ba.cpp 36.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                         License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2009, PhaseSpace Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The names of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"
#include "opencv2/calib3d/calib3d.hpp"
#include <iostream>

using namespace cv;

LevMarqSparse::LevMarqSparse() {
  Vis_index = X = prevP = P = deltaP = err = JtJ_diag = S = hX = NULL;
  U = ea = V = inv_V_star = eb = Yj = NULL;
  num_cams = 0,   num_points = 0,   num_err_param = 0;
  num_cam_param = 0,  num_point_param = 0;
  A = B = W = NULL;
}

LevMarqSparse::~LevMarqSparse() {
  clear();
}

LevMarqSparse::LevMarqSparse(int npoints, // number of points
           int ncameras, // number of cameras
           int nPointParams, // number of params per one point  (3 in case of 3D points)
           int nCameraParams, // number of parameters per one camera
           int nErrParams, // number of parameters in measurement vector
           // for 1 point at one camera (2 in case of 2D projections)
           Mat& visibility, // visibility matrix. rows correspond to points, columns correspond to cameras
           // 1 - point is visible for the camera, 0 - invisible
           Mat& P0, // starting vector of parameters, first cameras then points
           Mat& X_, // measurements, in order of visibility. non visible cases are skipped
           TermCriteria _criteria, // termination criteria

           // callback for estimation of Jacobian matrices
           void (CV_CDECL * _fjac)(int i, int j, Mat& point_params,
                Mat& cam_params, Mat& A, Mat& B, void* data),
           // callback for estimation of backprojection errors
           void (CV_CDECL * _func)(int i, int j, Mat& point_params,
                Mat& cam_params, Mat& estim, void* data),
           void* _data, // user-specific data passed to the callbacks
           BundleAdjustCallback _cb, void* _user_data
           ) {
  Vis_index = X = prevP = P = deltaP = err = JtJ_diag = S = hX = NULL;
  U = ea = V = inv_V_star = eb = Yj = NULL;
  A = B = W = NULL;

  cb = _cb;
  user_data = _user_data;

  run(npoints, ncameras, nPointParams, nCameraParams, nErrParams, visibility,
      P0, X_, _criteria, _fjac, _func, _data);
}

void LevMarqSparse::clear() {
  for( int i = 0; i < num_points; i++ ) {
    for(int j = 0; j < num_cams; j++ ) {
      //CvMat* tmp = ((CvMat**)(A->data.ptr + i * A->step))[j];
      CvMat* tmp = A[j+i*num_cams];
      if (tmp)
  cvReleaseMat( &tmp );

      //tmp = ((CvMat**)(B->data.ptr + i * B->step))[j];
      tmp  = B[j+i*num_cams];
      if (tmp)
  cvReleaseMat( &tmp );

      //tmp = ((CvMat**)(W->data.ptr + j * W->step))[i];
      tmp  = W[j+i*num_cams];
      if (tmp)
  cvReleaseMat( &tmp );
    }
  }
  delete A; //cvReleaseMat(&A);
  delete B;//cvReleaseMat(&B);
  delete W;//cvReleaseMat(&W);
  cvReleaseMat( &Vis_index);

  for( int j = 0; j < num_cams; j++ ) {
    cvReleaseMat( &U[j] );
  }
  delete U;

  for( int j = 0; j < num_cams; j++ ) {
    cvReleaseMat( &ea[j] );
  }
  delete ea;

  //allocate V and inv_V_star
  for( int i = 0; i < num_points; i++ ) {
    cvReleaseMat(&V[i]);
    cvReleaseMat(&inv_V_star[i]);
  }
  delete V;
  delete inv_V_star;

  for( int i = 0; i < num_points; i++ ) {
    cvReleaseMat(&eb[i]);
  }
  delete eb;

  for( int i = 0; i < num_points; i++ ) {
    cvReleaseMat(&Yj[i]);
  }
  delete Yj;

  cvReleaseMat(&X);
  cvReleaseMat(&prevP);
  cvReleaseMat(&P);
  cvReleaseMat(&deltaP);

  cvReleaseMat(&err);

  cvReleaseMat(&JtJ_diag);
  cvReleaseMat(&S);
  cvReleaseMat(&hX);
}

//A params correspond to  Cameras
//B params correspont to  Points

//num_cameras  - total number of cameras
//num_points   - total number of points

//num_par_per_camera - number of parameters per camera
//num_par_per_point - number of parameters per point

//num_errors - number of measurements.

void LevMarqSparse::run( int num_points_, //number of points
       int num_cams_, //number of cameras
       int num_point_param_, //number of params per one point  (3 in case of 3D points)
       int num_cam_param_, //number of parameters per one camera
       int num_err_param_, //number of parameters in measurement vector for 1 point at one camera (2 in case of 2D projections)
       Mat& visibility,   //visibility matrix . rows correspond to points, columns correspond to cameras
       // 0 - point is visible for the camera, 0 - invisible
       Mat& P0, //starting vector of parameters, first cameras then points
       Mat& X_init, //measurements, in order of visibility. non visible cases are skipped
       TermCriteria criteria_init,
       void (*fjac_)(int i, int j, Mat& point_params, Mat& cam_params, Mat& A, Mat& B, void* data),
       void (*func_)(int i, int j, Mat& point_params, Mat& cam_params, Mat& estim, void* data),
       void* data_
       ) { //termination criteria
  //clear();

  func = func_; //assign evaluation function
  fjac = fjac_; //assign jacobian
  data = data_;

  num_cams = num_cams_;
  num_points = num_points_;
  num_err_param = num_err_param_;
  num_cam_param = num_cam_param_;
  num_point_param = num_point_param_;

