1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
/*F///////////////////////////////////////////////////////////////////////////////////////
// Name: cvCreateConDensation
// Purpose: Creating CvConDensation structure and allocating memory for it
// Context:
// Parameters:
// Kalman - double pointer to CvConDensation structure
// DP - dimension of the dynamical vector
// MP - dimension of the measurement vector
// SamplesNum - number of samples in sample set used in algorithm
// Returns:
// Notes:
//
//F*/
CV_IMPL CvConDensation* cvCreateConDensation( int DP, int MP, int SamplesNum )
{
int i;
CvConDensation *CD = 0;
if( DP < 0 || MP < 0 || SamplesNum < 0 )
CV_Error( CV_StsOutOfRange, "" );
/* allocating memory for the structure */
CD = (CvConDensation *) cvAlloc( sizeof( CvConDensation ));
/* setting structure params */
CD->SamplesNum = SamplesNum;
CD->DP = DP;
CD->MP = MP;
/* allocating memory for structure fields */
CD->flSamples = (float **) cvAlloc( sizeof( float * ) * SamplesNum );
CD->flNewSamples = (float **) cvAlloc( sizeof( float * ) * SamplesNum );
CD->flSamples[0] = (float *) cvAlloc( sizeof( float ) * SamplesNum * DP );
CD->flNewSamples[0] = (float *) cvAlloc( sizeof( float ) * SamplesNum * DP );
/* setting pointers in pointer's arrays */
for( i = 1; i < SamplesNum; i++ )
{
CD->flSamples[i] = CD->flSamples[i - 1] + DP;
CD->flNewSamples[i] = CD->flNewSamples[i - 1] + DP;
}
CD->State = (float *) cvAlloc( sizeof( float ) * DP );
CD->DynamMatr = (float *) cvAlloc( sizeof( float ) * DP * DP );
CD->flConfidence = (float *) cvAlloc( sizeof( float ) * SamplesNum );
CD->flCumulative = (float *) cvAlloc( sizeof( float ) * SamplesNum );
CD->RandS = (CvRandState *) cvAlloc( sizeof( CvRandState ) * DP );
CD->Temp = (float *) cvAlloc( sizeof( float ) * DP );
CD->RandomSample = (float *) cvAlloc( sizeof( float ) * DP );
/* Returning created structure */
return CD;
}
/*F///////////////////////////////////////////////////////////////////////////////////////
// Name: cvReleaseConDensation
// Purpose: Releases CvConDensation structure and frees memory allocated for it
// Context:
// Parameters:
// Kalman - double pointer to CvConDensation structure
// DP - dimension of the dynamical vector
// MP - dimension of the measurement vector
// SamplesNum - number of samples in sample set used in algorithm
// Returns:
// Notes:
//
//F*/
CV_IMPL void
cvReleaseConDensation( CvConDensation ** ConDensation )
{
CvConDensation *CD = *ConDensation;
if( !ConDensation )
CV_Error( CV_StsNullPtr, "" );
if( !CD )
return;
/* freeing the memory */
cvFree( &CD->State );
cvFree( &CD->DynamMatr);
cvFree( &CD->flConfidence );
cvFree( &CD->flCumulative );
cvFree( &CD->flSamples[0] );
cvFree( &CD->flNewSamples[0] );
cvFree( &CD->flSamples );
cvFree( &CD->flNewSamples );
cvFree( &CD->Temp );
cvFree( &CD->RandS );
cvFree( &CD->RandomSample );
/* release structure */
cvFree( ConDensation );
}
/*F///////////////////////////////////////////////////////////////////////////////////////
// Name: cvConDensUpdateByTime
// Purpose: Performing Time Update routine for ConDensation algorithm
// Context:
// Parameters:
// Kalman - pointer to CvConDensation structure
// Returns:
// Notes:
//
//F*/
CV_IMPL void
