bm.cpp 6.9 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

using namespace cv;
using namespace cv::cuda;

#if !defined HAVE_CUDA || defined(CUDA_DISABLER)

void cv::cuda::calcOpticalFlowBM(const GpuMat&, const GpuMat&, Size, Size, Size, bool, GpuMat&, GpuMat&, GpuMat&, Stream&) { throw_no_cuda(); }

#else // HAVE_CUDA

namespace optflowbm
{
    void calc(PtrStepSzb prev, PtrStepSzb curr, PtrStepSzf velx, PtrStepSzf vely, int2 blockSize, int2 shiftSize, bool usePrevious,
              int maxX, int maxY, int acceptLevel, int escapeLevel, const short2* ss, int ssCount, cudaStream_t stream);
}

void cv::cuda::calcOpticalFlowBM(const GpuMat& prev, const GpuMat& curr, Size blockSize, Size shiftSize, Size maxRange, bool usePrevious, GpuMat& velx, GpuMat& vely, GpuMat& buf, Stream& st)
{
    CV_Assert( prev.type() == CV_8UC1 );
    CV_Assert( curr.size() == prev.size() && curr.type() == prev.type() );

    const Size velSize((prev.cols - blockSize.width + shiftSize.width) / shiftSize.width,
                       (prev.rows - blockSize.height + shiftSize.height) / shiftSize.height);

    velx.create(velSize, CV_32FC1);
    vely.create(velSize, CV_32FC1);

    // scanning scheme coordinates
    std::vector<short2> ss((2 * maxRange.width + 1) * (2 * maxRange.height + 1));
    int ssCount = 0;

    // Calculate scanning scheme
    const int minCount = std::min(maxRange.width, maxRange.height);

    // use spiral search pattern
    //
    //     9 10 11 12
    //     8  1  2 13
    //     7  *  3 14
    //     6  5  4 15
    //... 20 19 18 17
    //

    for (int i = 0; i < minCount; ++i)
    {
        // four cycles along sides
        int x = -i - 1, y = x;

        // upper side
        for (int j = -i; j <= i + 1; ++j, ++ssCount)
        {
            ss[ssCount].x = (short) ++x;
            ss[ssCount].y = (short) y;
        }

        // right side
        for (int j = -i; j <= i + 1; ++j, ++ssCount)
        {
            ss[ssCount].x = (short) x;
            ss[ssCount].y = (short) ++y;
        }

        // bottom side
        for (int j = -i; j <= i + 1; ++j, ++ssCount)
        {
            ss[ssCount].x = (short) --x;
            ss[ssCount].y = (short) y;
        }

        // left side
        for (int j = -i; j <= i + 1; ++j, ++ssCount)
        {
            ss[ssCount].x = (short) x;
            ss[ssCount].y = (short) --y;
        }
    }

    // the rest part
    if (maxRange.width < maxRange.height)
    {
        const int xleft = -minCount;

        // cycle by neighbor rings
        for (int i = minCount; i < maxRange.height; ++i)
        {
            // two cycles by x
            int y = -(i + 1);
            int x = xleft;

            // upper side
            for (int j = -maxRange.width; j <= maxRange.width; ++j, ++ssCount, ++x)
            {
                ss[ssCount].x = (short) x;
                ss[ssCount].y = (short) y;
            }

            x = xleft;
            y = -y;

            // bottom side
            for (int j = -maxRange.width; j <= maxRange.width; ++j, ++ssCount, ++x)
            {
                ss[ssCount].x = (short) x;
                ss[ssCount].y = (short) y;
            }
        }
    }
    else if (maxRange.width > maxRange.height)
    {
        const int yupper = -minCount;

        // cycle by neighbor rings
        for (int i = minCount; i < maxRange.width; ++i)
        {
            // two cycles by y
            int x = -(i + 1);
            int y = yupper;

            // left side
            for (int j = -maxRange.height; j <= maxRange.height; ++j, ++ssCount, ++y)
            {
                ss[ssCount].x = (short) x;
                ss[ssCount].y = (short) y;
            }

            y = yupper;
            x = -x;

            // right side
            for (int j = -maxRange.height; j <= maxRange.height; ++j, ++ssCount, ++y)
            {
                ss[ssCount].x = (short) x;
                ss[ssCount].y = (short) y;
            }
        }
    }

    const cudaStream_t stream = StreamAccessor::getStream(st);

    ensureSizeIsEnough(1, ssCount, CV_16SC2, buf);
    if (stream == 0)
        cudaSafeCall( cudaMemcpy(buf.data, &ss[0], ssCount * sizeof(short2), cudaMemcpyHostToDevice) );
    else
        cudaSafeCall( cudaMemcpyAsync(buf.data, &ss[0], ssCount * sizeof(short2), cudaMemcpyHostToDevice, stream) );

    const int maxX = prev.cols - blockSize.width;
    const int maxY = prev.rows - blockSize.height;

    const int SMALL_DIFF = 2;
    const int BIG_DIFF = 128;

    const int blSize = blockSize.area();
    const int acceptLevel = blSize * SMALL_DIFF;
    const int escapeLevel = blSize * BIG_DIFF;

    optflowbm::calc(prev, curr, velx, vely,
                    make_int2(blockSize.width, blockSize.height), make_int2(shiftSize.width, shiftSize.height), usePrevious,
                    maxX, maxY, acceptLevel, escapeLevel, buf.ptr<short2>(), ssCount, stream);
}

#endif // HAVE_CUDA