background_segm.hpp 10.7 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
wester committed
10
//                           License Agreement
wester committed
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

a  
Kai Westerkamp committed
43 44
#ifndef __OPENCV_BACKGROUND_SEGM_HPP__
#define __OPENCV_BACKGROUND_SEGM_HPP__
wester committed
45

wester committed
46 47
#include "opencv2/core/core.hpp"
#include <list>
wester committed
48 49 50
namespace cv
{

wester committed
51 52
/*!
 The Base Class for Background/Foreground Segmentation
wester committed
53

wester committed
54 55 56
 The class is only used to define the common interface for
 the whole family of background/foreground segmentation algorithms.
*/
wester committed
57 58 59
class CV_EXPORTS_W BackgroundSubtractor : public Algorithm
{
public:
wester committed
60 61 62 63 64 65 66 67 68
    //! the virtual destructor
    virtual ~BackgroundSubtractor();
    //! the update operator that takes the next video frame and returns the current foreground mask as 8-bit binary image.
    CV_WRAP_AS(apply) virtual void operator()(InputArray image, OutputArray fgmask,
                                              double learningRate=0);

    //! computes a background image
    virtual void getBackgroundImage(OutputArray backgroundImage) const;
};
wester committed
69 70


wester committed
71 72
/*!
 Gaussian Mixture-based Backbround/Foreground Segmentation Algorithm
wester committed
73

wester committed
74 75 76 77 78
 The class implements the following algorithm:
 "An improved adaptive background mixture model for real-time tracking with shadow detection"
 P. KadewTraKuPong and R. Bowden,
 Proc. 2nd European Workshp on Advanced Video-Based Surveillance Systems, 2001."
 http://personal.ee.surrey.ac.uk/Personal/R.Bowden/publications/avbs01/avbs01.pdf
wester committed
79

wester committed
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
*/
class CV_EXPORTS_W BackgroundSubtractorMOG : public BackgroundSubtractor
{
public:
    //! the default constructor
    CV_WRAP BackgroundSubtractorMOG();
    //! the full constructor that takes the length of the history, the number of gaussian mixtures, the background ratio parameter and the noise strength
    CV_WRAP BackgroundSubtractorMOG(int history, int nmixtures, double backgroundRatio, double noiseSigma=0);
    //! the destructor
    virtual ~BackgroundSubtractorMOG();
    //! the update operator
    virtual void operator()(InputArray image, OutputArray fgmask, double learningRate=0);

    //! re-initiaization method
    virtual void initialize(Size frameSize, int frameType);

    virtual AlgorithmInfo* info() const;

protected:
    Size frameSize;
    int frameType;
    Mat bgmodel;
    int nframes;
    int history;
    int nmixtures;
    double varThreshold;
    double backgroundRatio;
    double noiseSigma;
wester committed
108 109 110
};


wester committed
111 112 113 114 115 116 117
/*!
 The class implements the following algorithm:
 "Improved adaptive Gausian mixture model for background subtraction"
 Z.Zivkovic
 International Conference Pattern Recognition, UK, August, 2004.
 http://www.zoranz.net/Publications/zivkovic2004ICPR.pdf
*/
wester committed
118 119 120
class CV_EXPORTS_W BackgroundSubtractorMOG2 : public BackgroundSubtractor
{
public:
wester committed
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
    //! the default constructor
    CV_WRAP BackgroundSubtractorMOG2();
    //! the full constructor that takes the length of the history, the number of gaussian mixtures, the background ratio parameter and the noise strength
    CV_WRAP BackgroundSubtractorMOG2(int history,  float varThreshold, bool bShadowDetection=true);
    //! the destructor
    virtual ~BackgroundSubtractorMOG2();
    //! the update operator
    virtual void operator()(InputArray image, OutputArray fgmask, double learningRate=-1);

    //! computes a background image which are the mean of all background gaussians
    virtual void getBackgroundImage(OutputArray backgroundImage) const;

    //! re-initiaization method
    virtual void initialize(Size frameSize, int frameType);

    virtual AlgorithmInfo* info() const;

protected:
    Size frameSize;
    int frameType;
    Mat bgmodel;
    Mat bgmodelUsedModes;//keep track of number of modes per pixel
    int nframes;
    int history;
    int nmixtures;
    //! here it is the maximum allowed number of mixture components.
    //! Actual number is determined dynamically per pixel
    double varThreshold;
    // threshold on the squared Mahalanobis distance to decide if it is well described
    // by the background model or not. Related to Cthr from the paper.
    // This does not influence the update of the background. A typical value could be 4 sigma
    // and that is varThreshold=4*4=16; Corresponds to Tb in the paper.

