1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright( C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
//(including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort(including negligence or otherwise) arising in any way out of
// the use of this software, even ifadvised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
namespace cv
{
namespace ml
{
const double minEigenValue = DBL_EPSILON;
class CV_EXPORTS EMImpl : public EM
{
public:
int nclusters;
int covMatType;
TermCriteria termCrit;
CV_IMPL_PROPERTY_S(TermCriteria, TermCriteria, termCrit)
void setClustersNumber(int val)
{
nclusters = val;
CV_Assert(nclusters >= 1);
}
int getClustersNumber() const
{
return nclusters;
}
void setCovarianceMatrixType(int val)
{
covMatType = val;
CV_Assert(covMatType == COV_MAT_SPHERICAL ||
covMatType == COV_MAT_DIAGONAL ||
covMatType == COV_MAT_GENERIC);
}
int getCovarianceMatrixType() const
{
return covMatType;
}
EMImpl()
{
nclusters = DEFAULT_NCLUSTERS;
covMatType=EM::COV_MAT_DIAGONAL;
termCrit = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, EM::DEFAULT_MAX_ITERS, 1e-6);
}
virtual ~EMImpl() {}
void clear()
{
trainSamples.release();
trainProbs.release();
trainLogLikelihoods.release();
trainLabels.release();
weights.release();
means.release();
covs.clear();
covsEigenValues.clear();
invCovsEigenValues.clear();
covsRotateMats.clear();
logWeightDivDet.release();
}
bool train(const Ptr<TrainData>& data, int)
{
Mat samples = data->getTrainSamples(), labels;
return trainEM(samples, labels, noArray(), noArray());
}
bool trainEM(InputArray samples,
OutputArray logLikelihoods,
OutputArray labels,
OutputArray probs)
{
Mat samplesMat = samples.getMat();
setTrainData(START_AUTO_STEP, samplesMat, 0, 0, 0, 0);
return doTrain(START_AUTO_STEP, logLikelihoods, labels, probs);
}
bool trainE(InputArray samples,
InputArray _means0,
InputArray _covs0,
InputArray _weights0,
OutputArray logLikelihoods,
OutputArray labels,
OutputArray probs)
{
Mat samplesMat = samples.getMat();
std::vector<Mat> covs0;
_covs0.getMatVector(covs0);
Mat means0 = _means0.getMat(), weights0 = _weights0.getMat();
setTrainData(START_E_STEP, samplesMat, 0, !_means0.empty() ? &means0 : 0,
!_covs0.empty() ? &covs0 : 0, !_weights0.empty() ? &weights0 : 0);
return doTrain(START_E_STEP, logLikelihoods, labels, probs);
}
bool trainM(InputArray samples,
InputArray _probs0,
OutputArray logLikelihoods,
OutputArray labels,
OutputArray probs)
{
Mat samplesMat = samples.getMat();
Mat probs0 = _probs0.getMat();
setTrainData(START_M_STEP, samplesMat, !_probs0.empty() ? &probs0 : 0, 0, 0, 0);
return doTrain(START_M_STEP, logLikelihoods, labels, probs);
}
float predict(InputArray _inputs, OutputArray _outputs, int) const
{
bool needprobs = _outputs.needed();
Mat samples = _inputs.getMat(), probs, probsrow;
int ptype = CV_64F;
float firstres = 0.f;
int i, nsamples = samples.rows;
if( needprobs )
{
if( _outputs.fixedType() )
ptype = _outputs.type();
_outputs.create(samples.rows, nclusters, ptype);
}
else
nsamples = std::min(nsamples, 1);
for( i = 0; i < nsamples; i++ )
{
if( needprobs )
probsrow = probs.row(i);
Vec2d res = computeProbabilities(samples.row(i), needprobs ? &probsrow : 0, ptype);
if( i == 0 )
firstres = (float)res[1];
}
return firstres;
}
Vec2d predict2(InputArray _sample, OutputArray _probs) const
{
int ptype = CV_64F;
Mat sample = _sample.getMat();
CV_Assert(isTrained());
CV_Assert(!sample.empty());
if(sample.type() != CV_64FC1)
{
Mat tmp;
sample.convertTo(tmp, CV_64FC1);
sample = tmp;
}
sample.reshape(1, 1);
Mat probs;
if( _probs.needed() )
{
if( _probs.fixedType() )
ptype = _probs.type();
_probs.create(1, nclusters, ptype);
probs = _probs.getMat();
}
return computeProbabilities(sample, !probs.empty() ? &probs : 0, ptype);
}
bool isTrained() const
{
return !means.empty();
}
bool isClassifier() const
{
return true;
}
int getVarCount() const
{
return means.cols;
}
String getDefaultName() const
{
return "opencv_ml_em";
}
static void checkTrainData(int startStep, const Mat& samples,
int nclusters, int covMatType, const Mat* probs, const Mat* means,
const std::vector<Mat>* covs, const Mat* weights)
{
// Check samples.
