)*/,
    6,-9, 11,-13/*mean (0.029161), correlation (0.546295)*/,
    3,-1, 7,12/*mean (0.0303081), correlation (0.548599)*/,
    11,-1, 12,4/*mean (0.0355151), correlation (0.523943)*/,
    -3,0, -3,6/*mean (0.0417904), correlation (0.543395)*/,
    4,-11, 4,12/*mean (0.0487292), correlation (0.542818)*/,
    2,-4, 2,1/*mean (0.0575124), correlation (0.554888)*/,
    -10,-6, -8,1/*mean (0.0594242), correlation (0.544026)*/,
    -13,7, -11,1/*mean (0.0597391), correlation (0.550524)*/,
    -13,12, -11,-13/*mean (0.0608974), correlation (0.55383)*/,
    6,0, 11,-13/*mean (0.065126), correlation (0.552006)*/,
    0,-1, 1,4/*mean (0.074224), correlation (0.546372)*/,
    -13,3, -9,-2/*mean (0.0808592), correlation (0.554875)*/,
    -9,8, -6,-3/*mean (0.0883378), correlation (0.551178)*/,
    -13,-6, -8,-2/*mean (0.0901035), correlation (0.548446)*/,
    5,-9, 8,10/*mean (0.0949843), correlation (0.554694)*/,
    2,7, 3,-9/*mean (0.0994152), correlation (0.550979)*/,
    -1,-6, -1,-1/*mean (0.10045), correlation (0.552714)*/,
    9,5, 11,-2/*mean (0.100686), correlation (0.552594)*/,
    11,-3, 12,-8/*mean (0.101091), correlation (0.532394)*/,
    3,0, 3,5/*mean (0.101147), correlation (0.525576)*/,
    -1,4, 0,10/*mean (0.105263), correlation (0.531498)*/,
    3,-6, 4,5/*mean (0.110785), correlation (0.540491)*/,
    -13,0, -10,5/*mean (0.112798), correlation (0.536582)*/,
    5,8, 12,11/*mean (0.114181), correlation (0.555793)*/,
    8,9, 9,-6/*mean (0.117431), correlation (0.553763)*/,
    7,-4, 8,-12/*mean (0.118522), correlation (0.553452)*/,
    -10,4, -10,9/*mean (0.12094), correlation (0.554785)*/,
    7,3, 12,4/*mean (0.122582), correlation (0.555825)*/,
    9,-7, 10,-2/*mean (0.124978), correlation (0.549846)*/,
    7,0, 12,-2/*mean (0.127002), correlation (0.537452)*/,
    -1,-6, 0,-11/*mean (0.127148), correlation (0.547401)*/
};


static void makeRandomPattern(int patchSize, Point* pattern, int npoints)
{
    RNG rng(0x34985739); // we always start with a fixed seed,
                         // to make patterns the same on each run
    for( int i = 0; i < npoints; i++ )
    {
        pattern[i].x = rng.uniform(-patchSize/2, patchSize/2+1);
        pattern[i].y = rng.uniform(-patchSize/2, patchSize/2+1);
    }
}


static inline float getScale(int level, int firstLevel, double scaleFactor)
{
    return (float)std::pow(scaleFactor, (double)(level - firstLevel));
}

/** Constructor
 * @param detector_params parameters to use
 */
ORB::ORB(int _nfeatures, float _scaleFactor, int _nlevels, int _edgeThreshold,
         int _firstLevel, int _WTA_K, int _scoreType, int _patchSize) :
    nfeatures(_nfeatures), scaleFactor(_scaleFactor), nlevels(_nlevels),
    edgeThreshold(_edgeThreshold), firstLevel(_firstLevel), WTA_K(_WTA_K),
    scoreType(_scoreType), patchSize(_patchSize)
{}


int ORB::descriptorSize() const
{
    return kBytes;
}

int ORB::descriptorType() const
{
    return CV_8U;
}

/** Compute the ORB features and descriptors on an image
 * @param img the image to compute the features and descriptors on
 * @param mask the mask to apply
 * @param keypoints the resulting keypoints
 */
void ORB::operator()(InputArray image, InputArray mask, vector<KeyPoint>& keypoints) const
{
    (*this)(image, mask, keypoints, noArray(), false);
}


/** Compute the ORB keypoint orientations
 * @param image the image to compute the features and descriptors on
 * @param integral_image the integral image of the iamge (can be empty, but the computation will be slower)
 * @param scale the scale at which we compute the orientation
 * @param keypoints the resulting keypoints
 */
static void computeOrientation(const Mat& image, vector<KeyPoint>& keypoints,
                               int halfPatchSize, const vector<int>& umax)
{
    // Process each keypoint
    for (vector<KeyPoint>::iterator keypoint = keypoints.begin(),
         keypointEnd = keypoints.end(); keypoint != keypointEnd; ++keypoint)
    {
        keypoint->angle = IC_Angle(image, halfPatchSize, keypoint->pt, umax);
    }
}


