1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#if !defined HAVE_CUDA || defined(CUDA_DISABLER)
cv::gpu::OpticalFlowDual_TVL1_GPU::OpticalFlowDual_TVL1_GPU() { throw_nogpu(); }
void cv::gpu::OpticalFlowDual_TVL1_GPU::operator ()(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&) { throw_nogpu(); }
void cv::gpu::OpticalFlowDual_TVL1_GPU::collectGarbage() {}
void cv::gpu::OpticalFlowDual_TVL1_GPU::procOneScale(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&) { throw_nogpu(); }
#else
using namespace std;
using namespace cv;
using namespace cv::gpu;
cv::gpu::OpticalFlowDual_TVL1_GPU::OpticalFlowDual_TVL1_GPU()
{
tau = 0.25;
lambda = 0.15;
theta = 0.3;
nscales = 5;
warps = 5;
epsilon = 0.01;
iterations = 300;
useInitialFlow = false;
}
void cv::gpu::OpticalFlowDual_TVL1_GPU::operator ()(const GpuMat& I0, const GpuMat& I1, GpuMat& flowx, GpuMat& flowy)
{
CV_Assert( I0.type() == CV_8UC1 || I0.type() == CV_32FC1 );
CV_Assert( I0.size() == I1.size() );
CV_Assert( I0.type() == I1.type() );
CV_Assert( !useInitialFlow || (flowx.size() == I0.size() && flowx.type() == CV_32FC1 && flowy.size() == flowx.size() && flowy.type() == flowx.type()) );
CV_Assert( nscales > 0 );
// allocate memory for the pyramid structure
I0s.resize(nscales);
I1s.resize(nscales);
u1s.resize(nscales);
u2s.resize(nscales);
I0.convertTo(I0s[0], CV_32F, I0.depth() == CV_8U ? 1.0 : 255.0);
I1.convertTo(I1s[0], CV_32F, I1.depth() == CV_8U ? 1.0 : 255.0);
if (!useInitialFlow)
{
flowx.create(I0.size(), CV_32FC1);
flowy.create(I0.size(), CV_32FC1);
}
u1s[0] = flowx;
u2s[0] = flowy;
I1x_buf.create(I0.size(), CV_32FC1);
I1y_buf.create(I0.size(), CV_32FC1);
I1w_buf.create(I0.size(), CV_32FC1);
I1wx_buf.create(I0.size(), CV_32FC1);
I1wy_buf.create(I0.size(), CV_32FC1);
grad_buf.create(I0.size(), CV_32FC1);
rho_c_buf.create(I0.size(), CV_32FC1);
p11_buf.create(I0.size(), CV_32FC1);
p12_buf.create(I0.size(), CV_32FC1);
p21_buf.create(I0.size(), CV_32FC1);
p22_buf.create(I0.size(), CV_32FC1);
diff_buf.create(I0.size(), CV_32FC1);
// create the scales
for (int s = 1; s < nscales; ++s)
{
gpu::pyrDown(I0s[s - 1], I0s[s]);
gpu::pyrDown(I1s[s - 1], I1s[s]);
if (I0s[s].cols < 16 || I0s[s].rows < 16)
{
nscales = s;
break;
}
if (useInitialFlow)
{
gpu::pyrDown(u1s[s - 1], u1s[s]);
gpu::pyrDown(u2s[s - 1], u2s[s]);
gpu::multiply(u1s[s], Scalar::all(0.5), u1s[s]);
gpu::multiply(u2s[s], Scalar::all(0.5), u2s[s]);
}
else
{
u1s[s].create(I0s[s].size(), CV_32FC1);
u2s[s].create(I0s[s].size(), CV_32FC1);
}
}
if (!useInitialFlow)
{
u1s[nscales-1].setTo(Scalar::all(0));
u2s[nscales-1].setTo(Scalar::all(0));
}
// pyramidal structure for computing the optical flow
for (int s = nscales - 1; s >= 0; --s)
{
// compute the optical flow at the current scale
procOneScale(I0s[s], I1s[s], u1s[s], u2s[s]);
// if this was the last scale, finish now
if (s == 0)
break;
// otherwise, upsample the optical flow
// zoom the optical flow for the next finer scale
gpu::resize(u1s[s], u1s[s - 1], I0s[s - 1].size());
gpu::resize(u2s[s], u2s[s - 1], I0s[s - 1].size());
// scale the optical flow with the appropriate zoom factor