CV_Assert(!samples.empty());
CV_Assert(samples.channels() == 1);
int nsamples = samples.rows;
int dim = samples.cols;
// Check training params.
CV_Assert(nclusters > 0);
CV_Assert(nclusters <= nsamples);
CV_Assert(startStep == START_AUTO_STEP ||
startStep == START_E_STEP ||
startStep == START_M_STEP);
CV_Assert(covMatType == COV_MAT_GENERIC ||
covMatType == COV_MAT_DIAGONAL ||
covMatType == COV_MAT_SPHERICAL);
CV_Assert(!probs ||
(!probs->empty() &&
probs->rows == nsamples && probs->cols == nclusters &&
(probs->type() == CV_32FC1 || probs->type() == CV_64FC1)));
CV_Assert(!weights ||
(!weights->empty() &&
(weights->cols == 1 || weights->rows == 1) && static_cast<int>(weights->total()) == nclusters &&
(weights->type() == CV_32FC1 || weights->type() == CV_64FC1)));
CV_Assert(!means ||
(!means->empty() &&
means->rows == nclusters && means->cols == dim &&
means->channels() == 1));
CV_Assert(!covs ||
(!covs->empty() &&
static_cast<int>(covs->size()) == nclusters));
if(covs)
{
const Size covSize(dim, dim);
for(size_t i = 0; i < covs->size(); i++)
{
const Mat& m = (*covs)[i];
CV_Assert(!m.empty() && m.size() == covSize && (m.channels() == 1));
}
}
if(startStep == START_E_STEP)
{
CV_Assert(means);
}
else if(startStep == START_M_STEP)
{
CV_Assert(probs);
}
}
static void preprocessSampleData(const Mat& src, Mat& dst, int dstType, bool isAlwaysClone)
{
if(src.type() == dstType && !isAlwaysClone)
dst = src;
else
src.convertTo(dst, dstType);
}
static void preprocessProbability(Mat& probs)
{
max(probs, 0., probs);
const double uniformProbability = (double)(1./probs.cols);
for(int y = 0; y < probs.rows; y++)
{
Mat sampleProbs = probs.row(y);
double maxVal = 0;
minMaxLoc(sampleProbs, 0, &maxVal);
if(maxVal < FLT_EPSILON)
sampleProbs.setTo(uniformProbability);
else
normalize(sampleProbs, sampleProbs, 1, 0, NORM_L1);
}
}
void setTrainData(int startStep, const Mat& samples,
const Mat* probs0,
const Mat* means0,
const std::vector<Mat>* covs0,
const Mat* weights0)
{
clear();
checkTrainData(startStep, samples, nclusters, covMatType, probs0, means0, covs0, weights0);
bool isKMeansInit = (startStep == START_AUTO_STEP) || (startStep == START_E_STEP && (covs0 == 0 || weights0 == 0));
// Set checked data
preprocessSampleData(samples, trainSamples, isKMeansInit ? CV_32FC1 : CV_64FC1, false);
// set probs
if(probs0 && startStep == START_M_STEP)
{
preprocessSampleData(*probs0, trainProbs, CV_64FC1, true);
preprocessProbability(trainProbs);
}
// set weights
if(weights0 && (startStep == START_E_STEP && covs0))
{
weights0->convertTo(weights, CV_64FC1);
weights.reshape(1,1);
preprocessProbability(weights);
}
// set means
if(means0 && (startStep == START_E_STEP/* || startStep == START_AUTO_STEP*/))
means0->convertTo(means, isKMeansInit ? CV_32FC1 : CV_64FC1);
// set covs
if(covs0 && (startStep == START_E_STEP && weights0))
{
covs.resize(nclusters);
for(size_t i = 0; i < covs0->size(); i++)
(*covs0)[i].convertTo(covs[i], CV_64FC1);
}
}
void decomposeCovs()
{
CV_Assert(!covs.empty());
covsEigenValues.resize(nclusters);
if(covMatType == COV_MAT_GENERIC)
covsRotateMats.resize(nclusters);
invCovsEigenValues.resize(nclusters);
for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++)
{
CV_Assert(!covs[clusterIndex].empty());
SVD svd(covs[clusterIndex], SVD::MODIFY_A + SVD::FULL_UV);
if(covMatType == COV_MAT_SPHERICAL)
{
double maxSingularVal = svd.w.at<double>(0);
covsEigenValues[clusterIndex] = Mat(1, 1, CV_64FC1, Scalar(maxSingularVal));
}
else if(covMatType == COV_MAT_DIAGONAL)
{
covsEigenValues[clusterIndex] = covs[clusterIndex].diag().clone(); //Preserve the original order of eigen values.