/** Compute the ORB keypoints on an image
 * @param image_pyramid the image pyramid to compute the features and descriptors on
 * @param mask_pyramid the masks to apply at every level
 * @param keypoints the resulting keypoints, clustered per level
 */
static void computeKeyPoints(const vector<Mat>& imagePyramid,
                             const vector<Mat>& maskPyramid,
                             vector<vector<KeyPoint> >& allKeypoints,
                             int nfeatures, int firstLevel, double scaleFactor,
                             int edgeThreshold, int patchSize, int scoreType )
{
    int nlevels = (int)imagePyramid.size();
    vector<int> nfeaturesPerLevel(nlevels);

    // fill the extractors and descriptors for the corresponding scales
    float factor = (float)(1.0 / scaleFactor);
    float ndesiredFeaturesPerScale = nfeatures*(1 - factor)/(1 - (float)pow((double)factor, (double)nlevels));

    int sumFeatures = 0;
    for( int level = 0; level < nlevels-1; level++ )
    {
        nfeaturesPerLevel[level] = cvRound(ndesiredFeaturesPerScale);
        sumFeatures += nfeaturesPerLevel[level];
        ndesiredFeaturesPerScale *= factor;
    }
    nfeaturesPerLevel[nlevels-1] = std::max(nfeatures - sumFeatures, 0);

    // Make sure we forget about what is too close to the boundary
    //edge_threshold_ = std::max(edge_threshold_, patch_size_/2 + kKernelWidth / 2 + 2);

    // pre-compute the end of a row in a circular patch
    int halfPatchSize = patchSize / 2;
    vector<int> umax(halfPatchSize + 2);

    int v, v0, vmax = cvFloor(halfPatchSize * sqrt(2.f) / 2 + 1);
    int vmin = cvCeil(halfPatchSize * sqrt(2.f) / 2);
    for (v = 0; v <= vmax; ++v)
        umax[v] = cvRound(sqrt((double)halfPatchSize * halfPatchSize - v * v));

    // Make sure we are symmetric
    for (v = halfPatchSize, v0 = 0; v >= vmin; --v)
    {
        while (umax[v0] == umax[v0 + 1])
            ++v0;
        umax[v] = v0;
        ++v0;
    }

    allKeypoints.resize(nlevels);

    for (int level = 0; level < nlevels; ++level)
    {
        int featuresNum = nfeaturesPerLevel[level];
        allKeypoints[level].reserve(featuresNum*2);

        vector<KeyPoint> & keypoints = allKeypoints[level];

        // Detect FAST features, 20 is a good threshold
        FastFeatureDetector fd(20, true);
        fd.detect(imagePyramid[level], keypoints, maskPyramid[level]);

        // Remove keypoints very close to the border
        KeyPointsFilter::runByImageBorder(keypoints, imagePyramid[level].size(), edgeThreshold);

        if( scoreType == ORB::HARRIS_SCORE )
        {
            // Keep more points than necessary as FAST does not give amazing corners
            KeyPointsFilter::retainBest(keypoints, 2 * featuresNum);

            // Compute the Harris cornerness (better scoring than FAST)
            HarrisResponses(imagePyramid[level], keypoints, 7, HARRIS_K);
        }

        //cull to the final desired level, using the new Harris scores or the original FAST scores.
        KeyPointsFilter::retainBest(keypoints, featuresNum);

        float sf = getScale(level, firstLevel, scaleFactor);

        // Set the level of the coordinates
        for (vector<KeyPoint>::iterator keypoint = keypoints.begin(),
             keypointEnd = keypoints.end(); keypoint != keypointEnd; ++keypoint)
        {
            keypoint->octave = level;
            keypoint->size = patchSize*sf;
        }

        computeOrientation(imagePyramid[level], keypoints, halfPatchSize, umax);
    }
}


/** Compute the ORB decriptors
 * @param image the image to compute the features and descriptors on
 * @param integral_image the integral image of the image (can be empty, but the computation will be slower)
 * @param level the scale at which we compute the orientation
 * @param keypoints the keypoints to use
 * @param descriptors the resulting descriptors
 */
static void computeDescriptors(const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors,
                               const vector<Point>& pattern, int dsize, int WTA_K)
{
    //convert to grayscale if more than one color
    CV_Assert(image.type() == CV_8UC1);
    //create the descriptor mat, keypoints.size() rows, BYTES cols
    descriptors = Mat::zeros((int)keypoints.size(), dsize, CV_8UC1);

    for (size_t i = 0; i < keypoints.size(); i++)
        computeOrbDescriptor(keypoints[i], image, &pattern[0], descriptors.ptr((int)i), dsize, WTA_K);
}