  //compute all sizes
  int Aij_width = num_cam_param;
  int Aij_height = num_err_param;

  int Bij_width = num_point_param;
  int Bij_height = num_err_param;

  int U_size = Aij_width;
  int V_size = Bij_width;

  int Wij_height = Aij_width;
  int Wij_width = Bij_width;

  //allocate memory for all Aij, Bij, U, V, W

  //allocate num_points*num_cams matrices A

  //Allocate matrix A whose elements are nointers to Aij
  //if Aij is zero (point i is not visible in camera j) then A(i,j) contains NULL
  //A = cvCreateMat( num_points, num_cams, CV_32S /*pointer is stored here*/ );
  //B = cvCreateMat( num_points, num_cams, CV_32S /*pointer is stored here*/ );
  //W = cvCreateMat( num_cams, num_points, CV_32S /*pointer is stored here*/ );

  A = new CvMat* [num_points * num_cams];
  B = new CvMat* [num_points * num_cams];
  W = new CvMat* [num_cams * num_points];
  Vis_index = cvCreateMat( num_points, num_cams, CV_32S /*integer index is stored here*/ );
  //cvSetZero( A );
  //cvSetZero( B );
  //cvSetZero( W );
  cvSet( Vis_index, cvScalar(-1) );

  //fill matrices A and B based on visibility
  CvMat _vis = visibility;
  int index = 0;
  for (int i = 0; i < num_points; i++ ) {
    for (int j = 0; j < num_cams; j++ ) {
      if (((int*)(_vis.data.ptr+ i * _vis.step))[j] ) {
  ((int*)(Vis_index->data.ptr + i * Vis_index->step))[j] = index;
  index += num_err_param;

  //create matrices Aij, Bij
  CvMat* tmp = cvCreateMat(Aij_height, Aij_width, CV_64F );
  //((CvMat**)(A->data.ptr + i * A->step))[j] = tmp;
  cvSet(tmp,cvScalar(1.0,1.0,1.0,1.0));
  A[j+i*num_cams] = tmp;

  tmp = cvCreateMat( Bij_height, Bij_width, CV_64F );
  //((CvMat**)(B->data.ptr + i * B->step))[j] = tmp;
  cvSet(tmp,cvScalar(1.0,1.0,1.0,1.0));
  B[j+i*num_cams] = tmp;

  tmp = cvCreateMat( Wij_height, Wij_width, CV_64F );
  //((CvMat**)(W->data.ptr + j * W->step))[i] = tmp;  //note indices i and j swapped
  cvSet(tmp,cvScalar(1.0,1.0,1.0,1.0));
  W[j+i*num_cams] = tmp;
      } else{
  A[j+i*num_cams] = NULL;
  B[j+i*num_cams] = NULL;
  W[j+i*num_cams] = NULL;
      }
    }
  }

  //allocate U
  U = new CvMat* [num_cams];
  for (int j = 0; j < num_cams; j++ ) {
    U[j] = cvCreateMat( U_size, U_size, CV_64F );
    cvSetZero(U[j]);

  }
  //allocate ea
  ea = new CvMat* [num_cams];
  for (int j = 0; j < num_cams; j++ ) {
    ea[j] = cvCreateMat( U_size, 1, CV_64F );
    cvSetZero(ea[j]);
  }

  //allocate V and inv_V_star
  V = new CvMat* [num_points];
  inv_V_star = new CvMat* [num_points];
  for (int i = 0; i < num_points; i++ ) {
    V[i] = cvCreateMat( V_size, V_size, CV_64F );
    inv_V_star[i] = cvCreateMat( V_size, V_size, CV_64F );
    cvSetZero(V[i]);
    cvSetZero(inv_V_star[i]);
  }

  //allocate eb
  eb = new CvMat* [num_points];
  for (int i = 0; i < num_points; i++ ) {
    eb[i] = cvCreateMat( V_size, 1, CV_64F );
    cvSetZero(eb[i]);
  }

  //allocate Yj
  Yj = new CvMat* [num_points];
  for (int i = 0; i < num_points; i++ ) {
    Yj[i] = cvCreateMat( Wij_height, Wij_width, CV_64F );  //Yij has the same size as Wij
    cvSetZero(Yj[i]);
  }

  //allocate matrix S
  S = cvCreateMat( num_cams * num_cam_param, num_cams * num_cam_param, CV_64F);
  cvSetZero(S);
  JtJ_diag = cvCreateMat( num_cams * num_cam_param + num_points * num_point_param, 1, CV_64F );
  cvSetZero(JtJ_diag);

  //set starting parameters
  CvMat _tmp_ = CvMat(P0);
  prevP = cvCloneMat( &_tmp_ );
  P = cvCloneMat( &_tmp_ );
  deltaP = cvCloneMat( &_tmp_ );

  //set measurements
  _tmp_ = CvMat(X_init);
  X = cvCloneMat( &_tmp_ );
  //create vector for estimated measurements
  hX = cvCreateMat( X->rows, X->cols, CV_64F );
  cvSetZero(hX);
  //create error vector
  err = cvCreateMat( X->rows, X->cols, CV_64F );
  cvSetZero(err);
  ask_for_proj(_vis);
  //compute initial error
  cvSub(X, hX, err );