    /////////////////////////
    // less important parameters - things you might change but be carefull
    ////////////////////////
    float backgroundRatio;
    // corresponds to fTB=1-cf from the paper
    // TB - threshold when the component becomes significant enough to be included into
    // the background model. It is the TB=1-cf from the paper. So I use cf=0.1 => TB=0.
    // For alpha=0.001 it means that the mode should exist for approximately 105 frames before
    // it is considered foreground
    // float noiseSigma;
    float varThresholdGen;
    //correspondts to Tg - threshold on the squared Mahalan. dist. to decide
    //when a sample is close to the existing components. If it is not close
    //to any a new component will be generated. I use 3 sigma => Tg=3*3=9.
    //Smaller Tg leads to more generated components and higher Tg might make
    //lead to small number of components but they can grow too large
    float fVarInit;
    float fVarMin;
    float fVarMax;
    //initial variance  for the newly generated components.
    //It will will influence the speed of adaptation. A good guess should be made.
    //A simple way is to estimate the typical standard deviation from the images.
    //I used here 10 as a reasonable value
    // min and max can be used to further control the variance
    float fCT;//CT - complexity reduction prior
    //this is related to the number of samples needed to accept that a component
    //actually exists. We use CT=0.05 of all the samples. By setting CT=0 you get
    //the standard Stauffer&Grimson algorithm (maybe not exact but very similar)

    //shadow detection parameters
    bool bShadowDetection;//default 1 - do shadow detection
    unsigned char nShadowDetection;//do shadow detection - insert this value as the detection result - 127 default value
    float fTau;
    // Tau - shadow threshold. The shadow is detected if the pixel is darker
    //version of the background. Tau is a threshold on how much darker the shadow can be.
    //Tau= 0.5 means that if pixel is more than 2 times darker then it is not shadow
    //See: Prati,Mikic,Trivedi,Cucchiarra,"Detecting Moving Shadows...",IEEE PAMI,2003.
wester committed
191 192
};

wester committed
193 194 195 196 197 198
/**
 * Background Subtractor module. Takes a series of images and returns a sequence of mask (8UC1)
 * images of the same size, where 255 indicates Foreground and 0 represents Background.
 * This class implements an algorithm described in "Visual Tracking of Human Visitors under
 * Variable-Lighting Conditions for a Responsive Audio Art Installation," A. Godbehere,
 * A. Matsukawa, K. Goldberg, American Control Conference, Montreal, June 2012.
wester committed
199
 */
wester committed
200
class CV_EXPORTS BackgroundSubtractorGMG: public cv::BackgroundSubtractor
wester committed
201 202
{
public:
wester committed
203 204 205 206 207 208 209 210 211 212
    BackgroundSubtractorGMG();
    virtual ~BackgroundSubtractorGMG();
    virtual AlgorithmInfo* info() const;

    /**
     * Validate parameters and set up data structures for appropriate image size.
     * Must call before running on data.
     * @param frameSize input frame size
     * @param min       minimum value taken on by pixels in image sequence. Usually 0
     * @param max       maximum value taken on by pixels in image sequence. e.g. 1.0 or 255
wester committed
213
     */
wester committed
214 215 216 217 218 219 220 221
    void initialize(cv::Size frameSize, double min, double max);

    /**
     * Performs single-frame background subtraction and builds up a statistical background image
     * model.
     * @param image Input image
     * @param fgmask Output mask image representing foreground and background pixels
     * @param learningRate Determines how quickly features are "forgotten" from histograms
wester committed
222
     */
wester committed
223
    virtual void operator()(InputArray image, OutputArray fgmask, double learningRate=-1.0);
wester committed
224

wester committed
225 226
    /**
     * Releases all inner buffers.
wester committed
227
     */
wester committed
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
    void release();

    //! Total number of distinct colors to maintain in histogram.
    int     maxFeatures;
    //! Set between 0.0 and 1.0, determines how quickly features are "forgotten" from histograms.
    double  learningRate;
    //! Number of frames of video to use to initialize histograms.
    int     numInitializationFrames;
    //! Number of discrete levels in each channel to be used in histograms.
    int     quantizationLevels;
    //! Prior probability that any given pixel is a background pixel. A sensitivity parameter.
    double  backgroundPrior;
    //! Value above which pixel is determined to be FG.
    double  decisionThreshold;
    //! Smoothing radius, in pixels, for cleaning up FG image.
    int     smoothingRadius;
    //! Perform background model update
    bool updateBackgroundModel;

private:
    double maxVal_;
    double minVal_;

    cv::Size frameSize_;
    int frameNum_;

    cv::Mat_<int> nfeatures_;
    cv::Mat_<unsigned int> colors_;
    cv::Mat_<float> weights_;

    cv::Mat buf_;
wester committed
259 260
};

wester committed
261
}
wester committed
262 263

#endif