/** Compute the ORB features and descriptors on an image
 * @param img the image to compute the features and descriptors on
 * @param mask the mask to apply
 * @param keypoints the resulting keypoints
 * @param descriptors the resulting descriptors
 * @param do_keypoints if true, the keypoints are computed, otherwise used as an input
 * @param do_descriptors if true, also computes the descriptors
 */
void ORB::operator()( InputArray _image, InputArray _mask, vector<KeyPoint>& _keypoints,
                      OutputArray _descriptors, bool useProvidedKeypoints) const
{
    CV_Assert(patchSize >= 2);

    bool do_keypoints = !useProvidedKeypoints;
    bool do_descriptors = _descriptors.needed();

    if( (!do_keypoints && !do_descriptors) || _image.empty() )
        return;

    //ROI handling
    const int HARRIS_BLOCK_SIZE = 9;
    int halfPatchSize = patchSize / 2;
    // sqrt(2.0) is for handling patch rotation
    int descPatchSize = cvCeil(halfPatchSize*sqrt(2.0));
    int border = std::max(edgeThreshold, std::max(descPatchSize, HARRIS_BLOCK_SIZE/2))+1;

    Mat image = _image.getMat(), mask = _mask.getMat();
    if( image.type() != CV_8UC1 )
        cvtColor(_image, image, CV_BGR2GRAY);

    int levelsNum = this->nlevels;

    if( !do_keypoints )
    {
        // if we have pre-computed keypoints, they may use more levels than it is set in parameters
        // !!!TODO!!! implement more correct method, independent from the used keypoint detector.
        // Namely, the detector should provide correct size of each keypoint. Based on the keypoint size
        // and the algorithm used (i.e. BRIEF, running on 31x31 patches) we should compute the approximate
        // scale-factor that we need to apply. Then we should cluster all the computed scale-factors and
        // for each cluster compute the corresponding image.
        //
        // In short, ultimately the descriptor should
        // ignore octave parameter and deal only with the keypoint size.
        levelsNum = 0;
        for( size_t i = 0; i < _keypoints.size(); i++ )
            levelsNum = std::max(levelsNum, std::max(_keypoints[i].octave, 0));
        levelsNum++;
    }

    // Pre-compute the scale pyramids
    vector<Mat> imagePyramid(levelsNum), maskPyramid(levelsNum);
    for (int level = 0; level < levelsNum; ++level)
    {
        float scale = 1/getScale(level, firstLevel, scaleFactor);
        Size sz(cvRound(image.cols*scale), cvRound(image.rows*scale));
        Size wholeSize(sz.width + border*2, sz.height + border*2);
        Mat temp(wholeSize, image.type()), masktemp;
        imagePyramid[level] = temp(Rect(border, border, sz.width, sz.height));

        if( !mask.empty() )
        {
            masktemp = Mat(wholeSize, mask.type());
            maskPyramid[level] = masktemp(Rect(border, border, sz.width, sz.height));
        }

        // Compute the resized image
        if( level != firstLevel )
        {
            if( level < firstLevel )
            {
                resize(image, imagePyramid[level], sz, 0, 0, INTER_LINEAR);
                if (!mask.empty())
                    resize(mask, maskPyramid[level], sz, 0, 0, INTER_LINEAR);
            }
            else
            {
                resize(imagePyramid[level-1], imagePyramid[level], sz, 0, 0, INTER_LINEAR);
                if (!mask.empty())
                {
                    resize(maskPyramid[level-1], maskPyramid[level], sz, 0, 0, INTER_LINEAR);
                    threshold(maskPyramid[level], maskPyramid[level], 254, 0, THRESH_TOZERO);
                }
            }

            copyMakeBorder(imagePyramid[level], temp, border, border, border, border,
                           BORDER_REFLECT_101+BORDER_ISOLATED);
            if (!mask.empty())
                copyMakeBorder(maskPyramid[level], masktemp, border, border, border, border,
                               BORDER_CONSTANT+BORDER_ISOLATED);
        }
        else
        {
            copyMakeBorder(image, temp, border, border, border, border,
                           BORDER_REFLECT_101);
            if( !mask.empty() )
                copyMakeBorder(mask, masktemp, border, border, border, border,
                               BORDER_CONSTANT+BORDER_ISOLATED);
        }
    }