  /*
    assert(X->rows == hX->rows);
    std::cerr<<"X size = "<<X->rows<<" "<<X->cols<<std::endl;
    std::cerr<<"hX size = "<<hX->rows<<" "<<hX->cols<<std::endl;
    for (int j=0;j<X->rows;j+=2) {
    double Xj1 = *(double*)(X->data.ptr + j * X->step);
    double hXj1 = *(double*)(hX->data.ptr + j * hX->step);
    double err1 = *(double*)(err->data.ptr + j * err->step);
    double Xj2 = *(double*)(X->data.ptr + (j+1) * X->step);
    double hXj2 = *(double*)(hX->data.ptr + (j+1) * hX->step);
    double err2 = *(double*)(err->data.ptr + (j+1) * err->step);
    std::cerr<<"("<<Xj1<<","<<Xj2<<") -> ("<<hXj1<<","<<hXj2<<"). err = ("<<err1<<","<<err2<<")"<<std::endl;
    }
  */

  prevErrNorm = cvNorm( err, 0,  CV_L2 );
  //    std::cerr<<"prevErrNorm = "<<prevErrNorm<<std::endl;
  iters = 0;
  criteria = criteria_init;

  optimize(_vis);

  ask_for_proj(_vis,true);
  cvSub(X, hX, err );
  errNorm = cvNorm( err, 0,  CV_L2 );
}

void LevMarqSparse::ask_for_proj(CvMat &/*_vis*/,bool once) {
    (void)once;
    //given parameter P, compute measurement hX
    int ind = 0;
    for (int i = 0; i < num_points; i++ ) {
        CvMat point_mat;
        cvGetSubRect( P, &point_mat, cvRect( 0, num_cams * num_cam_param + num_point_param * i, 1, num_point_param ));
        for (int j = 0; j < num_cams; j++ ) {
            //CvMat* Aij = ((CvMat**)(A->data.ptr + A->step * i))[j];
            CvMat* Aij = A[j+i*num_cams];
            if (Aij ) { //visible
                CvMat cam_mat;
                cvGetSubRect( P, &cam_mat, cvRect( 0, j * num_cam_param, 1, num_cam_param ));
                CvMat measur_mat;
                cvGetSubRect( hX, &measur_mat, cvRect( 0, ind * num_err_param, 1, num_err_param ));
                Mat _point_mat(&point_mat), _cam_mat(&cam_mat), _measur_mat(&measur_mat);
                func( i, j, _point_mat, _cam_mat, _measur_mat, data);
                assert( ind*num_err_param == ((int*)(Vis_index->data.ptr + i * Vis_index->step))[j]);
                ind+=1;
            }
        }
    }
}

//iteratively asks for Jacobians for every camera_point pair
void LevMarqSparse::ask_for_projac(CvMat &/*_vis*/)   //should be evaluated at point prevP
{
    // compute jacobians Aij and Bij
    for (int i = 0; i < num_points; i++ )
    {
        CvMat point_mat;
        cvGetSubRect( prevP, &point_mat, cvRect( 0, num_cams * num_cam_param + num_point_param * i, 1, num_point_param ));

        //CvMat** A_line = (CvMat**)(A->data.ptr + A->step * i);
        //CvMat** B_line = (CvMat**)(B->data.ptr + B->step * i);
        for( int j = 0; j < num_cams; j++ )
        {
            //CvMat* Aij = A_line[j];
            //if( Aij ) //Aij is not zero
            CvMat* Aij = A[j+i*num_cams];
            CvMat* Bij = B[j+i*num_cams];
            if(Aij)
            {
                //CvMat** A_line = (CvMat**)(A->data.ptr + A->step * i);
                //CvMat** B_line = (CvMat**)(B->data.ptr + B->step * i);

                //CvMat* Aij = A_line[j];
                //CvMat* Aij = ((CvMat**)(A->data.ptr + A->step * i))[j];

                CvMat cam_mat;
                cvGetSubRect( prevP, &cam_mat, cvRect( 0, j * num_cam_param, 1, num_cam_param ));

                //CvMat* Bij = B_line[j];
                //CvMat* Bij = ((CvMat**)(B->data.ptr + B->step * i))[j];
                Mat _point_mat(&point_mat), _cam_mat(&cam_mat), _Aij(Aij), _Bij(Bij);
                (*fjac)(i, j, _point_mat, _cam_mat, _Aij, _Bij, data);
            }
        }
    }
}

void LevMarqSparse::optimize(CvMat &_vis) { //main function that runs minimization
  bool done = false;

  CvMat* YWt = cvCreateMat( num_cam_param, num_cam_param, CV_64F ); //this matrix used to store Yij*Wik'
  CvMat* E = cvCreateMat( S->height, 1 , CV_64F ); //this is right part of system with S
  cvSetZero(YWt);
  cvSetZero(E);

  while(!done) {
    // compute jacobians Aij and Bij
    ask_for_projac(_vis);
    int invisible_count=0;
    //compute U_j  and  ea_j
    for (int j = 0; j < num_cams; j++ ) {
      cvSetZero(U[j]);
      cvSetZero(ea[j]);
      //summ by i (number of points)
      for (int i = 0; i < num_points; i++ ) {
  //get Aij
  //CvMat* Aij = ((CvMat**)(A->data.ptr + A->step * i))[j];
  CvMat* Aij = A[j+i*num_cams];
  if (Aij ) {
    //Uj+= AijT*Aij
    cvGEMM( Aij, Aij, 1, U[j], 1, U[j], CV_GEMM_A_T );
    //ea_j += AijT * e_ij
    CvMat eij;

    int index = ((int*)(Vis_index->data.ptr + i * Vis_index->step))[j];

    cvGetSubRect( err, &eij, cvRect( 0, index, 1, Aij->height  ) ); //width of transposed Aij
    cvGEMM( Aij, &eij, 1, ea[j], 1, ea[j], CV_GEMM_A_T );
  }
  else
    invisible_count++;
      }
    } //U_j and ea_j computed for all j

    //    if (!(iters%100))
    {
      int nviz = X->rows / num_err_param;
      double e2 = prevErrNorm*prevErrNorm, e2n = e2 / nviz;
      std::cerr<<"Iteration: "<<iters<<", normError: "<<e2<<" ("<<e2n<<")"<<std::endl;
    }
    if (cb)
      cb(iters, prevErrNorm, user_data);
    //compute V_i  and  eb_i
    for (int i = 0; i < num_points; i++ ) {
      cvSetZero(V[i]);
      cvSetZero(eb[i]);