cvConDensUpdateByTime( CvConDensation * ConDens )
{
int i, j;
float Sum = 0;
if( !ConDens )
CV_Error( CV_StsNullPtr, "" );
/* Sets Temp to Zero */
icvSetZero_32f( ConDens->Temp, ConDens->DP, 1 );
/* Calculating the Mean */
for( i = 0; i < ConDens->SamplesNum; i++ )
{
icvScaleVector_32f( ConDens->flSamples[i], ConDens->State, ConDens->DP,
ConDens->flConfidence[i] );
icvAddVector_32f( ConDens->Temp, ConDens->State, ConDens->Temp, ConDens->DP );
Sum += ConDens->flConfidence[i];
ConDens->flCumulative[i] = Sum;
}
/* Taking the new vector from transformation of mean by dynamics matrix */
icvScaleVector_32f( ConDens->Temp, ConDens->Temp, ConDens->DP, 1.f / Sum );
icvTransformVector_32f( ConDens->DynamMatr, ConDens->Temp, ConDens->State, ConDens->DP,
ConDens->DP );
Sum = Sum / ConDens->SamplesNum;
/* Updating the set of random samples */
for( i = 0; i < ConDens->SamplesNum; i++ )
{
j = 0;
while( (ConDens->flCumulative[j] <= (float) i * Sum)&&(j<ConDens->SamplesNum-1))
{
j++;
}
icvCopyVector_32f( ConDens->flSamples[j], ConDens->DP, ConDens->flNewSamples[i] );
}
/* Adding the random-generated vector to every vector in sample set */
for( i = 0; i < ConDens->SamplesNum; i++ )
{
for( j = 0; j < ConDens->DP; j++ )
{
cvbRand( ConDens->RandS + j, ConDens->RandomSample + j, 1 );
}
icvTransformVector_32f( ConDens->DynamMatr, ConDens->flNewSamples[i],
ConDens->flSamples[i], ConDens->DP, ConDens->DP );
icvAddVector_32f( ConDens->flSamples[i], ConDens->RandomSample, ConDens->flSamples[i],
ConDens->DP );
}
}
/*F///////////////////////////////////////////////////////////////////////////////////////
// Name: cvConDensInitSamplSet
// Purpose: Performing Time Update routine for ConDensation algorithm
// Context:
// Parameters:
// conDens - pointer to CvConDensation structure
// lowerBound - vector of lower bounds used to random update of sample set
// lowerBound - vector of upper bounds used to random update of sample set
// Returns:
// Notes:
//
//F*/
CV_IMPL void
cvConDensInitSampleSet( CvConDensation * conDens, CvMat * lowerBound, CvMat * upperBound )
{
int i, j;
float *LBound;
float *UBound;
float Prob = 1.f / conDens->SamplesNum;
if( !conDens || !lowerBound || !upperBound )
CV_Error( CV_StsNullPtr, "" );
if( CV_MAT_TYPE(lowerBound->type) != CV_32FC1 ||
!CV_ARE_TYPES_EQ(lowerBound,upperBound) )
CV_Error( CV_StsBadArg, "source has not appropriate format" );
if( (lowerBound->cols != 1) || (upperBound->cols != 1) )
CV_Error( CV_StsBadArg, "source has not appropriate size" );
if( (lowerBound->rows != conDens->DP) || (upperBound->rows != conDens->DP) )
CV_Error( CV_StsBadArg, "source has not appropriate size" );
LBound = lowerBound->data.fl;
UBound = upperBound->data.fl;
/* Initializing the structures to create initial Sample set */
for( i = 0; i < conDens->DP; i++ )
{
cvRandInit( &(conDens->RandS[i]),
LBound[i],
UBound[i],
i );
}
/* Generating the samples */
for( j = 0; j < conDens->SamplesNum; j++ )
{
for( i = 0; i < conDens->DP; i++ )
{
cvbRand( conDens->RandS + i, conDens->flSamples[j] + i, 1 );
}
conDens->flConfidence[j] = Prob;
}
/* Reinitializes the structures to update samples randomly */
for( i = 0; i < conDens->DP; i++ )
{
cvRandInit( &(conDens->RandS[i]),
(LBound[i] - UBound[i]) / 5,
(UBound[i] - LBound[i]) / 5,
i);
}
}