pyrlk.cu 19.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#if !defined CUDA_DISABLER

#include "opencv2/gpu/device/common.hpp"
#include "opencv2/gpu/device/utility.hpp"
#include "opencv2/gpu/device/functional.hpp"
#include "opencv2/gpu/device/limits.hpp"
#include "opencv2/gpu/device/vec_math.hpp"
#include "opencv2/gpu/device/reduce.hpp"

using namespace cv::gpu;
using namespace cv::gpu::device;

namespace pyrlk
{
    __constant__ int c_winSize_x;
    __constant__ int c_winSize_y;
    __constant__ int c_halfWin_x;
    __constant__ int c_halfWin_y;
    __constant__ int c_iters;

    texture<float, cudaTextureType2D, cudaReadModeElementType> tex_If(false, cudaFilterModeLinear, cudaAddressModeClamp);
    texture<float4, cudaTextureType2D, cudaReadModeElementType> tex_If4(false, cudaFilterModeLinear, cudaAddressModeClamp);
    texture<uchar, cudaTextureType2D, cudaReadModeElementType> tex_Ib(false, cudaFilterModePoint, cudaAddressModeClamp);

    texture<float, cudaTextureType2D, cudaReadModeElementType> tex_Jf(false, cudaFilterModeLinear, cudaAddressModeClamp);
    texture<float4, cudaTextureType2D, cudaReadModeElementType> tex_Jf4(false, cudaFilterModeLinear, cudaAddressModeClamp);

    template <int cn> struct Tex_I;
    template <> struct Tex_I<1>
    {
        static __device__ __forceinline__ float read(float x, float y)
        {
            return tex2D(tex_If, x, y);
        }
    };
    template <> struct Tex_I<4>
    {
        static __device__ __forceinline__ float4 read(float x, float y)
        {
            return tex2D(tex_If4, x, y);
        }
    };

    template <int cn> struct Tex_J;
    template <> struct Tex_J<1>
    {
        static __device__ __forceinline__ float read(float x, float y)
        {
            return tex2D(tex_Jf, x, y);
        }
    };
    template <> struct Tex_J<4>
    {
        static __device__ __forceinline__ float4 read(float x, float y)
        {
            return tex2D(tex_Jf4, x, y);
        }
    };

    __device__ __forceinline__ void accum(float& dst, float val)
    {
        dst += val;
    }
    __device__ __forceinline__ void accum(float& dst, const float4& val)
    {
        dst += val.x + val.y + val.z;
    }

    __device__ __forceinline__ float abs_(float a)
    {
        return ::fabsf(a);
    }
    __device__ __forceinline__ float4 abs_(const float4& a)
    {
        return abs(a);
    }

    template <int cn, int PATCH_X, int PATCH_Y, bool calcErr>
    __global__ void sparseKernel(const float2* prevPts, float2* nextPts, uchar* status, float* err, const int level, const int rows, const int cols)
    {
    #if __CUDA_ARCH__ <= 110
        const int BLOCK_SIZE = 128;
    #else
        const int BLOCK_SIZE = 256;
    #endif

        __shared__ float smem1[BLOCK_SIZE];
        __shared__ float smem2[BLOCK_SIZE];
        __shared__ float smem3[BLOCK_SIZE];

        const unsigned int tid = threadIdx.y * blockDim.x + threadIdx.x;

        float2 prevPt = prevPts[blockIdx.x];
        prevPt.x *= (1.0f / (1 << level));
        prevPt.y *= (1.0f / (1 << level));

        if (prevPt.x < 0 || prevPt.x >= cols || prevPt.y < 0 || prevPt.y >= rows)
        {
            if (tid == 0 && level == 0)
                status[blockIdx.x] = 0;

            return;
        }

        prevPt.x -= c_halfWin_x;
        prevPt.y -= c_halfWin_y;

        // extract the patch from the first image, compute covariation matrix of derivatives

        float A11 = 0;
        float A12 = 0;
        float A22 = 0;

        typedef typename TypeVec<float, cn>::vec_type work_type;

        work_type I_patch   [PATCH_Y][PATCH_X];
        work_type dIdx_patch[PATCH_Y][PATCH_X];
        work_type dIdy_patch[PATCH_Y][PATCH_X];

        for (int yBase = threadIdx.y, i = 0; yBase < c_winSize_y; yBase += blockDim.y, ++i)
        {
            for (int xBase = threadIdx.x, j = 0; xBase < c_winSize_x; xBase += blockDim.x, ++j)
            {
                float x = prevPt.x + xBase + 0.5f;
                float y = prevPt.y + yBase + 0.5f;