      //summ by i (number of points)
      for( int j = 0; j < num_cams; j++ ) {
  //get Bij
  //CvMat* Bij = ((CvMat**)(B->data.ptr + B->step * i))[j];
  CvMat* Bij = B[j+i*num_cams];
  if (Bij ) {
    //Vi+= BijT*Bij
    cvGEMM( Bij, Bij, 1, V[i], 1, V[i], CV_GEMM_A_T );

    //eb_i += BijT * e_ij
    int index = ((int*)(Vis_index->data.ptr + i * Vis_index->step))[j];

    CvMat eij;
    cvGetSubRect( err, &eij, cvRect( 0, index, 1, Bij->height  ) ); //width of transposed Bij
    cvGEMM( Bij, &eij, 1, eb[i], 1, eb[i], CV_GEMM_A_T );
  }
      }
    } //V_i and eb_i computed for all i

      //compute W_ij
    for( int i = 0; i < num_points; i++ ) {
      for( int j = 0; j < num_cams; j++ ) {
  //CvMat* Aij = ((CvMat**)(A->data.ptr + A->step * i))[j];
  CvMat* Aij = A[j+i*num_cams];
  if( Aij ) { //visible
    //CvMat* Bij = ((CvMat**)(B->data.ptr + B->step * i))[j];
    CvMat* Bij = B[j+i*num_cams];
    //CvMat* Wij = ((CvMat**)(W->data.ptr + W->step * j))[i];
    CvMat* Wij = W[j+i*num_cams];

    //multiply
    cvGEMM( Aij, Bij, 1, NULL, 0, Wij, CV_GEMM_A_T );
  }
      }
    } //Wij computed

      //backup diagonal of JtJ before we start augmenting it
    {
      CvMat dia;
      CvMat subr;
      for( int j = 0; j < num_cams; j++ ) {
  cvGetDiag(U[j], &dia);
  cvGetSubRect(JtJ_diag, &subr,
         cvRect(0, j*num_cam_param, 1, num_cam_param ));
  cvCopy( &dia, &subr );
      }
      for( int i = 0; i < num_points; i++ ) {
  cvGetDiag(V[i], &dia);
  cvGetSubRect(JtJ_diag, &subr,
         cvRect(0, num_cams*num_cam_param + i * num_point_param, 1, num_point_param ));
  cvCopy( &dia, &subr );
      }
    }

    if( iters == 0 ) {
      //initialize lambda. It is set to 1e-3 * average diagonal element in JtJ
      double average_diag = 0;
      for( int j = 0; j < num_cams; j++ ) {
  average_diag += cvTrace( U[j] ).val[0];
      }
      for( int i = 0; i < num_points; i++ ) {
  average_diag += cvTrace( V[i] ).val[0];
      }
      average_diag /= (num_cams*num_cam_param + num_points * num_point_param );

      //      lambda = 1e-3 * average_diag;
      lambda = 1e-3 * average_diag;
      lambda = 0.245560;
    }

    //now we are going to find good step and make it
    for(;;) {
      //augmentation of diagonal
      for(int j = 0; j < num_cams; j++ ) {
  CvMat diag;
  cvGetDiag( U[j], &diag );
#if 1
  cvAddS( &diag, cvScalar( lambda ), &diag );
#else
  cvScale( &diag, &diag, 1 + lambda );
#endif
      }
      for(int i = 0; i < num_points; i++ ) {
  CvMat diag;
  cvGetDiag( V[i], &diag );
#if 1
  cvAddS( &diag, cvScalar( lambda ), &diag );
#else
  cvScale( &diag, &diag, 1 + lambda );
#endif
      }
      bool error = false;
      //compute inv(V*)
      bool inverted_ok = true;
      for(int i = 0; i < num_points; i++ ) {
  double det = cvInvert( V[i], inv_V_star[i] );

  if( fabs(det) <= FLT_EPSILON )  {
    inverted_ok = false;
    std::cerr<<"V["<<i<<"] failed"<<std::endl;
    break;
  } //means we did wrong augmentation, try to choose different lambda
      }

      if( inverted_ok ) {
  cvSetZero( E );
  //loop through cameras, compute upper diagonal blocks of matrix S
  for( int j = 0; j < num_cams; j++ ) {
    //compute Yij = Wij (V*_i)^-1  for all i   (if Wij exists/nonzero)
    for( int i = 0; i < num_points; i++ ) {
      //
      //CvMat* Wij = ((CvMat**)(W->data.ptr + W->step * j))[i];
      CvMat* Wij = W[j+i*num_cams];
      if( Wij ) {
        cvMatMul( Wij, inv_V_star[i], Yj[i] );
      }
    }

    //compute Sjk   for k>=j  (because Sjk = Skj)
    for( int k = j; k < num_cams; k++ ) {
      cvSetZero( YWt );
      for( int i = 0; i < num_points; i++ ) {
        //check that both Wij and Wik exist
        // CvMat* Wij = ((CvMat**)(W->data.ptr + W->step * j))[i];
        CvMat* Wij = W[j+i*num_cams];
        //CvMat* Wik = ((CvMat**)(W->data.ptr + W->step * k))[i];
        CvMat* Wik = W[k+i*num_cams];

        if( Wij && Wik ) {
    //multiply YWt += Yj[i]*Wik'
    cvGEMM( Yj[i], Wik, 1, YWt, 1, YWt, CV_GEMM_B_T  ); ///*transpose Wik
        }
      }

      //copy result to matrix S

      CvMat Sjk;
      //extract submat
      cvGetSubRect( S, &Sjk, cvRect( k * num_cam_param, j * num_cam_param, num_cam_param, num_cam_param ));