}
else //COV_MAT_GENERIC
{
covsEigenValues[clusterIndex] = svd.w;
covsRotateMats[clusterIndex] = svd.u;
}
max(covsEigenValues[clusterIndex], minEigenValue, covsEigenValues[clusterIndex]);
invCovsEigenValues[clusterIndex] = 1./covsEigenValues[clusterIndex];
}
}
void clusterTrainSamples()
{
int nsamples = trainSamples.rows;
// Cluster samples, compute/update means
// Convert samples and means to 32F, because kmeans requires this type.
Mat trainSamplesFlt, meansFlt;
if(trainSamples.type() != CV_32FC1)
trainSamples.convertTo(trainSamplesFlt, CV_32FC1);
else
trainSamplesFlt = trainSamples;
if(!means.empty())
{
if(means.type() != CV_32FC1)
means.convertTo(meansFlt, CV_32FC1);
else
meansFlt = means;
}
Mat labels;
kmeans(trainSamplesFlt, nclusters, labels,
TermCriteria(TermCriteria::COUNT, means.empty() ? 10 : 1, 0.5),
10, KMEANS_PP_CENTERS, meansFlt);
// Convert samples and means back to 64F.
CV_Assert(meansFlt.type() == CV_32FC1);
if(trainSamples.type() != CV_64FC1)
{
Mat trainSamplesBuffer;
trainSamplesFlt.convertTo(trainSamplesBuffer, CV_64FC1);
trainSamples = trainSamplesBuffer;
}
meansFlt.convertTo(means, CV_64FC1);
// Compute weights and covs
weights = Mat(1, nclusters, CV_64FC1, Scalar(0));
covs.resize(nclusters);
for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++)
{
Mat clusterSamples;
for(int sampleIndex = 0; sampleIndex < nsamples; sampleIndex++)
{
if(labels.at<int>(sampleIndex) == clusterIndex)
{
const Mat sample = trainSamples.row(sampleIndex);
clusterSamples.push_back(sample);
}
}
CV_Assert(!clusterSamples.empty());
calcCovarMatrix(clusterSamples, covs[clusterIndex], means.row(clusterIndex),
CV_COVAR_NORMAL + CV_COVAR_ROWS + CV_COVAR_USE_AVG + CV_COVAR_SCALE, CV_64FC1);
weights.at<double>(clusterIndex) = static_cast<double>(clusterSamples.rows)/static_cast<double>(nsamples);
}
decomposeCovs();
}
void computeLogWeightDivDet()
{
CV_Assert(!covsEigenValues.empty());
Mat logWeights;
cv::max(weights, DBL_MIN, weights);
log(weights, logWeights);
logWeightDivDet.create(1, nclusters, CV_64FC1);
// note: logWeightDivDet = log(weight_k) - 0.5 * log(|det(cov_k)|)
for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++)
{
double logDetCov = 0.;
const int evalCount = static_cast<int>(covsEigenValues[clusterIndex].total());
for(int di = 0; di < evalCount; di++)
logDetCov += std::log(covsEigenValues[clusterIndex].at<double>(covMatType != COV_MAT_SPHERICAL ? di : 0));
logWeightDivDet.at<double>(clusterIndex) = logWeights.at<double>(clusterIndex) - 0.5 * logDetCov;
}
}
bool doTrain(int startStep, OutputArray logLikelihoods, OutputArray labels, OutputArray probs)
{
int dim = trainSamples.cols;
// Precompute the empty initial train data in the cases of START_E_STEP and START_AUTO_STEP
if(startStep != START_M_STEP)
{
if(covs.empty())
{
CV_Assert(weights.empty());
clusterTrainSamples();
}
}
if(!covs.empty() && covsEigenValues.empty() )
{
CV_Assert(invCovsEigenValues.empty());
decomposeCovs();
}
if(startStep == START_M_STEP)
mStep();
double trainLogLikelihood, prevTrainLogLikelihood = 0.;
int maxIters = (termCrit.type & TermCriteria::MAX_ITER) ?
