imgwarp.avx2.cpp 12.2 KB
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2014-2015, Itseez Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

/* ////////////////////////////////////////////////////////////////////
//
//  Geometrical transforms on images and matrices: rotation, zoom etc.
//
// */

#include "precomp.hpp"
#include "imgwarp.hpp"

namespace cv
{
namespace opt_AVX2
{

class resizeNNInvokerAVX4 :
    public ParallelLoopBody
{
public:
    resizeNNInvokerAVX4(const Mat& _src, Mat &_dst, int *_x_ofs, int _pix_size4, double _ify) :
        ParallelLoopBody(), src(_src), dst(_dst), x_ofs(_x_ofs), pix_size4(_pix_size4),
        ify(_ify)
    {
    }

#if defined(__INTEL_COMPILER)
#pragma optimization_parameter target_arch=AVX
#endif
    virtual void operator() (const Range& range) const
    {
        Size ssize = src.size(), dsize = dst.size();
        int y, x;
        int width = dsize.width;
        int avxWidth = width - (width & 0x7);
        const __m256i CV_DECL_ALIGNED(64) mask = _mm256_set1_epi32(-1);
        if(((int64)(dst.data + dst.step) & 0x1f) == 0)
        {
            for(y = range.start; y < range.end; y++)
            {
                uchar* D = dst.data + dst.step*y;
                uchar* Dstart = D;
                int sy = std::min(cvFloor(y*ify), ssize.height-1);
                const uchar* S = src.data + sy*src.step;
#ifdef CV_ICC
#pragma unroll(4)
#endif
                for(x = 0; x < avxWidth; x += 8)
                {
                    const __m256i CV_DECL_ALIGNED(64) *addr = (__m256i*)(x_ofs + x);
                    __m256i CV_DECL_ALIGNED(64) indices = _mm256_lddqu_si256(addr);
                    __m256i CV_DECL_ALIGNED(64) pixels = _mm256_i32gather_epi32((const int*)S, indices, 1);
                    _mm256_maskstore_epi32((int*)D, mask, pixels);
                    D += 32;
                }
                for(; x < width; x++)
                {
                    *(int*)(Dstart + x*4) = *(int*)(S + x_ofs[x]);
                }
            }
        }
        else
        {
            for(y = range.start; y < range.end; y++)
            {
                uchar* D = dst.data + dst.step*y;
                uchar* Dstart = D;
                int sy = std::min(cvFloor(y*ify), ssize.height-1);
                const uchar* S = src.data + sy*src.step;
#ifdef CV_ICC
#pragma unroll(4)
#endif
                for(x = 0; x < avxWidth; x += 8)
                {
                    const __m256i CV_DECL_ALIGNED(64) *addr = (__m256i*)(x_ofs + x);
                    __m256i CV_DECL_ALIGNED(64) indices = _mm256_lddqu_si256(addr);
                    __m256i CV_DECL_ALIGNED(64) pixels = _mm256_i32gather_epi32((const int*)S, indices, 1);
                    _mm256_storeu_si256((__m256i*)D, pixels);
                    D += 32;
                }
                for(; x < width; x++)
                {
                    *(int*)(Dstart + x*4) = *(int*)(S + x_ofs[x]);
                }
            }
        }
        _mm256_zeroupper();
    }

private:
    const Mat src;
    Mat dst;
    int* x_ofs, pix_size4;
    double ify;

    resizeNNInvokerAVX4(const resizeNNInvokerAVX4&);
    resizeNNInvokerAVX4& operator=(const resizeNNInvokerAVX4&);
};

class resizeNNInvokerAVX2 :
    public ParallelLoopBody
{
public:
    resizeNNInvokerAVX2(const Mat& _src, Mat &_dst, int *_x_ofs, int _pix_size4, double _ify) :
        ParallelLoopBody(), src(_src), dst(_dst), x_ofs(_x_ofs), pix_size4(_pix_size4),
        ify(_ify)
    {
    }