      //if j==k, add diagonal
      if( j != k ) {
        //just copy with minus
        cvScale( YWt, &Sjk, -1 ); //if we set initial S to zero then we can use cvSub( Sjk, YWt, Sjk);
      } else {
        //add diagonal value

        //subtract YWt from augmented Uj
        cvSub( U[j], YWt, &Sjk );
      }
    }

    //compute right part of equation involving matrix S
    // e_j=ea_j - \sum_i Y_ij eb_i
    {
      CvMat e_j;

      //select submat
      cvGetSubRect( E, &e_j, cvRect( 0, j * num_cam_param, 1, num_cam_param ) );

      for( int i = 0; i < num_points; i++ ) {
        //CvMat* Wij = ((CvMat**)(W->data.ptr + W->step * j))[i];
        CvMat* Wij = W[j+i*num_cams];
        if( Wij )
    cvMatMulAdd( Yj[i], eb[i], &e_j, &e_j );
      }

      cvSub( ea[j], &e_j, &e_j );
    }

  }
  //fill below diagonal elements of matrix S
  cvCompleteSymm( S,  0  ); ///*from upper to low //operation may be done by nonzero blocks or during upper diagonal computation

  //Solve linear system  S * deltaP_a = E
  CvMat dpa;
  cvGetSubRect( deltaP, &dpa, cvRect(0, 0, 1, S->width ) );
  int res = cvSolve( S, E, &dpa, CV_CHOLESKY );

  if( res ) { //system solved ok
    //compute db_i
    for( int i = 0; i < num_points; i++ ) {
      CvMat dbi;
      cvGetSubRect( deltaP, &dbi, cvRect( 0, dpa.height + i * num_point_param, 1, num_point_param ) );

      // compute \sum_j W_ij^T da_j
      for( int j = 0; j < num_cams; j++ ) {
        //get Wij
        //CvMat* Wij = ((CvMat**)(W->data.ptr + W->step * j))[i];
        CvMat* Wij = W[j+i*num_cams];
        if( Wij ) {
    //get da_j
    CvMat daj;
    cvGetSubRect( &dpa, &daj, cvRect( 0, j * num_cam_param, 1, num_cam_param ));
    cvGEMM( Wij, &daj, 1, &dbi, 1, &dbi, CV_GEMM_A_T  ); ///* transpose Wij
        }
      }
      //finalize dbi
      cvSub( eb[i], &dbi, &dbi );
      cvMatMul(inv_V_star[i], &dbi, &dbi );  //here we get final dbi
    }  //now we computed whole deltaP

    //add deltaP to delta
    cvAdd( prevP, deltaP, P );

    //evaluate  function with new parameters
    ask_for_proj(_vis); // func( P, hX );

    //compute error
    errNorm = cvNorm( X, hX, CV_L2 );

  } else {
    error = true;
  }
      } else {
  error = true;
      }
      //check solution
      if( error || ///* singularities somewhere
    errNorm > prevErrNorm )  { //step was not accepted
  //increase lambda and reject change
  lambda *= 10;
  {
    int nviz = X->rows / num_err_param;
    double e2 = errNorm*errNorm, e2_prev = prevErrNorm*prevErrNorm;
    double e2n = e2/nviz, e2n_prev = e2_prev/nviz;
    std::cerr<<"move failed: lambda = "<<lambda<<", e2 = "<<e2<<" ("<<e2n<<") > "<<e2_prev<<" ("<<e2n_prev<<")"<<std::endl;
  }

  //restore diagonal from backup
  {
    CvMat dia;
    CvMat subr;
    for( int j = 0; j < num_cams; j++ ) {
      cvGetDiag(U[j], &dia);
      cvGetSubRect(JtJ_diag, &subr,
       cvRect(0, j*num_cam_param, 1, num_cam_param ));
      cvCopy( &subr, &dia );
    }
    for( int i = 0; i < num_points; i++ ) {
      cvGetDiag(V[i], &dia);
      cvGetSubRect(JtJ_diag, &subr,
       cvRect(0, num_cams*num_cam_param + i * num_point_param, 1, num_point_param ));
      cvCopy( &subr, &dia );
    }
  }
      } else {  //all is ok
  //accept change and decrease lambda
  lambda /= 10;
  lambda = MAX(lambda, 1e-16);
  std::cerr<<"decreasing lambda to "<<lambda<<std::endl;
  prevErrNorm = errNorm;

  //compute new projection error vector
  cvSub(  X, hX, err );
  break;
      }
    }
    iters++;

    double param_change_norm = cvNorm(P, prevP, CV_RELATIVE_L2);
    //check termination criteria
    if( (criteria.type&CV_TERMCRIT_ITER && iters > criteria.max_iter ) ||
  (criteria.type&CV_TERMCRIT_EPS && param_change_norm < criteria.epsilon) ) {
      //      std::cerr<<"relative norm change "<<param_change_norm<<" lower than eps "<<criteria.epsilon<<", stopping"<<std::endl;
      done = true;
      break;
    } else {
      //copy new params and continue iterations
      cvCopy( P, prevP );
    }
  }
  cvReleaseMat(&YWt);
  cvReleaseMat(&E);
}

//Utilities

static void fjac(int /*i*/, int /*j*/, CvMat *point_params, CvMat* cam_params, CvMat* A, CvMat* B, void* /*data*/) {
  //compute jacobian per camera parameters (i.e. Aij)
  //take i-th point 3D current coordinates

  CvMat _Mi;
  cvReshape(point_params, &_Mi, 3, 1 );