                I_patch[i][j] = Tex_I<cn>::read(x, y);

                // Sharr Deriv

                work_type dIdx = 3.0f * Tex_I<cn>::read(x+1, y-1) + 10.0f * Tex_I<cn>::read(x+1, y) + 3.0f * Tex_I<cn>::read(x+1, y+1) -
                                 (3.0f * Tex_I<cn>::read(x-1, y-1) + 10.0f * Tex_I<cn>::read(x-1, y) + 3.0f * Tex_I<cn>::read(x-1, y+1));

                work_type dIdy = 3.0f * Tex_I<cn>::read(x-1, y+1) + 10.0f * Tex_I<cn>::read(x, y+1) + 3.0f * Tex_I<cn>::read(x+1, y+1) -
                                (3.0f * Tex_I<cn>::read(x-1, y-1) + 10.0f * Tex_I<cn>::read(x, y-1) + 3.0f * Tex_I<cn>::read(x+1, y-1));

                dIdx_patch[i][j] = dIdx;
                dIdy_patch[i][j] = dIdy;

                accum(A11, dIdx * dIdx);
                accum(A12, dIdx * dIdy);
                accum(A22, dIdy * dIdy);
            }
        }

        reduce<BLOCK_SIZE>(smem_tuple(smem1, smem2, smem3), thrust::tie(A11, A12, A22), tid, thrust::make_tuple(plus<float>(), plus<float>(), plus<float>()));

    #if __CUDA_ARCH__ >= 300
        if (tid == 0)
        {
            smem1[0] = A11;
            smem2[0] = A12;
            smem3[0] = A22;
        }
    #endif

        __syncthreads();

        A11 = smem1[0];
        A12 = smem2[0];
        A22 = smem3[0];

        float D = A11 * A22 - A12 * A12;

        if (D < numeric_limits<float>::epsilon())
        {
            if (tid == 0 && level == 0)
                status[blockIdx.x] = 0;

            return;
        }

        D = 1.f / D;

        A11 *= D;
        A12 *= D;
        A22 *= D;

        float2 nextPt = nextPts[blockIdx.x];
        nextPt.x *= 2.f;
        nextPt.y *= 2.f;

        nextPt.x -= c_halfWin_x;
        nextPt.y -= c_halfWin_y;

        for (int k = 0; k < c_iters; ++k)
        {
            if (nextPt.x < -c_halfWin_x || nextPt.x >= cols || nextPt.y < -c_halfWin_y || nextPt.y >= rows)
            {
                if (tid == 0 && level == 0)
                    status[blockIdx.x] = 0;

                return;
            }

            float b1 = 0;
            float b2 = 0;

            for (int y = threadIdx.y, i = 0; y < c_winSize_y; y += blockDim.y, ++i)
            {
                for (int x = threadIdx.x, j = 0; x < c_winSize_x; x += blockDim.x, ++j)
                {
                    work_type I_val = I_patch[i][j];
                    work_type J_val = Tex_J<cn>::read(nextPt.x + x + 0.5f, nextPt.y + y + 0.5f);

                    work_type diff = (J_val - I_val) * 32.0f;

                    accum(b1, diff * dIdx_patch[i][j]);
                    accum(b2, diff * dIdy_patch[i][j]);
                }
            }

            reduce<BLOCK_SIZE>(smem_tuple(smem1, smem2), thrust::tie(b1, b2), tid, thrust::make_tuple(plus<float>(), plus<float>()));

        #if __CUDA_ARCH__ >= 300
            if (tid == 0)
            {
                smem1[0] = b1;
                smem2[0] = b2;
            }
        #endif

