1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
#include <iostream>
#include <vector>
#include "opencv2/core.hpp"
#include <opencv2/core/utility.hpp>
#include "opencv2/imgproc.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/video.hpp"
#include "opencv2/cudaoptflow.hpp"
#include "opencv2/cudaimgproc.hpp"
using namespace std;
using namespace cv;
using namespace cv::cuda;
static void download(const GpuMat& d_mat, vector<Point2f>& vec)
{
vec.resize(d_mat.cols);
Mat mat(1, d_mat.cols, CV_32FC2, (void*)&vec[0]);
d_mat.download(mat);
}
static void download(const GpuMat& d_mat, vector<uchar>& vec)
{
vec.resize(d_mat.cols);
Mat mat(1, d_mat.cols, CV_8UC1, (void*)&vec[0]);
d_mat.download(mat);
}
static void drawArrows(Mat& frame, const vector<Point2f>& prevPts, const vector<Point2f>& nextPts, const vector<uchar>& status, Scalar line_color = Scalar(0, 0, 255))
{
for (size_t i = 0; i < prevPts.size(); ++i)
{
if (status[i])
{
int line_thickness = 1;
Point p = prevPts[i];
Point q = nextPts[i];
double angle = atan2((double) p.y - q.y, (double) p.x - q.x);
double hypotenuse = sqrt( (double)(p.y - q.y)*(p.y - q.y) + (double)(p.x - q.x)*(p.x - q.x) );
if (hypotenuse < 1.0)
continue;
// Here we lengthen the arrow by a factor of three.
q.x = (int) (p.x - 3 * hypotenuse * cos(angle));
q.y = (int) (p.y - 3 * hypotenuse * sin(angle));
// Now we draw the main line of the arrow.
line(frame, p, q, line_color, line_thickness);
// Now draw the tips of the arrow. I do some scaling so that the
// tips look proportional to the main line of the arrow.
p.x = (int) (q.x + 9 * cos(angle + CV_PI / 4));
p.y = (int) (q.y + 9 * sin(angle + CV_PI / 4));
line(frame, p, q, line_color, line_thickness);
p.x = (int) (q.x + 9 * cos(angle - CV_PI / 4));
p.y = (int) (q.y + 9 * sin(angle - CV_PI / 4));
line(frame, p, q, line_color, line_thickness);
}
}
}
template <typename T> inline T clamp (T x, T a, T b)
{
return ((x) > (a) ? ((x) < (b) ? (x) : (b)) : (a));
}
template <typename T> inline T mapValue(T x, T a, T b, T c, T d)
{
x = clamp(x, a, b);
return c + (d - c) * (x - a) / (b - a);
}
int main(int argc, const char* argv[])
{
const char* keys =
"{ h help | | print help message }"
"{ l left | ../data/pic1.png | specify left image }"
"{ r right | ../data/pic2.png | specify right image }"
"{ gray | | use grayscale sources [PyrLK Sparse] }"
"{ win_size | 21 | specify windows size [PyrLK] }"
"{ max_level | 3 | specify max level [PyrLK] }"
"{ iters | 30 | specify iterations count [PyrLK] }"
"{ points | 4000 | specify points count [GoodFeatureToTrack] }"
"{ min_dist | 0 | specify minimal distance between points [GoodFeatureToTrack] }";
CommandLineParser cmd(argc, argv, keys);
if (cmd.has("help") || !cmd.check())
{
cmd.printMessage();
cmd.printErrors();
return 0;
}
string fname0 = cmd.get<string>("left");
string fname1 = cmd.get<string>("right");
if (fname0.empty() || fname1.empty())
{
cerr << "Missing input file names" << endl;
return -1;
}
bool useGray = cmd.has("gray");
int winSize = cmd.get<int>("win_size");
int maxLevel = cmd.get<int>("max_level");
int iters = cmd.get<int>("iters");
int points = cmd.get<int>("points");
double minDist = cmd.get<double>("min_dist");
Mat frame0 = imread(fname0);
Mat frame1 = imread(fname1);
if (frame0.empty() || frame1.empty())
{
cout << "Can't load input images" << endl;
return -1;
}
namedWindow("PyrLK [Sparse]", WINDOW_NORMAL);
namedWindow("PyrLK [Dense] Flow Field", WINDOW_NORMAL);
cout << "Image size : " << frame0.cols << " x " << frame0.rows << endl;
cout << "Points count : " << points << endl;
cout << endl;
Mat frame0Gray;
cv::cvtColor(frame0, frame0Gray, COLOR_BGR2GRAY);
Mat frame1Gray;
cv::cvtColor(frame1, frame1Gray, COLOR_BGR2GRAY);
// goodFeaturesToTrack
GpuMat d_frame0Gray(frame0Gray);
GpuMat d_prevPts;
Ptr<cuda::CornersDetector> detector = cuda::createGoodFeaturesToTrackDetector(d_frame0Gray.type(), points, 0.01, minDist);
detector->detect(d_frame0Gray, d_prevPts);
// Sparse
Ptr<cuda::SparsePyrLKOpticalFlow> d_pyrLK = cuda::SparsePyrLKOpticalFlow::create(
Size(winSize, winSize), maxLevel, iters);
GpuMat d_frame0(frame0);
GpuMat d_frame1(frame1);
GpuMat d_frame1Gray(frame1Gray);
GpuMat d_nextPts;
GpuMat d_status;
d_pyrLK->calc(useGray ? d_frame0Gray : d_frame0, useGray ? d_frame1Gray : d_frame1, d_prevPts, d_nextPts, d_status);
// Draw arrows
vector<Point2f> prevPts(d_prevPts.cols);
download(d_prevPts, prevPts);
vector<Point2f> nextPts(d_nextPts.cols);
download(d_nextPts, nextPts);
vector<uchar> status(d_status.cols);
download(d_status, status);
drawArrows(frame0, prevPts, nextPts, status, Scalar(255, 0, 0));
imshow("PyrLK [Sparse]", frame0);
waitKey();
return 0;
}