ImathFrustum.h 20.6 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
// Digital Ltd. LLC
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
// *       Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// *       Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// *       Neither the name of Industrial Light & Magic nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
///////////////////////////////////////////////////////////////////////////



#ifndef INCLUDED_IMATHFRUSTUM_H
#define INCLUDED_IMATHFRUSTUM_H


#include "ImathVec.h"
#include "ImathPlane.h"
#include "ImathLine.h"
#include "ImathMatrix.h"
#include "ImathLimits.h"
#include "ImathFun.h"
#include "IexMathExc.h"

namespace Imath {

//
//	template class Frustum<T>
//
//	The frustum is always located with the eye point at the
//	origin facing down -Z. This makes the Frustum class
//	compatable with OpenGL (or anything that assumes a camera
//	looks down -Z, hence with a right-handed coordinate system)
//	but not with RenderMan which assumes the camera looks down
//	+Z. Additional functions are provided for conversion from
//	and from various camera coordinate spaces.
//
//      nearPlane/farPlane: near/far are keywords used by Microsoft's
//      compiler, so we use nearPlane/farPlane instead to avoid
//      issues.


template<class T>
class Frustum
{
  public:
    Frustum();
    Frustum(const Frustum &);
    Frustum(T nearPlane, T farPlane, T left, T right, T top, T bottom, bool ortho=false);
    Frustum(T nearPlane, T farPlane, T fovx, T fovy, T aspect);
    virtual ~Frustum();

    //--------------------
    // Assignment operator
    //--------------------

    const Frustum &operator	= (const Frustum &);

    //--------------------
    //  Operators:  ==, !=
    //--------------------

    bool                        operator == (const Frustum<T> &src) const;
    bool                        operator != (const Frustum<T> &src) const;

    //--------------------------------------------------------
    //  Set functions change the entire state of the Frustum
    //--------------------------------------------------------

    void		set(T nearPlane, T farPlane,
                T left, T right,
                T top, T bottom,
                bool ortho=false);

    void		set(T nearPlane, T farPlane, T fovx, T fovy, T aspect);

    //------------------------------------------------------
    //	These functions modify an already valid frustum state
    //------------------------------------------------------

    void		modifyNearAndFar(T nearPlane, T farPlane);
    void		setOrthographic(bool);

    //--------------
    //  Access
    //--------------

    bool		orthographic() const	{ return _orthographic; }
    T			nearPlane() const	{ return _nearPlane;	}
    T			hither() const		{ return _nearPlane;	}
    T			farPlane() const	{ return _farPlane;	}
    T			yon() const		{ return _farPlane;	}
    T			left() const		{ return _left;		}
    T			right() const		{ return _right;	}
    T			bottom() const		{ return _bottom;	}
    T			top() const		{ return _top;		}

    //-----------------------------------------------------------------------
    //  Sets the planes in p to be the six bounding planes of the frustum, in
    //  the following order: top, right, bottom, left, near, far.
    //  Note that the planes have normals that point out of the frustum.
    //  The version of this routine that takes a matrix applies that matrix
    //  to transform the frustum before setting the planes.
    //-----------------------------------------------------------------------

    void		planes(Plane3<T> p[6]);
    void		planes(Plane3<T> p[6], const Matrix44<T> &M);

    //----------------------
    //  Derived Quantities
    //----------------------

    T                           fovx() const;
    T                           fovy() const;
    T                           aspect() const;
    Matrix44<T>                 projectionMatrix() const;
    bool                        degenerate() const;

    //-----------------------------------------------------------------------
    //  Takes a rectangle in the screen space (i.e., -1 <= left <= right <= 1
    //  and -1 <= bottom <= top <= 1) of this Frustum, and returns a new
    //  Frustum whose near clipping-plane window is that rectangle in local
    //  space.
    //-----------------------------------------------------------------------

    Frustum<T>		window(T left, T right, T top, T bottom) const;

    //----------------------------------------------------------
    // Projection is in screen space / Conversion from Z-Buffer
    //----------------------------------------------------------

    Line3<T>		projectScreenToRay( const Vec2<T> & ) const;
    Vec2<T>		projectPointToScreen( const Vec3<T> & ) const;

    T			ZToDepth(long zval, long min, long max) const;
    T			normalizedZToDepth(T zval) const;
    long		DepthToZ(T depth, long zmin, long zmax) const;

    T			worldRadius(const Vec3<T> &p, T radius) const;
    T			screenRadius(const Vec3<T> &p, T radius) const;


  protected:

