denoising.cuda.cpp 7.13 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

#include "opencv2/photo/cuda.hpp"
#include "opencv2/core/private.cuda.hpp"

#include "opencv2/opencv_modules.hpp"

#ifdef HAVE_OPENCV_CUDAARITHM
#  include "opencv2/cudaarithm.hpp"
#endif

#ifdef HAVE_OPENCV_CUDAIMGPROC
#  include "opencv2/cudaimgproc.hpp"
#endif

using namespace cv;
using namespace cv::cuda;

#if !defined (HAVE_CUDA) || !defined(HAVE_OPENCV_CUDAARITHM) || !defined(HAVE_OPENCV_CUDAIMGPROC)

void cv::cuda::nonLocalMeans(InputArray, OutputArray, float, int, int, int, Stream&) { throw_no_cuda(); }
void cv::cuda::fastNlMeansDenoising(InputArray, OutputArray, float, int, int, Stream&) { throw_no_cuda(); }
void cv::cuda::fastNlMeansDenoisingColored(InputArray, OutputArray, float, float, int, int, Stream&) { throw_no_cuda(); }

#else

//////////////////////////////////////////////////////////////////////////////////
//// Non Local Means Denosing (brute force)

namespace cv { namespace cuda { namespace device
{
    namespace imgproc
    {
        template<typename T>
        void nlm_bruteforce_gpu(const PtrStepSzb& src, PtrStepSzb dst, int search_radius, int block_radius, float h, int borderMode, cudaStream_t stream);
    }
}}}

void cv::cuda::nonLocalMeans(InputArray _src, OutputArray _dst, float h, int search_window, int block_window, int borderMode, Stream& stream)
{
    using cv::cuda::device::imgproc::nlm_bruteforce_gpu;
    typedef void (*func_t)(const PtrStepSzb& src, PtrStepSzb dst, int search_radius, int block_radius, float h, int borderMode, cudaStream_t stream);

    static const func_t funcs[4] = { nlm_bruteforce_gpu<uchar>, nlm_bruteforce_gpu<uchar2>, nlm_bruteforce_gpu<uchar3>, 0/*nlm_bruteforce_gpu<uchar4>,*/ };

    const GpuMat src = _src.getGpuMat();

    CV_Assert(src.type() == CV_8U || src.type() == CV_8UC2 || src.type() == CV_8UC3);

    const func_t func = funcs[src.channels() - 1];
    CV_Assert(func != 0);

    int b = borderMode;
    CV_Assert(b == BORDER_REFLECT101 || b == BORDER_REPLICATE || b == BORDER_CONSTANT || b == BORDER_REFLECT || b == BORDER_WRAP);

    _dst.create(src.size(), src.type());
    GpuMat dst = _dst.getGpuMat();

    func(src, dst, search_window/2, block_window/2, h, borderMode, StreamAccessor::getStream(stream));
}

namespace cv { namespace cuda { namespace device
{
    namespace imgproc
    {
        void nln_fast_get_buffer_size(const PtrStepSzb& src, int search_window, int block_window, int& buffer_cols, int& buffer_rows);

        template<typename T>
        void nlm_fast_gpu(const PtrStepSzb& src, PtrStepSzb dst, PtrStepi buffer,
                          int search_window, int block_window, float h, cudaStream_t stream);

        void fnlm_split_channels(const PtrStepSz<uchar3>& lab, PtrStepb l, PtrStep<uchar2> ab, cudaStream_t stream);
        void fnlm_merge_channels(const PtrStepb& l, const PtrStep<uchar2>& ab, PtrStepSz<uchar3> lab, cudaStream_t stream);
     }
}}}

void cv::cuda::fastNlMeansDenoising(InputArray _src, OutputArray _dst, float h, int search_window, int block_window, Stream& stream)
{
    const GpuMat src = _src.getGpuMat();

    CV_Assert(src.depth() == CV_8U && src.channels() < 4);

    int border_size = search_window/2 + block_window/2;
    Size esize = src.size() + Size(border_size, border_size) * 2;

    BufferPool pool(stream);

    GpuMat extended_src = pool.getBuffer(esize, src.type());
    cv::cuda::copyMakeBorder(src, extended_src, border_size, border_size, border_size, border_size, cv::BORDER_DEFAULT, Scalar(), stream);
    GpuMat src_hdr = extended_src(Rect(Point2i(border_size, border_size), src.size()));

    int bcols, brows;
    device::imgproc::nln_fast_get_buffer_size(src_hdr, search_window, block_window, bcols, brows);
    GpuMat buffer = pool.getBuffer(brows, bcols, CV_32S);

    using namespace cv::cuda::device::imgproc;
    typedef void (*nlm_fast_t)(const PtrStepSzb&, PtrStepSzb, PtrStepi, int, int, float, cudaStream_t);
    static const nlm_fast_t funcs[] = { nlm_fast_gpu<uchar>, nlm_fast_gpu<uchar2>, nlm_fast_gpu<uchar3>, 0};

    _dst.create(src.size(), src.type());
    GpuMat dst = _dst.getGpuMat();

    funcs[src.channels()-1](src_hdr, dst, buffer, search_window, block_window, h, StreamAccessor::getStream(stream));
}

void cv::cuda::fastNlMeansDenoisingColored(InputArray _src, OutputArray _dst, float h_luminance, float h_color, int search_window, int block_window, Stream& stream)
{
    const GpuMat src = _src.getGpuMat();

    CV_Assert(src.type() == CV_8UC3);

    BufferPool pool(stream);

    GpuMat lab = pool.getBuffer(src.size(), src.type());
    cv::cuda::cvtColor(src, lab, cv::COLOR_BGR2Lab, 0, stream);

    GpuMat l = pool.getBuffer(src.size(), CV_8U);
    GpuMat ab = pool.getBuffer(src.size(), CV_8UC2);
    device::imgproc::fnlm_split_channels(lab, l, ab, StreamAccessor::getStream(stream));

    fastNlMeansDenoising(l, l, h_luminance, search_window, block_window, stream);
    fastNlMeansDenoising(ab, ab, h_color, search_window, block_window, stream);

    device::imgproc::fnlm_merge_channels(l, ab, lab, StreamAccessor::getStream(stream));
    cv::cuda::cvtColor(lab, _dst, cv::COLOR_Lab2BGR, 0, stream);
}

#endif