            __syncthreads();

            b1 = smem1[0];
            b2 = smem2[0];

            float2 delta;
            delta.x = A12 * b2 - A22 * b1;
            delta.y = A12 * b1 - A11 * b2;

            nextPt.x += delta.x;
            nextPt.y += delta.y;

            if (::fabs(delta.x) < 0.01f && ::fabs(delta.y) < 0.01f)
                break;
        }

        float errval = 0;
        if (calcErr)
        {
            for (int y = threadIdx.y, i = 0; y < c_winSize_y; y += blockDim.y, ++i)
            {
                for (int x = threadIdx.x, j = 0; x < c_winSize_x; x += blockDim.x, ++j)
                {
                    work_type I_val = I_patch[i][j];
                    work_type J_val = Tex_J<cn>::read(nextPt.x + x + 0.5f, nextPt.y + y + 0.5f);

                    work_type diff = J_val - I_val;

                    accum(errval, abs_(diff));
                }
            }

            reduce<BLOCK_SIZE>(smem1, errval, tid, plus<float>());
        }

        if (tid == 0)
        {
            nextPt.x += c_halfWin_x;
            nextPt.y += c_halfWin_y;

            nextPts[blockIdx.x] = nextPt;

            if (calcErr)
                err[blockIdx.x] = static_cast<float>(errval) / (cn * c_winSize_x * c_winSize_y);
        }
    }

    template <int cn, int PATCH_X, int PATCH_Y>
    void sparse_caller(int rows, int cols, const float2* prevPts, float2* nextPts, uchar* status, float* err, int ptcount,
                       int level, dim3 block, cudaStream_t stream)
    {
        dim3 grid(ptcount);

        if (level == 0 && err)
            sparseKernel<cn, PATCH_X, PATCH_Y, true><<<grid, block>>>(prevPts, nextPts, status, err, level, rows, cols);
        else
            sparseKernel<cn, PATCH_X, PATCH_Y, false><<<grid, block>>>(prevPts, nextPts, status, err, level, rows, cols);

        cudaSafeCall( cudaGetLastError() );

        if (stream == 0)
            cudaSafeCall( cudaDeviceSynchronize() );
    }

    template <bool calcErr>
    __global__ void denseKernel(PtrStepf u, PtrStepf v, const PtrStepf prevU, const PtrStepf prevV, PtrStepf err, const int rows, const int cols)
    {
        extern __shared__ int smem[];

        const int patchWidth  = blockDim.x + 2 * c_halfWin_x;
        const int patchHeight = blockDim.y + 2 * c_halfWin_y;

        int* I_patch = smem;
        int* dIdx_patch = I_patch + patchWidth * patchHeight;
        int* dIdy_patch = dIdx_patch + patchWidth * patchHeight;

        const int xBase = blockIdx.x * blockDim.x;
        const int yBase = blockIdx.y * blockDim.y;

        for (int i = threadIdx.y; i < patchHeight; i += blockDim.y)
        {
            for (int j = threadIdx.x; j < patchWidth; j += blockDim.x)
            {
                float x = xBase - c_halfWin_x + j + 0.5f;
                float y = yBase - c_halfWin_y + i + 0.5f;

                I_patch[i * patchWidth + j] = tex2D(tex_Ib, x, y);

                // Sharr Deriv

                dIdx_patch[i * patchWidth + j] = 3 * tex2D(tex_Ib, x+1, y-1) + 10 * tex2D(tex_Ib, x+1, y) + 3 * tex2D(tex_Ib, x+1, y+1) -
                                                (3 * tex2D(tex_Ib, x-1, y-1) + 10 * tex2D(tex_Ib, x-1, y) + 3 * tex2D(tex_Ib, x-1, y+1));

                dIdy_patch[i * patchWidth + j] = 3 * tex2D(tex_Ib, x-1, y+1) + 10 * tex2D(tex_Ib, x, y+1) + 3 * tex2D(tex_Ib, x+1, y+1) -
                                                (3 * tex2D(tex_Ib, x-1, y-1) + 10 * tex2D(tex_Ib, x, y-1) + 3 * tex2D(tex_Ib, x+1, y-1));
            }
        }

        __syncthreads();

        const int x = xBase + threadIdx.x;
        const int y = yBase + threadIdx.y;

        if (x >= cols || y >= rows)
            return;

        int A11i = 0;
        int A12i = 0;
        int A22i = 0;

        for (int i = 0; i < c_winSize_y; ++i)
        {
            for (int j = 0; j < c_winSize_x; ++j)
            {
                int dIdx = dIdx_patch[(threadIdx.y + i) * patchWidth + (threadIdx.x + j)];
                int dIdy = dIdy_patch[(threadIdx.y + i) * patchWidth + (threadIdx.x + j)];