termCrit.maxCount : DEFAULT_MAX_ITERS;
double epsilon = (termCrit.type & TermCriteria::EPS) ? termCrit.epsilon : 0.;
for(int iter = 0; ; iter++)
{
eStep();
trainLogLikelihood = sum(trainLogLikelihoods)[0];
if(iter >= maxIters - 1)
break;
double trainLogLikelihoodDelta = trainLogLikelihood - prevTrainLogLikelihood;
if( iter != 0 &&
(trainLogLikelihoodDelta < -DBL_EPSILON ||
trainLogLikelihoodDelta < epsilon * std::fabs(trainLogLikelihood)))
break;
mStep();
prevTrainLogLikelihood = trainLogLikelihood;
}
if( trainLogLikelihood <= -DBL_MAX/10000. )
{
clear();
return false;
}
// postprocess covs
covs.resize(nclusters);
for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++)
{
if(covMatType == COV_MAT_SPHERICAL)
{
covs[clusterIndex].create(dim, dim, CV_64FC1);
setIdentity(covs[clusterIndex], Scalar(covsEigenValues[clusterIndex].at<double>(0)));
}
else if(covMatType == COV_MAT_DIAGONAL)
{
covs[clusterIndex] = Mat::diag(covsEigenValues[clusterIndex]);
}
}
if(labels.needed())
trainLabels.copyTo(labels);
if(probs.needed())
trainProbs.copyTo(probs);
if(logLikelihoods.needed())
trainLogLikelihoods.copyTo(logLikelihoods);
trainSamples.release();
trainProbs.release();
trainLabels.release();
trainLogLikelihoods.release();
return true;
}
Vec2d computeProbabilities(const Mat& sample, Mat* probs, int ptype) const
{
// L_ik = log(weight_k) - 0.5 * log(|det(cov_k)|) - 0.5 *(x_i - mean_k)' cov_k^(-1) (x_i - mean_k)]
// q = arg(max_k(L_ik))
// probs_ik = exp(L_ik - L_iq) / (1 + sum_j!=q (exp(L_ij - L_iq))
// see Alex Smola's blog http://blog.smola.org/page/2 for
// details on the log-sum-exp trick
int stype = sample.type();
CV_Assert(!means.empty());
CV_Assert((stype == CV_32F || stype == CV_64F) && (ptype == CV_32F || ptype == CV_64F));
CV_Assert(sample.size() == Size(means.cols, 1));
int dim = sample.cols;
Mat L(1, nclusters, CV_64FC1), centeredSample(1, dim, CV_64F);
int i, label = 0;
for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++)
{
const double* mptr = means.ptr<double>(clusterIndex);
double* dptr = centeredSample.ptr<double>();
if( stype == CV_32F )
{
const float* sptr = sample.ptr<float>();
for( i = 0; i < dim; i++ )
dptr[i] = sptr[i] - mptr[i];
}
else
{
const double* sptr = sample.ptr<double>();
for( i = 0; i < dim; i++ )
dptr[i] = sptr[i] - mptr[i];
}
Mat rotatedCenteredSample = covMatType != COV_MAT_GENERIC ?