    Vec2<T>		screenToLocal( const Vec2<T> & ) const;
    Vec2<T>		localToScreen( const Vec2<T> & ) const;

  protected:
    T			_nearPlane;
    T			_farPlane;
    T			_left;
    T			_right;
    T			_top;
    T			_bottom;
    bool		_orthographic;
};


template<class T>
inline Frustum<T>::Frustum()
{
    set(T (0.1),
    T (1000.0),
    T (-1.0),
    T (1.0),
    T (1.0),
    T (-1.0),
    false);
}

template<class T>
inline Frustum<T>::Frustum(const Frustum &f)
{
    *this = f;
}

template<class T>
inline Frustum<T>::Frustum(T n, T f, T l, T r, T t, T b, bool o)
{
    set(n,f,l,r,t,b,o);
}

template<class T>
inline Frustum<T>::Frustum(T nearPlane, T farPlane, T fovx, T fovy, T aspect)
{
    set(nearPlane,farPlane,fovx,fovy,aspect);
}

template<class T>
Frustum<T>::~Frustum()
{
}

template<class T>
const Frustum<T> &
Frustum<T>::operator = (const Frustum &f)
{
    _nearPlane    = f._nearPlane;
    _farPlane     = f._farPlane;
    _left         = f._left;
    _right        = f._right;
    _top          = f._top;
    _bottom       = f._bottom;
    _orthographic = f._orthographic;

    return *this;
}

template <class T>
bool
Frustum<T>::operator == (const Frustum<T> &src) const
{
    return
        _nearPlane    == src._nearPlane   &&
        _farPlane     == src._farPlane    &&
        _left         == src._left   &&
        _right        == src._right  &&
        _top          == src._top    &&
        _bottom       == src._bottom &&
        _orthographic == src._orthographic;
}

template <class T>
inline bool
Frustum<T>::operator != (const Frustum<T> &src) const
{
    return !operator== (src);
}

template<class T>
void Frustum<T>::set(T n, T f, T l, T r, T t, T b, bool o)
{
    _nearPlane      = n;
    _farPlane	    = f;
    _left	    = l;
    _right	    = r;
    _bottom	    = b;
    _top	    = t;
    _orthographic   = o;
}

template<class T>
void Frustum<T>::modifyNearAndFar(T n, T f)
{
    if ( _orthographic )
    {
    _nearPlane = n;
    }
    else
    {
    Line3<T>  lowerLeft( Vec3<T>(0,0,0), Vec3<T>(_left,_bottom,-_nearPlane) );
    Line3<T> upperRight( Vec3<T>(0,0,0), Vec3<T>(_right,_top,-_nearPlane) );
    Plane3<T> nearPlane( Vec3<T>(0,0,-1), n );

    Vec3<T> ll,ur;
    nearPlane.intersect(lowerLeft,ll);
    nearPlane.intersect(upperRight,ur);

    _left      = ll.x;
    _right     = ur.x;
    _top       = ur.y;
    _bottom    = ll.y;
    _nearPlane = n;
    _farPlane  = f;
    }

    _farPlane = f;
}

template<class T>
void Frustum<T>::setOrthographic(bool ortho)
{
    _orthographic   = ortho;
}

template<class T>
void Frustum<T>::set(T nearPlane, T farPlane, T fovx, T fovy, T aspect)
{
    if (fovx != 0 && fovy != 0)
    throw Iex::ArgExc ("fovx and fovy cannot both be non-zero.");

    const T two = static_cast<T>(2);

    if (fovx != 0)
    {
    _right	    = nearPlane * Math<T>::tan(fovx / two);
    _left	    = -_right;
    _top	    = ((_right - _left) / aspect) / two;
    _bottom	    = -_top;
    }
    else
    {
    _top	    = nearPlane * Math<T>::tan(fovy / two);
    _bottom	    = -_top;
    _right	    = (_top - _bottom) * aspect / two;
    _left	    = -_right;
    }
    _nearPlane	    = nearPlane;
    _farPlane	    = farPlane;
    _orthographic   = false;
}

template<class T>
T Frustum<T>::fovx() const
{
    return Math<T>::atan2(_right,_nearPlane) - Math<T>::atan2(_left,_nearPlane);
}

template<class T>
T Frustum<T>::fovy() const
{
    return Math<T>::atan2(_top,_nearPlane) - Math<T>::atan2(_bottom,_nearPlane);
}

template<class T>
T Frustum<T>::aspect() const
{
    T rightMinusLeft = _right-_left;
    T topMinusBottom = _top-_bottom;

    if (abs(topMinusBottom) < 1 &&
    abs(rightMinusLeft) > limits<T>::max() * abs(topMinusBottom))
    {
    throw Iex::DivzeroExc ("Bad viewing frustum: "
                   "aspect ratio cannot be computed.");
    }

    return rightMinusLeft / topMinusBottom;
}

template<class T>
Matrix44<T> Frustum<T>::projectionMatrix() const
{
    T rightPlusLeft  = _right+_left;
    T rightMinusLeft = _right-_left;