                A11i += dIdx * dIdx;
                A12i += dIdx * dIdy;
                A22i += dIdy * dIdy;
            }
        }

        float A11 = A11i;
        float A12 = A12i;
        float A22 = A22i;

        float D = A11 * A22 - A12 * A12;

        if (D < numeric_limits<float>::epsilon())
        {
            if (calcErr)
                err(y, x) = numeric_limits<float>::max();

            return;
        }

        D = 1.f / D;

        A11 *= D;
        A12 *= D;
        A22 *= D;

        float2 nextPt;
        nextPt.x = x + prevU(y/2, x/2) * 2.0f;
        nextPt.y = y + prevV(y/2, x/2) * 2.0f;

        for (int k = 0; k < c_iters; ++k)
        {
            if (nextPt.x < 0 || nextPt.x >= cols || nextPt.y < 0 || nextPt.y >= rows)
            {
                if (calcErr)
                    err(y, x) = numeric_limits<float>::max();

                return;
            }

            int b1 = 0;
            int b2 = 0;

            for (int i = 0; i < c_winSize_y; ++i)
            {
                for (int j = 0; j < c_winSize_x; ++j)
                {
                    int I = I_patch[(threadIdx.y + i) * patchWidth + threadIdx.x + j];
                    int J = tex2D(tex_Jf, nextPt.x - c_halfWin_x + j + 0.5f, nextPt.y - c_halfWin_y + i + 0.5f);

                    int diff = (J - I) * 32;

                    int dIdx = dIdx_patch[(threadIdx.y + i) * patchWidth + (threadIdx.x + j)];
                    int dIdy = dIdy_patch[(threadIdx.y + i) * patchWidth + (threadIdx.x + j)];

                    b1 += diff * dIdx;
                    b2 += diff * dIdy;
                }
            }

            float2 delta;
            delta.x = A12 * b2 - A22 * b1;
            delta.y = A12 * b1 - A11 * b2;

            nextPt.x += delta.x;
            nextPt.y += delta.y;

            if (::fabs(delta.x) < 0.01f && ::fabs(delta.y) < 0.01f)
                break;
        }

        u(y, x) = nextPt.x - x;
        v(y, x) = nextPt.y - y;

        if (calcErr)
        {
            int errval = 0;

            for (int i = 0; i < c_winSize_y; ++i)
            {
                for (int j = 0; j < c_winSize_x; ++j)
                {
                    int I = I_patch[(threadIdx.y + i) * patchWidth + threadIdx.x + j];
                    int J = tex2D(tex_Jf, nextPt.x - c_halfWin_x + j + 0.5f, nextPt.y - c_halfWin_y + i + 0.5f);

                    errval += ::abs(J - I);
                }
            }

            err(y, x) = static_cast<float>(errval) / (c_winSize_x * c_winSize_y);
        }
    }

    void loadConstants(int2 winSize, int iters)
    {
        cudaSafeCall( cudaMemcpyToSymbol(c_winSize_x, &winSize.x, sizeof(int)) );
        cudaSafeCall( cudaMemcpyToSymbol(c_winSize_y, &winSize.y, sizeof(int)) );

        int2 halfWin = make_int2((winSize.x - 1) / 2, (winSize.y - 1) / 2);
        cudaSafeCall( cudaMemcpyToSymbol(c_halfWin_x, &halfWin.x, sizeof(int)) );
        cudaSafeCall( cudaMemcpyToSymbol(c_halfWin_y, &halfWin.y, sizeof(int)) );

        cudaSafeCall( cudaMemcpyToSymbol(c_iters, &iters, sizeof(int)) );
    }

    void sparse1(PtrStepSzf I, PtrStepSzf J, const float2* prevPts, float2* nextPts, uchar* status, float* err, int ptcount,
                 int level, dim3 block, dim3 patch, cudaStream_t stream)
    {
        typedef void (*func_t)(int rows, int cols, const float2* prevPts, float2* nextPts, uchar* status, float* err, int ptcount,
                               int level, dim3 block, cudaStream_t stream);