centeredSample : centeredSample * covsRotateMats[clusterIndex];
double Lval = 0;
for(int di = 0; di < dim; di++)
{
double w = invCovsEigenValues[clusterIndex].at<double>(covMatType != COV_MAT_SPHERICAL ? di : 0);
double val = rotatedCenteredSample.at<double>(di);
Lval += w * val * val;
}
CV_DbgAssert(!logWeightDivDet.empty());
L.at<double>(clusterIndex) = logWeightDivDet.at<double>(clusterIndex) - 0.5 * Lval;
if(L.at<double>(clusterIndex) > L.at<double>(label))
label = clusterIndex;
}
double maxLVal = L.at<double>(label);
double expDiffSum = 0;
for( i = 0; i < L.cols; i++ )
{
double v = std::exp(L.at<double>(i) - maxLVal);
L.at<double>(i) = v;
expDiffSum += v; // sum_j(exp(L_ij - L_iq))
}
if(probs)
L.convertTo(*probs, ptype, 1./expDiffSum);
Vec2d res;
res[0] = std::log(expDiffSum) + maxLVal - 0.5 * dim * CV_LOG2PI;
res[1] = label;
return res;
}
void eStep()
{
// Compute probs_ik from means_k, covs_k and weights_k.
trainProbs.create(trainSamples.rows, nclusters, CV_64FC1);
trainLabels.create(trainSamples.rows, 1, CV_32SC1);
trainLogLikelihoods.create(trainSamples.rows, 1, CV_64FC1);
computeLogWeightDivDet();
CV_DbgAssert(trainSamples.type() == CV_64FC1);
CV_DbgAssert(means.type() == CV_64FC1);
for(int sampleIndex = 0; sampleIndex < trainSamples.rows; sampleIndex++)
{
Mat sampleProbs = trainProbs.row(sampleIndex);
Vec2d res = computeProbabilities(trainSamples.row(sampleIndex), &sampleProbs, CV_64F);
trainLogLikelihoods.at<double>(sampleIndex) = res[0];
trainLabels.at<int>(sampleIndex) = static_cast<int>(res[1]);
}
}
void mStep()
{
// Update means_k, covs_k and weights_k from probs_ik
int dim = trainSamples.cols;
// Update weights
// not normalized first
reduce(trainProbs, weights, 0, CV_REDUCE_SUM);
// Update means
means.create(nclusters, dim, CV_64FC1);
means = Scalar(0);
const double minPosWeight = trainSamples.rows * DBL_EPSILON;
double minWeight = DBL_MAX;
int minWeightClusterIndex = -1;
for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++)
{
if(weights.at<double>(clusterIndex) <= minPosWeight)
continue;
if(weights.at<double>(clusterIndex) < minWeight)
{
minWeight = weights.at<double>(clusterIndex);
minWeightClusterIndex = clusterIndex;
}
Mat clusterMean = means.row(clusterIndex);
for(int sampleIndex = 0; sampleIndex < trainSamples.rows; sampleIndex++)
clusterMean += trainProbs.at<double>(sampleIndex, clusterIndex) * trainSamples.row(sampleIndex);
clusterMean /= weights.at<double>(clusterIndex);
}
// Update covsEigenValues and invCovsEigenValues
covs.resize(nclusters);
covsEigenValues.resize(nclusters);
if(covMatType == COV_MAT_GENERIC)
covsRotateMats.resize(nclusters);
invCovsEigenValues.resize(nclusters);
for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++)
{
if(weights.at<double>(clusterIndex) <= minPosWeight)
continue;
if(covMatType != COV_MAT_SPHERICAL)
covsEigenValues[clusterIndex].create(1, dim, CV_64FC1);
else
covsEigenValues[clusterIndex].create(1, 1, CV_64FC1);
if(covMatType == COV_MAT_GENERIC)
covs[clusterIndex].create(dim, dim, CV_64FC1);
Mat clusterCov = covMatType != COV_MAT_GENERIC ?