  CvMat* _mp = cvCreateMat(1, 1, CV_64FC2 ); //projection of the point

  //split camera params into different matrices
  CvMat _ri, _ti, _k = cvMat(0, 0, CV_64F, NULL); // dummy initialization to fix warning of cl.exe
  cvGetRows( cam_params, &_ri, 0, 3 );
  cvGetRows( cam_params, &_ti, 3, 6 );

  double intr_data[9] = {0, 0, 0, 0, 0, 0, 0, 0, 1};
  intr_data[0] = cam_params->data.db[6];
  intr_data[4] = cam_params->data.db[7];
  intr_data[2] = cam_params->data.db[8];
  intr_data[5] = cam_params->data.db[9];

  CvMat _A = cvMat(3,3, CV_64F, intr_data );

  CvMat _dpdr, _dpdt, _dpdf, _dpdc, _dpdk;

  bool have_dk = cam_params->height - 10 ? true : false;

  cvGetCols( A, &_dpdr, 0, 3 );
  cvGetCols( A, &_dpdt, 3, 6 );
  cvGetCols( A, &_dpdf, 6, 8 );
  cvGetCols( A, &_dpdc, 8, 10 );

  if( have_dk ) {
    cvGetRows( cam_params, &_k, 10, cam_params->height );
    cvGetCols( A, &_dpdk, 10, A->width );
  }
  cvProjectPoints2(&_Mi, &_ri, &_ti, &_A, have_dk ? &_k : NULL, _mp, &_dpdr, &_dpdt,
       &_dpdf, &_dpdc, have_dk ? &_dpdk : NULL, 0);

  cvReleaseMat( &_mp );

  //compute jacobian for point params
  //compute dMeasure/dPoint3D

  // x = (r11 * X + r12 * Y + r13 * Z + t1)
  // y = (r21 * X + r22 * Y + r23 * Z + t2)
  // z = (r31 * X + r32 * Y + r33 * Z + t3)

  // x' = x/z
  // y' = y/z

  //d(x') = ( dx*z - x*dz)/(z*z)
  //d(y') = ( dy*z - y*dz)/(z*z)

  //g = 1 + k1*r_2 + k2*r_4 + k3*r_6
  //r_2 = x'*x' + y'*y'

  //d(r_2) = 2*x'*dx' + 2*y'*dy'

  //dg = k1* d(r_2) + k2*2*r_2*d(r_2) + k3*3*r_2*r_2*d(r_2)

  //x" = x'*g + 2*p1*x'*y' + p2(r_2+2*x'_2)
  //y" = y'*g + p1(r_2+2*y'_2) + 2*p2*x'*y'

  //d(x") = d(x') * g + x' * d(g) + 2*p1*( d(x')*y' + x'*dy) + p2*(d(r_2) + 2*2*x'* dx')
  //d(y") = d(y') * g + y' * d(g) + 2*p2*( d(x')*y' + x'*dy) + p1*(d(r_2) + 2*2*y'* dy')

  // u = fx*( x") + cx
  // v = fy*( y") + cy

  // du = fx * d(x")  = fx * ( dx*z - x*dz)/ (z*z)
  // dv = fy * d(y")  = fy * ( dy*z - y*dz)/ (z*z)

  // dx/dX = r11,  dx/dY = r12, dx/dZ = r13
  // dy/dX = r21,  dy/dY = r22, dy/dZ = r23
  // dz/dX = r31,  dz/dY = r32, dz/dZ = r33

  // du/dX = fx*(r11*z-x*r31)/(z*z)
  // du/dY = fx*(r12*z-x*r32)/(z*z)
  // du/dZ = fx*(r13*z-x*r33)/(z*z)

  // dv/dX = fy*(r21*z-y*r31)/(z*z)
  // dv/dY = fy*(r22*z-y*r32)/(z*z)
  // dv/dZ = fy*(r23*z-y*r33)/(z*z)

  //get rotation matrix
  double R[9], t[3], fx = intr_data[0], fy = intr_data[4];
  CvMat _R = cvMat( 3, 3, CV_64F, R );
  cvRodrigues2(&_ri, &_R);

  double X,Y,Z;
  X = point_params->data.db[0];
  Y = point_params->data.db[1];
  Z = point_params->data.db[2];

  t[0] = _ti.data.db[0];
  t[1] = _ti.data.db[1];
  t[2] = _ti.data.db[2];

  //compute x,y,z
  double x = R[0] * X + R[1] * Y + R[2] * Z + t[0];
  double y = R[3] * X + R[4] * Y + R[5] * Z + t[1];
  double z = R[6] * X + R[7] * Y + R[8] * Z + t[2];

#if 1
  //compute x',y'
  double x_strike = x/z;
  double y_strike = y/z;
  //compute dx',dy'  matrix
  //
  //    dx'/dX  dx'/dY dx'/dZ    =
  //    dy'/dX  dy'/dY dy'/dZ

  double coeff[6] = { z, 0, -x,
          0, z, -y };
  CvMat coeffmat = cvMat( 2, 3, CV_64F, coeff );

  CvMat* dstrike_dbig = cvCreateMat(2,3,CV_64F);
  cvMatMul(&coeffmat, &_R, dstrike_dbig);
  cvScale(dstrike_dbig, dstrike_dbig, 1/(z*z) );

  if( have_dk ) {
    double strike_[2] = {x_strike, y_strike};
    CvMat strike = cvMat(1, 2, CV_64F, strike_);

    //compute r_2
    double r_2 = x_strike*x_strike + y_strike*y_strike;
    double r_4 = r_2*r_2;
    double r_6 = r_4*r_2;