    T topPlusBottom  = _top+_bottom;
    T topMinusBottom = _top-_bottom;

    T farPlusNear    = _farPlane+_nearPlane;
    T farMinusNear   = _farPlane-_nearPlane;

    if ((abs(rightMinusLeft) < 1 &&
     abs(rightPlusLeft) > limits<T>::max() * abs(rightMinusLeft)) ||
    (abs(topMinusBottom) < 1 &&
     abs(topPlusBottom) > limits<T>::max() * abs(topMinusBottom)) ||
    (abs(farMinusNear) < 1 &&
     abs(farPlusNear) > limits<T>::max() * abs(farMinusNear)))
    {
    throw Iex::DivzeroExc ("Bad viewing frustum: "
                   "projection matrix cannot be computed.");
    }

    if ( _orthographic )
    {
    T tx = -rightPlusLeft / rightMinusLeft;
    T ty = -topPlusBottom / topMinusBottom;
    T tz = -farPlusNear   / farMinusNear;

    if ((abs(rightMinusLeft) < 1 &&
         2 > limits<T>::max() * abs(rightMinusLeft)) ||
        (abs(topMinusBottom) < 1 &&
         2 > limits<T>::max() * abs(topMinusBottom)) ||
        (abs(farMinusNear) < 1 &&
         2 > limits<T>::max() * abs(farMinusNear)))
    {
        throw Iex::DivzeroExc ("Bad viewing frustum: "
                   "projection matrix cannot be computed.");
    }

    T A  =  2 / rightMinusLeft;
    T B  =  2 / topMinusBottom;
    T C  = -2 / farMinusNear;

    return Matrix44<T>( A,  0,  0,  0,
                0,  B,  0,  0,
                0,  0,  C,  0,
                tx, ty, tz, 1.f );
    }
    else
    {
    T A =  rightPlusLeft / rightMinusLeft;
    T B =  topPlusBottom / topMinusBottom;
    T C = -farPlusNear   / farMinusNear;

    T farTimesNear = -2 * _farPlane * _nearPlane;
    if (abs(farMinusNear) < 1 &&
        abs(farTimesNear) > limits<T>::max() * abs(farMinusNear))
    {
        throw Iex::DivzeroExc ("Bad viewing frustum: "
                   "projection matrix cannot be computed.");
    }

    T D = farTimesNear / farMinusNear;

    T twoTimesNear = 2 * _nearPlane;

    if ((abs(rightMinusLeft) < 1 &&
         abs(twoTimesNear) > limits<T>::max() * abs(rightMinusLeft)) ||
        (abs(topMinusBottom) < 1 &&
         abs(twoTimesNear) > limits<T>::max() * abs(topMinusBottom)))
    {
        throw Iex::DivzeroExc ("Bad viewing frustum: "
                   "projection matrix cannot be computed.");
    }

    T E = twoTimesNear / rightMinusLeft;
    T F = twoTimesNear / topMinusBottom;

    return Matrix44<T>( E,  0,  0,  0,
                0,  F,  0,  0,
                A,  B,  C, -1,
                0,  0,  D,  0 );
    }
}

template<class T>
bool Frustum<T>::degenerate() const
{
    return (_nearPlane == _farPlane) ||
           (_left == _right) ||
           (_top == _bottom);
}

template<class T>
Frustum<T> Frustum<T>::window(T l, T r, T t, T b) const
{
    // move it to 0->1 space

    Vec2<T> bl = screenToLocal( Vec2<T>(l,b) );
    Vec2<T> tr = screenToLocal( Vec2<T>(r,t) );

    return Frustum<T>(_nearPlane, _farPlane, bl.x, tr.x, tr.y, bl.y, _orthographic);
}


template<class T>
Vec2<T> Frustum<T>::screenToLocal(const Vec2<T> &s) const
{
    return Vec2<T>( _left + (_right-_left) * (1.f+s.x) / 2.f,
            _bottom + (_top-_bottom) * (1.f+s.y) / 2.f );
}

template<class T>
Vec2<T> Frustum<T>::localToScreen(const Vec2<T> &p) const
{
    T leftPlusRight  = _left - T (2) * p.x + _right;
    T leftMinusRight = _left-_right;
    T bottomPlusTop  = _bottom - T (2) * p.y + _top;
    T bottomMinusTop = _bottom-_top;