#if defined(__INTEL_COMPILER)
#pragma optimization_parameter target_arch=AVX
#endif
    virtual void operator() (const Range& range) const
    {
        Size ssize = src.size(), dsize = dst.size();
        int y, x;
        int width = dsize.width;
        //int avxWidth = (width - 1) - ((width - 1) & 0x7);
        int avxWidth = width - (width & 0xf);
        const __m256i CV_DECL_ALIGNED(64) mask = _mm256_set1_epi32(-1);
        const __m256i CV_DECL_ALIGNED(64) shuffle_mask = _mm256_set_epi8(15,14,11,10,13,12,9,8,7,6,3,2,5,4,1,0,
                                                                         15,14,11,10,13,12,9,8,7,6,3,2,5,4,1,0);
        const __m256i CV_DECL_ALIGNED(64) permute_mask = _mm256_set_epi32(7, 5, 3, 1, 6, 4, 2, 0);
        //const __m256i CV_DECL_ALIGNED(64) shift_shuffle_mask = _mm256_set_epi8(13,12,15,14,9,8,11,10,5,4,7,6,1,0,3,2,
        //                                                                       13,12,15,14,9,8,11,10,5,4,7,6,1,0,3,2);
        if(((int64)(dst.data + dst.step) & 0x1f) == 0)
        {
            for(y = range.start; y < range.end; y++)
            {
                uchar* D = dst.data + dst.step*y;
                uchar* Dstart = D;
                int sy = std::min(cvFloor(y*ify), ssize.height-1);
                const uchar* S = src.data + sy*src.step;
                const uchar* S2 = S - 2;
#ifdef CV_ICC
#pragma unroll(4)
#endif
                for(x = 0; x < avxWidth; x += 16)
                {
                    const __m256i CV_DECL_ALIGNED(64) *addr = (__m256i*)(x_ofs + x);
                    __m256i CV_DECL_ALIGNED(64) indices = _mm256_lddqu_si256(addr);
                    __m256i CV_DECL_ALIGNED(64) pixels1 = _mm256_i32gather_epi32((const int*)S, indices, 1);
                    const __m256i CV_DECL_ALIGNED(64) *addr2 = (__m256i*)(x_ofs + x + 8);
                    __m256i CV_DECL_ALIGNED(64) indices2 = _mm256_lddqu_si256(addr2);
                    __m256i CV_DECL_ALIGNED(64) pixels2 = _mm256_i32gather_epi32((const int*)S2, indices2, 1);
                    __m256i CV_DECL_ALIGNED(64) unpacked = _mm256_blend_epi16(pixels1, pixels2, 0xaa);

                    __m256i CV_DECL_ALIGNED(64) bytes_shuffled = _mm256_shuffle_epi8(unpacked, shuffle_mask);
                    __m256i CV_DECL_ALIGNED(64) ints_permuted = _mm256_permutevar8x32_epi32(bytes_shuffled, permute_mask);
                    _mm256_maskstore_epi32((int*)D, mask, ints_permuted);
                    D += 32;
                }
                for(; x < width; x++)
                {
                    *(ushort*)(Dstart + x*2) = *(ushort*)(S + x_ofs[x]);
                }

            }
        }
        else
        {
            for(y = range.start; y < range.end; y++)
            {
                uchar* D = dst.data + dst.step*y;
                uchar* Dstart = D;
                int sy = std::min(cvFloor(y*ify), ssize.height-1);
                const uchar* S = src.data + sy*src.step;
                const uchar* S2 = S - 2;
#ifdef CV_ICC
#pragma unroll(4)
#endif
                for(x = 0; x < avxWidth; x += 16)
                {
                    const __m256i CV_DECL_ALIGNED(64) *addr = (__m256i*)(x_ofs + x);
                    __m256i CV_DECL_ALIGNED(64) indices = _mm256_lddqu_si256(addr);
                    __m256i CV_DECL_ALIGNED(64) pixels1 = _mm256_i32gather_epi32((const int*)S, indices, 1);
                    const __m256i CV_DECL_ALIGNED(64) *addr2 = (__m256i*)(x_ofs + x + 8);
                    __m256i CV_DECL_ALIGNED(64) indices2 = _mm256_lddqu_si256(addr2);
                    __m256i CV_DECL_ALIGNED(64) pixels2 = _mm256_i32gather_epi32((const int*)S2, indices2, 1);
                    __m256i CV_DECL_ALIGNED(64) unpacked = _mm256_blend_epi16(pixels1, pixels2, 0xaa);