    //compute d(r_2)/dbig
    CvMat* dr2_dbig = cvCreateMat(1,3,CV_64F);
    cvMatMul( &strike, dstrike_dbig, dr2_dbig);
    cvScale( dr2_dbig, dr2_dbig, 2 );

    double& k1 = _k.data.db[0];
    double& k2 = _k.data.db[1];
    double& p1 = _k.data.db[2];
    double& p2 = _k.data.db[3];
    double k3 = 0;

    if( _k.cols*_k.rows == 5 ) {
      k3 = _k.data.db[4];
    }
    //compute dg/dbig
    double dg_dr2 = k1 + k2*2*r_2 + k3*3*r_4;
    double g = 1+k1*r_2+k2*r_4+k3*r_6;

    CvMat* dg_dbig = cvCreateMat(1,3,CV_64F);
    cvScale( dr2_dbig, dg_dbig, dg_dr2 );

    CvMat* tmp = cvCreateMat( 2, 3, CV_64F );
    CvMat* dstrike2_dbig = cvCreateMat( 2, 3, CV_64F );

    double c[4] = { g+2*p1*y_strike+4*p2*x_strike,       2*p1*x_strike,
        2*p2*y_strike,                 g+2*p2*x_strike + 4*p1*y_strike };

    CvMat coeffmat2 = cvMat(2,2,CV_64F, c );

    cvMatMul(&coeffmat2, dstrike_dbig, dstrike2_dbig );

    cvGEMM( &strike, dg_dbig, 1, NULL, 0, tmp, CV_GEMM_A_T );
    cvAdd( dstrike2_dbig, tmp, dstrike2_dbig );

    double p[2] = { p2, p1 };
    CvMat pmat = cvMat(2, 1, CV_64F, p );

    cvMatMul( &pmat, dr2_dbig ,tmp);
    cvAdd( dstrike2_dbig, tmp, dstrike2_dbig );

    cvCopy( dstrike2_dbig, B );

    cvReleaseMat(&dr2_dbig);
    cvReleaseMat(&dg_dbig);

    cvReleaseMat(&tmp);
    cvReleaseMat(&dstrike2_dbig);
    cvReleaseMat(&tmp);
  } else {
    cvCopy(dstrike_dbig, B);
  }
  //multiply by fx, fy
  CvMat row;
  cvGetRows( B, &row, 0, 1 );
  cvScale( &row, &row, fx );

  cvGetRows( B, &row, 1, 2 );
  cvScale( &row, &row, fy );

#else

  double k = fx/(z*z);

  cvmSet( B, 0, 0, k*(R[0]*z-x*R[6]));
  cvmSet( B, 0, 1, k*(R[1]*z-x*R[7]));
  cvmSet( B, 0, 2, k*(R[2]*z-x*R[8]));

  k = fy/(z*z);

  cvmSet( B, 1, 0, k*(R[3]*z-y*R[6]));
  cvmSet( B, 1, 1, k*(R[4]*z-y*R[7]));
  cvmSet( B, 1, 2, k*(R[5]*z-y*R[8]));

#endif

}
static void func(int /*i*/, int /*j*/, CvMat *point_params, CvMat* cam_params, CvMat* estim, void* /*data*/) {
  //just do projections
  CvMat _Mi;
  cvReshape( point_params, &_Mi, 3, 1 );

  CvMat* _mp = cvCreateMat(1, 1, CV_64FC2 ); //projection of the point
  CvMat* _mp2 = cvCreateMat(1, 2, CV_64F ); //projection of the point

  //split camera params into different matrices
  CvMat _ri, _ti, _k;

  cvGetRows( cam_params, &_ri, 0, 3 );
  cvGetRows( cam_params, &_ti, 3, 6 );

  double intr_data[9] = {0, 0, 0, 0, 0, 0, 0, 0, 1};
  intr_data[0] = cam_params->data.db[6];
  intr_data[4] = cam_params->data.db[7];
  intr_data[2] = cam_params->data.db[8];
  intr_data[5] = cam_params->data.db[9];

  CvMat _A = cvMat(3,3, CV_64F, intr_data );

  //int cn = CV_MAT_CN(_Mi.type);

  bool have_dk = cam_params->height - 10 ? true : false;

  if( have_dk ) {
    cvGetRows( cam_params, &_k, 10, cam_params->height );
  }
  cvProjectPoints2( &_Mi, &_ri, &_ti, &_A, have_dk ? &_k : NULL, _mp, NULL, NULL,
        NULL, NULL, NULL, 0);
  //    std::cerr<<"_mp = "<<_mp->data.db[0]<<","<<_mp->data.db[1]<<std::endl;
  //
  _mp2->data.db[0] = _mp->data.db[0];
  _mp2->data.db[1] = _mp->data.db[1];
  cvTranspose( _mp2, estim );
  cvReleaseMat( &_mp );
  cvReleaseMat( &_mp2 );
}

static void fjac_new(int i, int j, Mat& point_params, Mat& cam_params, Mat& A, Mat& B, void* data) {
  CvMat _point_params = point_params, _cam_params = cam_params, _Al = A, _Bl = B;
  fjac(i,j, &_point_params, &_cam_params, &_Al, &_Bl, data);
}

static void func_new(int i, int j, Mat& point_params, Mat& cam_params, Mat& estim, void* data)  {
  CvMat _point_params = point_params, _cam_params = cam_params, _estim = estim;
  func(i,j,&_point_params,&_cam_params,&_estim,data);
}

void LevMarqSparse::bundleAdjust( vector<Point3d>& points, //positions of points in global coordinate system (input and output)
          const vector<vector<Point2d> >& imagePoints, //projections of 3d points for every camera
          const vector<vector<int> >& visibility, //visibility of 3d points for every camera
          vector<Mat>& cameraMatrix, //intrinsic matrices of all cameras (input and output)
          vector<Mat>& R, //rotation matrices of all cameras (input and output)
          vector<Mat>& T, //translation vector of all cameras (input and output)
          vector<Mat>& distCoeffs, //distortion coefficients of all cameras (input and output)
          const TermCriteria& criteria,
          BundleAdjustCallback cb, void* user_data) {
  //,enum{MOTION_AND_STRUCTURE,MOTION,STRUCTURE})
  int num_points = (int)points.size();
  int num_cameras = (int)cameraMatrix.size();