    if ((abs(leftMinusRight) < T (1) &&
     abs(leftPlusRight) > limits<T>::max() * abs(leftMinusRight)) ||
    (abs(bottomMinusTop) < T (1) &&
     abs(bottomPlusTop) > limits<T>::max() * abs(bottomMinusTop)))
    {
    throw Iex::DivzeroExc
        ("Bad viewing frustum: "
         "local-to-screen transformation cannot be computed");
    }

    return Vec2<T>( leftPlusRight / leftMinusRight,
            bottomPlusTop / bottomMinusTop );
}

template<class T>
Line3<T> Frustum<T>::projectScreenToRay(const Vec2<T> &p) const
{
    Vec2<T> point = screenToLocal(p);
    if (orthographic())
    return Line3<T>( Vec3<T>(point.x,point.y, 0.0),
             Vec3<T>(point.x,point.y,-_nearPlane));
    else
    return Line3<T>( Vec3<T>(0, 0, 0), Vec3<T>(point.x,point.y,-_nearPlane));
}

template<class T>
Vec2<T> Frustum<T>::projectPointToScreen(const Vec3<T> &point) const
{
    if (orthographic() || point.z == T (0))
    return localToScreen( Vec2<T>( point.x, point.y ) );
    else
    return localToScreen( Vec2<T>( point.x * _nearPlane / -point.z,
                       point.y * _nearPlane / -point.z ) );
}

template<class T>
T Frustum<T>::ZToDepth(long zval,long zmin,long zmax) const
{
    int zdiff = zmax - zmin;

    if (zdiff == 0)
    {
    throw Iex::DivzeroExc
        ("Bad call to Frustum::ZToDepth: zmax == zmin");
    }

    if ( zval > zmax+1 ) zval -= zdiff;

    T fzval = (T(zval) - T(zmin)) / T(zdiff);
    return normalizedZToDepth(fzval);
}

template<class T>
T Frustum<T>::normalizedZToDepth(T zval) const
{
    T Zp = zval * 2.0 - 1;

    if ( _orthographic )
    {
        return   -(Zp*(_farPlane-_nearPlane) + (_farPlane+_nearPlane))/2;
    }
    else
    {
    T farTimesNear = 2 * _farPlane * _nearPlane;
    T farMinusNear = Zp * (_farPlane - _nearPlane) - _farPlane - _nearPlane;

    if (abs(farMinusNear) < 1 &&
        abs(farTimesNear) > limits<T>::max() * abs(farMinusNear))
    {
        throw Iex::DivzeroExc
        ("Frustum::normalizedZToDepth cannot be computed.  The "
         "near and far clipping planes of the viewing frustum "
         "may be too close to each other");
    }

    return farTimesNear / farMinusNear;
    }
}

template<class T>
long Frustum<T>::DepthToZ(T depth,long zmin,long zmax) const
{
    long zdiff     = zmax - zmin;
    T farMinusNear = _farPlane-_nearPlane;

    if ( _orthographic )
    {
    T farPlusNear = 2*depth + _farPlane + _nearPlane;

    if (abs(farMinusNear) < 1 &&
        abs(farPlusNear) > limits<T>::max() * abs(farMinusNear))
    {
        throw Iex::DivzeroExc
        ("Bad viewing frustum: near and far clipping planes "
         "are too close to each other");
    }

    T Zp = -farPlusNear/farMinusNear;
    return long(0.5*(Zp+1)*zdiff) + zmin;
    }
    else
    {
    // Perspective

    T farTimesNear = 2*_farPlane*_nearPlane;
    if (abs(depth) < 1 &&
        abs(farTimesNear) > limits<T>::max() * abs(depth))
    {
        throw Iex::DivzeroExc
        ("Bad call to DepthToZ function: value of `depth' "
         "is too small");
    }

    T farPlusNear = farTimesNear/depth + _farPlane + _nearPlane;
    if (abs(farMinusNear) < 1 &&
        abs(farPlusNear) > limits<T>::max() * abs(farMinusNear))
    {
        throw Iex::DivzeroExc
        ("Bad viewing frustum: near and far clipping planes "
         "are too close to each other");
    }

    T Zp = farPlusNear/farMinusNear;
    return long(0.5*(Zp+1)*zdiff) + zmin;
    }
}

template<class T>
T Frustum<T>::screenRadius(const Vec3<T> &p, T radius) const
{
    // Derivation:
    // Consider X-Z plane.
    // X coord of projection of p = xp = p.x * (-_nearPlane / p.z)
    // Let q be p + (radius, 0, 0).
    // X coord of projection of q = xq = (p.x - radius)  * (-_nearPlane / p.z)
    // X coord of projection of segment from p to q = r = xp - xq
    //         = radius * (-_nearPlane / p.z)
    // A similar analysis holds in the Y-Z plane.
    // So r is the quantity we want to return.