    // Pre-compute the keypoints (we keep the best over all scales, so this has to be done beforehand
    vector < vector<KeyPoint> > allKeypoints;
    if( do_keypoints )
    {
        // Get keypoints, those will be far enough from the border that no check will be required for the descriptor
        computeKeyPoints(imagePyramid, maskPyramid, allKeypoints,
                         nfeatures, firstLevel, scaleFactor,
                         edgeThreshold, patchSize, scoreType);

        // make sure we have the right number of keypoints keypoints
        /*vector<KeyPoint> temp;

        for (int level = 0; level < n_levels; ++level)
        {
            vector<KeyPoint>& keypoints = all_keypoints[level];
            temp.insert(temp.end(), keypoints.begin(), keypoints.end());
            keypoints.clear();
        }

        KeyPoint::retainBest(temp, n_features_);

        for (vector<KeyPoint>::iterator keypoint = temp.begin(),
             keypoint_end = temp.end(); keypoint != keypoint_end; ++keypoint)
            all_keypoints[keypoint->octave].push_back(*keypoint);*/
    }
    else
    {
        // Remove keypoints very close to the border
        KeyPointsFilter::runByImageBorder(_keypoints, image.size(), edgeThreshold);

        // Cluster the input keypoints depending on the level they were computed at
        allKeypoints.resize(levelsNum);
        for (vector<KeyPoint>::iterator keypoint = _keypoints.begin(),
             keypointEnd = _keypoints.end(); keypoint != keypointEnd; ++keypoint)
            allKeypoints[keypoint->octave].push_back(*keypoint);

        // Make sure we rescale the coordinates
        for (int level = 0; level < levelsNum; ++level)
        {
            if (level == firstLevel)
                continue;

            vector<KeyPoint> & keypoints = allKeypoints[level];
            float scale = 1/getScale(level, firstLevel, scaleFactor);
            for (vector<KeyPoint>::iterator keypoint = keypoints.begin(),
                 keypointEnd = keypoints.end(); keypoint != keypointEnd; ++keypoint)
                keypoint->pt *= scale;
        }
    }

    Mat descriptors;
    vector<Point> pattern;

    if( do_descriptors )
    {
        int nkeypoints = 0;
        for (int level = 0; level < levelsNum; ++level)
            nkeypoints += (int)allKeypoints[level].size();
        if( nkeypoints == 0 )
            _descriptors.release();
        else
        {
            _descriptors.create(nkeypoints, descriptorSize(), CV_8U);
            descriptors = _descriptors.getMat();
        }

        const int npoints = 512;
        Point patternbuf[npoints];
        const Point* pattern0 = (const Point*)bit_pattern_31_;

        if( patchSize != 31 )
        {
            pattern0 = patternbuf;
            makeRandomPattern(patchSize, patternbuf, npoints);
        }

        CV_Assert( WTA_K == 2 || WTA_K == 3 || WTA_K == 4 );

        if( WTA_K == 2 )
            std::copy(pattern0, pattern0 + npoints, std::back_inserter(pattern));
        else
        {
            int ntuples = descriptorSize()*4;
            initializeOrbPattern(pattern0, pattern, ntuples, WTA_K, npoints);
        }
    }

    _keypoints.clear();
    int offset = 0;
    for (int level = 0; level < levelsNum; ++level)
    {
        // Get the features and compute their orientation
        vector<KeyPoint>& keypoints = allKeypoints[level];
        int nkeypoints = (int)keypoints.size();

        // Compute the descriptors
        if (do_descriptors)
        {
            Mat desc;
            if (!descriptors.empty())
            {
                desc = descriptors.rowRange(offset, offset + nkeypoints);
            }

            offset += nkeypoints;
            // preprocess the resized image
            Mat& workingMat = imagePyramid[level];
            //boxFilter(working_mat, working_mat, working_mat.depth(), Size(5,5), Point(-1,-1), true, BORDER_REFLECT_101);
            GaussianBlur(workingMat, workingMat, Size(7, 7), 2, 2, BORDER_REFLECT_101);
            computeDescriptors(workingMat, keypoints, desc, pattern, descriptorSize(), WTA_K);
        }

        // Copy to the output data
        if (level != firstLevel)
        {
            float scale = getScale(level, firstLevel, scaleFactor);
            for (vector<KeyPoint>::iterator keypoint = keypoints.begin(),
                 keypointEnd = keypoints.end(); keypoint != keypointEnd; ++keypoint)
                keypoint->pt *= scale;
        }
        // And add the keypoints to the output
        _keypoints.insert(_keypoints.end(), keypoints.begin(), keypoints.end());
    }
}

void ORB::detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask) const
{
    (*this)(image, mask, keypoints, noArray(), false);
}

void ORB::computeImpl( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors) const
{
    (*this)(image, Mat(), keypoints, descriptors, true);
}

}