covsEigenValues[clusterIndex] : covs[clusterIndex];
clusterCov = Scalar(0);
Mat centeredSample;
for(int sampleIndex = 0; sampleIndex < trainSamples.rows; sampleIndex++)
{
centeredSample = trainSamples.row(sampleIndex) - means.row(clusterIndex);
if(covMatType == COV_MAT_GENERIC)
clusterCov += trainProbs.at<double>(sampleIndex, clusterIndex) * centeredSample.t() * centeredSample;
else
{
double p = trainProbs.at<double>(sampleIndex, clusterIndex);
for(int di = 0; di < dim; di++ )
{
double val = centeredSample.at<double>(di);
clusterCov.at<double>(covMatType != COV_MAT_SPHERICAL ? di : 0) += p*val*val;
}
}
}
if(covMatType == COV_MAT_SPHERICAL)
clusterCov /= dim;
clusterCov /= weights.at<double>(clusterIndex);
// Update covsRotateMats for COV_MAT_GENERIC only
if(covMatType == COV_MAT_GENERIC)
{
SVD svd(covs[clusterIndex], SVD::MODIFY_A + SVD::FULL_UV);
covsEigenValues[clusterIndex] = svd.w;
covsRotateMats[clusterIndex] = svd.u;
}
max(covsEigenValues[clusterIndex], minEigenValue, covsEigenValues[clusterIndex]);
// update invCovsEigenValues
invCovsEigenValues[clusterIndex] = 1./covsEigenValues[clusterIndex];
}
for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++)
{
if(weights.at<double>(clusterIndex) <= minPosWeight)
{
Mat clusterMean = means.row(clusterIndex);
means.row(minWeightClusterIndex).copyTo(clusterMean);
covs[minWeightClusterIndex].copyTo(covs[clusterIndex]);
covsEigenValues[minWeightClusterIndex].copyTo(covsEigenValues[clusterIndex]);
if(covMatType == COV_MAT_GENERIC)
covsRotateMats[minWeightClusterIndex].copyTo(covsRotateMats[clusterIndex]);
invCovsEigenValues[minWeightClusterIndex].copyTo(invCovsEigenValues[clusterIndex]);
}
}
// Normalize weights
weights /= trainSamples.rows;
}
void write_params(FileStorage& fs) const
{
fs << "nclusters" << nclusters;
fs << "cov_mat_type" << (covMatType == COV_MAT_SPHERICAL ? String("spherical") :
covMatType == COV_MAT_DIAGONAL ? String("diagonal") :
covMatType == COV_MAT_GENERIC ? String("generic") :
format("unknown_%d", covMatType));
writeTermCrit(fs, termCrit);
}
void write(FileStorage& fs) const
{
fs << "training_params" << "{";
write_params(fs);
fs << "}";
fs << "weights" << weights;
fs << "means" << means;
size_t i, n = covs.size();
fs << "covs" << "[";
for( i = 0; i < n; i++ )
fs << covs[i];
fs << "]";
}
void read_params(const FileNode& fn)
{
nclusters = (int)fn["nclusters"];
String s = (String)fn["cov_mat_type"];
covMatType = s == "spherical" ? COV_MAT_SPHERICAL :
s == "diagonal" ? COV_MAT_DIAGONAL :
s == "generic" ? COV_MAT_GENERIC : -1;
CV_Assert(covMatType >= 0);
termCrit = readTermCrit(fn);
}
void read(const FileNode& fn)
{
clear();
read_params(fn["training_params"]);
fn["weights"] >> weights;
fn["means"] >> means;
FileNode cfn = fn["covs"];
FileNodeIterator cfn_it = cfn.begin();
int i, n = (int)cfn.size();
covs.resize(n);
for( i = 0; i < n; i++, ++cfn_it )
(*cfn_it) >> covs[i];
decomposeCovs();
computeLogWeightDivDet();
}
Mat getWeights() const { return weights; }
Mat getMeans() const { return means; }
void getCovs(std::vector<Mat>& _covs) const
{
_covs.resize(covs.size());
std::copy(covs.begin(), covs.end(), _covs.begin());
}
// all inner matrices have type CV_64FC1
Mat trainSamples;
Mat trainProbs;
Mat trainLogLikelihoods;
Mat trainLabels;
Mat weights;
Mat means;
std::vector<Mat> covs;
std::vector<Mat> covsEigenValues;
std::vector<Mat> covsRotateMats;
std::vector<Mat> invCovsEigenValues;
Mat logWeightDivDet;
};
Ptr<EM> EM::create()
{
return makePtr<EMImpl>();
}
}
} // namespace cv
/* End of file. */