        static const func_t funcs[5][5] =
        {
            {sparse_caller<1, 1, 1>, sparse_caller<1, 2, 1>, sparse_caller<1, 3, 1>, sparse_caller<1, 4, 1>, sparse_caller<1, 5, 1>},
            {sparse_caller<1, 1, 2>, sparse_caller<1, 2, 2>, sparse_caller<1, 3, 2>, sparse_caller<1, 4, 2>, sparse_caller<1, 5, 2>},
            {sparse_caller<1, 1, 3>, sparse_caller<1, 2, 3>, sparse_caller<1, 3, 3>, sparse_caller<1, 4, 3>, sparse_caller<1, 5, 3>},
            {sparse_caller<1, 1, 4>, sparse_caller<1, 2, 4>, sparse_caller<1, 3, 4>, sparse_caller<1, 4, 4>, sparse_caller<1, 5, 4>},
            {sparse_caller<1, 1, 5>, sparse_caller<1, 2, 5>, sparse_caller<1, 3, 5>, sparse_caller<1, 4, 5>, sparse_caller<1, 5, 5>}
        };

        bindTexture(&tex_If, I);
        bindTexture(&tex_Jf, J);

        funcs[patch.y - 1][patch.x - 1](I.rows, I.cols, prevPts, nextPts, status, err, ptcount,
            level, block, stream);
    }

    void sparse4(PtrStepSz<float4> I, PtrStepSz<float4> J, const float2* prevPts, float2* nextPts, uchar* status, float* err, int ptcount,
                 int level, dim3 block, dim3 patch, cudaStream_t stream)
    {
        typedef void (*func_t)(int rows, int cols, const float2* prevPts, float2* nextPts, uchar* status, float* err, int ptcount,
                               int level, dim3 block, cudaStream_t stream);

        static const func_t funcs[5][5] =
        {
            {sparse_caller<4, 1, 1>, sparse_caller<4, 2, 1>, sparse_caller<4, 3, 1>, sparse_caller<4, 4, 1>, sparse_caller<4, 5, 1>},
            {sparse_caller<4, 1, 2>, sparse_caller<4, 2, 2>, sparse_caller<4, 3, 2>, sparse_caller<4, 4, 2>, sparse_caller<4, 5, 2>},
            {sparse_caller<4, 1, 3>, sparse_caller<4, 2, 3>, sparse_caller<4, 3, 3>, sparse_caller<4, 4, 3>, sparse_caller<4, 5, 3>},
            {sparse_caller<4, 1, 4>, sparse_caller<4, 2, 4>, sparse_caller<4, 3, 4>, sparse_caller<4, 4, 4>, sparse_caller<4, 5, 4>},
            {sparse_caller<4, 1, 5>, sparse_caller<4, 2, 5>, sparse_caller<4, 3, 5>, sparse_caller<4, 4, 5>, sparse_caller<4, 5, 5>}
        };

        bindTexture(&tex_If4, I);
        bindTexture(&tex_Jf4, J);

        funcs[patch.y - 1][patch.x - 1](I.rows, I.cols, prevPts, nextPts, status, err, ptcount,
            level, block, stream);
    }

    void dense(PtrStepSzb I, PtrStepSzf J, PtrStepSzf u, PtrStepSzf v, PtrStepSzf prevU, PtrStepSzf prevV, PtrStepSzf err, int2 winSize, cudaStream_t stream)
    {
        dim3 block(16, 16);
        dim3 grid(divUp(I.cols, block.x), divUp(I.rows, block.y));

        bindTexture(&tex_Ib, I);
        bindTexture(&tex_Jf, J);

        int2 halfWin = make_int2((winSize.x - 1) / 2, (winSize.y - 1) / 2);
        const int patchWidth  = block.x + 2 * halfWin.x;
        const int patchHeight = block.y + 2 * halfWin.y;
        size_t smem_size = 3 * patchWidth * patchHeight * sizeof(int);

        if (err.data)
        {
            denseKernel<true><<<grid, block, smem_size, stream>>>(u, v, prevU, prevV, err, I.rows, I.cols);
            cudaSafeCall( cudaGetLastError() );
        }
        else
        {
            denseKernel<false><<<grid, block, smem_size, stream>>>(u, v, prevU, prevV, PtrStepf(), I.rows, I.cols);
            cudaSafeCall( cudaGetLastError() );
        }

        if (stream == 0)
            cudaSafeCall( cudaDeviceSynchronize() );
    }
}

#endif /* CUDA_DISABLER */