  CV_Assert( imagePoints.size() == (size_t)num_cameras &&
       visibility.size() == (size_t)num_cameras &&
       R.size() == (size_t)num_cameras &&
       T.size() == (size_t)num_cameras &&
       (distCoeffs.size() == (size_t)num_cameras || distCoeffs.size() == 0) );

  int numdist = distCoeffs.size() ? (distCoeffs[0].rows * distCoeffs[0].cols) : 0;

  int num_cam_param = 3 /* rotation vector */ + 3 /* translation vector */
    + 2 /* fx, fy */ + 2 /* cx, cy */ + numdist;

  int num_point_param = 3;

  //collect camera parameters into vector
  Mat params( num_cameras * num_cam_param + num_points * num_point_param, 1, CV_64F );

  //fill camera params
  for( int i = 0; i < num_cameras; i++ ) {
    //rotation
    Mat rot_vec; Rodrigues( R[i], rot_vec );
    Mat dst = params.rowRange(i*num_cam_param, i*num_cam_param+3);
    rot_vec.copyTo(dst);

    //translation
    dst = params.rowRange(i*num_cam_param + 3, i*num_cam_param+6);
    T[i].copyTo(dst);

    //intrinsic camera matrix
    double* intr_data = (double*)cameraMatrix[i].data;
    double* intr = (double*)(params.data + params.step * (i*num_cam_param+6));
    //focals
    intr[0] = intr_data[0];  //fx
    intr[1] = intr_data[4];  //fy
    //center of projection
    intr[2] = intr_data[2];  //cx
    intr[3] = intr_data[5];  //cy

    //add distortion if exists
    if( distCoeffs.size() ) {
      dst = params.rowRange(i*num_cam_param + 10, i*num_cam_param+10+numdist);
      distCoeffs[i].copyTo(dst);
    }
  }

  //fill point params
  Mat ptparams(num_points, 1, CV_64FC3, params.data + num_cameras*num_cam_param*params.step);
  Mat _points(points);
  CV_Assert(_points.size() == ptparams.size() && _points.type() == ptparams.type());
  _points.copyTo(ptparams);

  //convert visibility vectors to visibility matrix
  Mat vismat(num_points, num_cameras, CV_32S);
  for( int i = 0; i < num_cameras; i++ ) {
    //get row
    Mat col = vismat.col(i);
    Mat((int)visibility[i].size(), 1, vismat.type(), (void*)&visibility[i][0]).copyTo( col );
  }

  int num_proj = countNonZero(vismat); //total number of points projections

  //collect measurements
  Mat X(num_proj*2,1,CV_64F); //measurement vector

  int counter = 0;
  for(int i = 0; i < num_points; i++ ) {
    for(int j = 0; j < num_cameras; j++ ) {
      //check visibility
      if( visibility[j][i] ) {
  //extract point and put tu vector
  Point2d p = imagePoints[j][i];
  ((double*)(X.data))[counter] = p.x;
  ((double*)(X.data))[counter+1] = p.y;
  assert(p.x != -1 || p.y != -1);
  counter+=2;
      }
    }
  }

  LevMarqSparse levmar( num_points, num_cameras, num_point_param, num_cam_param, 2, vismat, params, X,
      TermCriteria(criteria), fjac_new, func_new, NULL,
      cb, user_data);
  //extract results
  //fill point params
  /*Mat final_points(num_points, 1, CV_64FC3,
    levmar.P->data.db + num_cameras*num_cam_param *levmar.P->step);
    CV_Assert(_points.size() == final_points.size() && _points.type() == final_points.type());
    final_points.copyTo(_points);*/

  points.clear();
  for( int i = 0; i < num_points; i++ ) {
    CvMat point_mat;
    cvGetSubRect( levmar.P, &point_mat, cvRect( 0, levmar.num_cams * levmar.num_cam_param+ levmar.num_point_param * i, 1, levmar.num_point_param ));
    CvScalar x = cvGet2D(&point_mat,0,0); CvScalar y = cvGet2D(&point_mat,1,0); CvScalar z = cvGet2D(&point_mat,2,0);
    points.push_back(Point3d(x.val[0],y.val[0],z.val[0]));
    //std::cerr<<"point"<<points[points.size()-1].x<<","<<points[points.size()-1].y<<","<<points[points.size()-1].z<<std::endl;
  }
  //fill camera params
  //R.clear();T.clear();cameraMatrix.clear();
  for( int i = 0; i < num_cameras; i++ ) {
    //rotation
    Mat rot_vec = Mat(levmar.P).rowRange(i*num_cam_param, i*num_cam_param+3);
    Rodrigues( rot_vec, R[i] );
    //translation
    Mat(levmar.P).rowRange(i*num_cam_param + 3, i*num_cam_param+6).copyTo(T[i]);

    //intrinsic camera matrix
    double* intr_data = (double*)cameraMatrix[i].data;
    double* intr = (double*)(Mat(levmar.P).data + Mat(levmar.P).step * (i*num_cam_param+6));
    //focals
    intr_data[0] = intr[0];  //fx
    intr_data[4] = intr[1];  //fy
    //center of projection
    intr_data[2] = intr[2];  //cx
    intr_data[5] = intr[3];  //cy

    //add distortion if exists
    if( distCoeffs.size() ) {
      Mat(levmar.P).rowRange(i*num_cam_param + 10, i*num_cam_param+10+numdist).copyTo(distCoeffs[i]);
    }
  }
}