testset.cpp 3.98 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                        Intel License Agreement
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

wester committed
43
namespace cv { namespace ml {
wester committed
44

wester committed
45
struct PairDI
wester committed
46
{
wester committed
47 48 49
    double d;
    int    i;
};
wester committed
50

wester committed
51
struct CmpPairDI
wester committed
52
{
wester committed
53 54 55 56 57
    bool operator ()(const PairDI& e1, const PairDI& e2) const
    {
        return (e1.d < e2.d) || (e1.d == e2.d && e1.i < e2.i);
    }
};
wester committed
58

wester committed
59 60
void createConcentricSpheresTestSet( int num_samples, int num_features, int num_classes,
                                     OutputArray _samples, OutputArray _responses)
wester committed
61
{
wester committed
62 63
    if( num_samples < 1 )
        CV_Error( CV_StsBadArg, "num_samples parameter must be positive" );
wester committed
64

wester committed
65 66
    if( num_features < 1 )
        CV_Error( CV_StsBadArg, "num_features parameter must be positive" );
wester committed
67

wester committed
68 69
    if( num_classes < 1 )
        CV_Error( CV_StsBadArg, "num_classes parameter must be positive" );
wester committed
70

wester committed
71
    int i, cur_class;
wester committed
72

wester committed
73 74
    _samples.create( num_samples, num_features, CV_32F );
    _responses.create( 1, num_samples, CV_32S );
wester committed
75

wester committed
76
    Mat responses = _responses.getMat();
wester committed
77

wester committed
78 79
    Mat mean = Mat::zeros(1, num_features, CV_32F);
    Mat cov = Mat::eye(num_features, num_features, CV_32F);
wester committed
80

wester committed
81 82 83
    // fill the feature values matrix with random numbers drawn from standard normal distribution
    randMVNormal( mean, cov, num_samples, _samples );
    Mat samples = _samples.getMat();
wester committed
84

wester committed
85 86 87
    // calculate distances from the origin to the samples and put them
    // into the sequence along with indices
    std::vector<PairDI> dis(samples.rows);
wester committed
88

wester committed
89 90 91 92 93 94
    for( i = 0; i < samples.rows; i++ )
    {
        PairDI& elem = dis[i];
        elem.i = i;
        elem.d = norm(samples.row(i), NORM_L2);
    }
wester committed
95

wester committed
96
    std::sort(dis.begin(), dis.end(), CmpPairDI());
wester committed
97

wester committed
98 99 100
    // assign class labels
    num_classes = std::min( num_samples, num_classes );
    for( i = 0, cur_class = 0; i < num_samples; ++cur_class )
wester committed
101
    {
wester committed
102 103 104 105 106 107
        int last_idx = num_samples * (cur_class + 1) / num_classes - 1;
        double max_dst = dis[last_idx].d;
        max_dst = std::max( max_dst, dis[i].d );

        for( ; i < num_samples && dis[i].d <= max_dst; ++i )
            responses.at<int>(i) = cur_class;
wester committed
108 109 110
    }
}

wester committed
111
}}
wester committed
112 113

/* End of file. */