    if (abs(p.z) > 1 || abs(-_nearPlane) < limits<T>::max() * abs(p.z))
    {
    return radius * (-_nearPlane / p.z);
    }
    else
    {
    throw Iex::DivzeroExc
        ("Bad call to Frustum::screenRadius: the magnitude of `p' "
         "is too small");
    }

    return radius * (-_nearPlane / p.z);
}

template<class T>
T Frustum<T>::worldRadius(const Vec3<T> &p, T radius) const
{
    if (abs(-_nearPlane) > 1 || abs(p.z) < limits<T>::max() * abs(-_nearPlane))
    {
    return radius * (p.z / -_nearPlane);
    }
    else
    {
    throw Iex::DivzeroExc
        ("Bad viewing frustum: the near clipping plane is too "
         "close to zero");
    }
}

template<class T>
void Frustum<T>::planes(Plane3<T> p[6])
{
    //
    //	Plane order: Top, Right, Bottom, Left, Near, Far.
    //  Normals point outwards.
    //

    if (! _orthographic)
    {
        Vec3<T> a( _left,  _bottom, -_nearPlane);
        Vec3<T> b( _left,  _top,    -_nearPlane);
        Vec3<T> c( _right, _top,    -_nearPlane);
        Vec3<T> d( _right, _bottom, -_nearPlane);
        Vec3<T> o(0,0,0);

        p[0].set( o, c, b );
        p[1].set( o, d, c );
        p[2].set( o, a, d );
        p[3].set( o, b, a );
    }
    else
    {
        p[0].set( Vec3<T>( 0, 1, 0), _top );
        p[1].set( Vec3<T>( 1, 0, 0), _right );
        p[2].set( Vec3<T>( 0,-1, 0),-_bottom );
        p[3].set( Vec3<T>(-1, 0, 0),-_left );
    }
    p[4].set( Vec3<T>(0, 0, 1), -_nearPlane );
    p[5].set( Vec3<T>(0, 0,-1), _farPlane );
}


template<class T>
void Frustum<T>::planes(Plane3<T> p[6], const Matrix44<T> &M)
{
    //
    //	Plane order: Top, Right, Bottom, Left, Near, Far.
    //  Normals point outwards.
    //

    Vec3<T> a   = Vec3<T>( _left,  _bottom, -_nearPlane) * M;
    Vec3<T> b   = Vec3<T>( _left,  _top,    -_nearPlane) * M;
    Vec3<T> c   = Vec3<T>( _right, _top,    -_nearPlane) * M;
    Vec3<T> d   = Vec3<T>( _right, _bottom, -_nearPlane) * M;
    if (! _orthographic)
    {
        double s    = _farPlane / double(_nearPlane);
        T farLeft   = (T) (s * _left);
        T farRight  = (T) (s * _right);
        T farTop    = (T) (s * _top);
        T farBottom = (T) (s * _bottom);
        Vec3<T> e   = Vec3<T>( farLeft,  farBottom, -_farPlane) * M;
        Vec3<T> f   = Vec3<T>( farLeft,  farTop,    -_farPlane) * M;
        Vec3<T> g   = Vec3<T>( farRight, farTop,    -_farPlane) * M;
        Vec3<T> o   = Vec3<T>(0,0,0) * M;
        p[0].set( o, c, b );
        p[1].set( o, d, c );
        p[2].set( o, a, d );
        p[3].set( o, b, a );
        p[4].set( a, d, c );
        p[5].set( e, f, g );
     }
    else
    {
        Vec3<T> e   = Vec3<T>( _left,  _bottom, -_farPlane) * M;
        Vec3<T> f   = Vec3<T>( _left,  _top,    -_farPlane) * M;
        Vec3<T> g   = Vec3<T>( _right, _top,    -_farPlane) * M;
        Vec3<T> h   = Vec3<T>( _right, _bottom, -_farPlane) * M;
        p[0].set( c, g, f );
        p[1].set( d, h, g );
        p[2].set( a, e, h );
        p[3].set( b, f, e );
        p[4].set( a, d, c );
        p[5].set( e, f, g );
    }
}

typedef Frustum<float>	Frustumf;
typedef Frustum<double> Frustumd;


} // namespace Imath


#if defined _WIN32 || defined _WIN64
    #ifdef _redef_near
        #define near
    #endif
    #ifdef _redef_far
        #define far
    #endif
#endif

#endif