gpu::multiply(u1s[s - 1], Scalar::all(2), u1s[s - 1]);
gpu::multiply(u2s[s - 1], Scalar::all(2), u2s[s - 1]);
}
}
namespace tvl1flow
{
void centeredGradient(PtrStepSzf src, PtrStepSzf dx, PtrStepSzf dy);
void warpBackward(PtrStepSzf I0, PtrStepSzf I1, PtrStepSzf I1x, PtrStepSzf I1y, PtrStepSzf u1, PtrStepSzf u2, PtrStepSzf I1w, PtrStepSzf I1wx, PtrStepSzf I1wy, PtrStepSzf grad, PtrStepSzf rho);
void estimateU(PtrStepSzf I1wx, PtrStepSzf I1wy,
PtrStepSzf grad, PtrStepSzf rho_c,
PtrStepSzf p11, PtrStepSzf p12, PtrStepSzf p21, PtrStepSzf p22,
PtrStepSzf u1, PtrStepSzf u2, PtrStepSzf error,
float l_t, float theta, bool calcError);
void estimateDualVariables(PtrStepSzf u1, PtrStepSzf u2, PtrStepSzf p11, PtrStepSzf p12, PtrStepSzf p21, PtrStepSzf p22, float taut);
}
void cv::gpu::OpticalFlowDual_TVL1_GPU::procOneScale(const GpuMat& I0, const GpuMat& I1, GpuMat& u1, GpuMat& u2)
{
using namespace tvl1flow;
const double scaledEpsilon = epsilon * epsilon * I0.size().area();
CV_DbgAssert( I1.size() == I0.size() );
CV_DbgAssert( I1.type() == I0.type() );
CV_DbgAssert( u1.size() == I0.size() );
CV_DbgAssert( u2.size() == u1.size() );
GpuMat I1x = I1x_buf(Rect(0, 0, I0.cols, I0.rows));
GpuMat I1y = I1y_buf(Rect(0, 0, I0.cols, I0.rows));
centeredGradient(I1, I1x, I1y);
GpuMat I1w = I1w_buf(Rect(0, 0, I0.cols, I0.rows));
GpuMat I1wx = I1wx_buf(Rect(0, 0, I0.cols, I0.rows));
GpuMat I1wy = I1wy_buf(Rect(0, 0, I0.cols, I0.rows));
GpuMat grad = grad_buf(Rect(0, 0, I0.cols, I0.rows));
GpuMat rho_c = rho_c_buf(Rect(0, 0, I0.cols, I0.rows));
GpuMat p11 = p11_buf(Rect(0, 0, I0.cols, I0.rows));
GpuMat p12 = p12_buf(Rect(0, 0, I0.cols, I0.rows));
GpuMat p21 = p21_buf(Rect(0, 0, I0.cols, I0.rows));
GpuMat p22 = p22_buf(Rect(0, 0, I0.cols, I0.rows));
p11.setTo(Scalar::all(0));
p12.setTo(Scalar::all(0));
p21.setTo(Scalar::all(0));
p22.setTo(Scalar::all(0));
GpuMat diff = diff_buf(Rect(0, 0, I0.cols, I0.rows));
const float l_t = static_cast<float>(lambda * theta);
const float taut = static_cast<float>(tau / theta);
for (int warpings = 0; warpings < warps; ++warpings)
{
warpBackward(I0, I1, I1x, I1y, u1, u2, I1w, I1wx, I1wy, grad, rho_c);
double error = numeric_limits<double>::max();
double prevError = 0.0;
for (int n = 0; error > scaledEpsilon && n < iterations; ++n)
{
// some tweaks to make sum operation less frequently
bool calcError = (epsilon > 0) && (n & 0x1) && (prevError < scaledEpsilon);
estimateU(I1wx, I1wy, grad, rho_c, p11, p12, p21, p22, u1, u2, diff, l_t, static_cast<float>(theta), calcError);
if (calcError)
{
error = gpu::sum(diff, norm_buf)[0];
prevError = error;
}
else
{
error = numeric_limits<double>::max();
prevError -= scaledEpsilon;
}
estimateDualVariables(u1, u2, p11, p12, p21, p22, taut);
}
}
}
void cv::gpu::OpticalFlowDual_TVL1_GPU::collectGarbage()
{
I0s.clear();
I1s.clear();
u1s.clear();
u2s.clear();
I1x_buf.release();
I1y_buf.release();
I1w_buf.release();
I1wx_buf.release();
I1wy_buf.release();
grad_buf.release();
rho_c_buf.release();
p11_buf.release();
p12_buf.release();
p21_buf.release();
p22_buf.release();
diff_buf.release();
norm_buf.release();
}
#endif // !defined HAVE_CUDA || defined(CUDA_DISABLER)