                    __m256i CV_DECL_ALIGNED(64) bytes_shuffled = _mm256_shuffle_epi8(unpacked, shuffle_mask);
                    __m256i CV_DECL_ALIGNED(64) ints_permuted = _mm256_permutevar8x32_epi32(bytes_shuffled, permute_mask);
                    _mm256_storeu_si256((__m256i*)D, ints_permuted);
                    D += 32;
                }
                for(; x < width; x++)
                {
                    *(ushort*)(Dstart + x*2) = *(ushort*)(S + x_ofs[x]);
                }
            }
        }
        _mm256_zeroupper();
    }

private:
    const Mat src;
    Mat dst;
    int* x_ofs, pix_size4;
    double ify;

    resizeNNInvokerAVX2(const resizeNNInvokerAVX2&);
    resizeNNInvokerAVX2& operator=(const resizeNNInvokerAVX2&);
};

void resizeNN2_AVX2(const Range& range, const Mat& src, Mat &dst, int *x_ofs, int pix_size4, double ify)
{
    resizeNNInvokerAVX2 invoker(src, dst, x_ofs, pix_size4, ify);
    parallel_for_(range, invoker, dst.total() / (double)(1 << 16));
}

void resizeNN4_AVX2(const Range& range, const Mat& src, Mat &dst, int *x_ofs, int pix_size4, double ify)
{
    resizeNNInvokerAVX4 invoker(src, dst, x_ofs, pix_size4, ify);
    parallel_for_(range, invoker, dst.total() / (double)(1 << 16));
}

int warpAffineBlockline(int *adelta, int *bdelta, short* xy, short* alpha, int X0, int Y0, int bw)
{
    const int AB_BITS = MAX(10, (int)INTER_BITS);
    int x1 = 0;
    __m256i fxy_mask = _mm256_set1_epi32(INTER_TAB_SIZE - 1);
    __m256i XX = _mm256_set1_epi32(X0), YY = _mm256_set1_epi32(Y0);
    for (; x1 <= bw - 16; x1 += 16)
    {
        __m256i tx0, tx1, ty0, ty1;
        tx0 = _mm256_add_epi32(_mm256_loadu_si256((const __m256i*)(adelta + x1)), XX);
        ty0 = _mm256_add_epi32(_mm256_loadu_si256((const __m256i*)(bdelta + x1)), YY);
        tx1 = _mm256_add_epi32(_mm256_loadu_si256((const __m256i*)(adelta + x1 + 8)), XX);
        ty1 = _mm256_add_epi32(_mm256_loadu_si256((const __m256i*)(bdelta + x1 + 8)), YY);

        tx0 = _mm256_srai_epi32(tx0, AB_BITS - INTER_BITS);
        ty0 = _mm256_srai_epi32(ty0, AB_BITS - INTER_BITS);
        tx1 = _mm256_srai_epi32(tx1, AB_BITS - INTER_BITS);
        ty1 = _mm256_srai_epi32(ty1, AB_BITS - INTER_BITS);

        __m256i fx_ = _mm256_packs_epi32(_mm256_and_si256(tx0, fxy_mask),
            _mm256_and_si256(tx1, fxy_mask));
        __m256i fy_ = _mm256_packs_epi32(_mm256_and_si256(ty0, fxy_mask),
            _mm256_and_si256(ty1, fxy_mask));
        tx0 = _mm256_packs_epi32(_mm256_srai_epi32(tx0, INTER_BITS),
            _mm256_srai_epi32(tx1, INTER_BITS));
        ty0 = _mm256_packs_epi32(_mm256_srai_epi32(ty0, INTER_BITS),
            _mm256_srai_epi32(ty1, INTER_BITS));
        fx_ = _mm256_adds_epi16(fx_, _mm256_slli_epi16(fy_, INTER_BITS));
        fx_ = _mm256_permute4x64_epi64(fx_, (3 << 6) + (1 << 4) + (2 << 2) + 0);

        _mm256_storeu_si256((__m256i*)(xy + x1 * 2), _mm256_unpacklo_epi16(tx0, ty0));
        _mm256_storeu_si256((__m256i*)(xy + x1 * 2 + 16), _mm256_unpackhi_epi16(tx0, ty0));
        _mm256_storeu_si256((__m256i*)(alpha + x1), fx_);
    }
    _mm256_zeroupper();
    return x1;
}

}
}
/* End of file. */