optical_flow.cpp 6 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
#include <iostream>
#include <fstream>

#include "opencv2/core.hpp"
#include <opencv2/core/utility.hpp>
#include "opencv2/highgui.hpp"
#include "opencv2/cudaoptflow.hpp"
#include "opencv2/cudaarithm.hpp"

using namespace std;
using namespace cv;
using namespace cv::cuda;

inline bool isFlowCorrect(Point2f u)
{
    return !cvIsNaN(u.x) && !cvIsNaN(u.y) && fabs(u.x) < 1e9 && fabs(u.y) < 1e9;
}

static Vec3b computeColor(float fx, float fy)
{
    static bool first = true;

    // relative lengths of color transitions:
    // these are chosen based on perceptual similarity
    // (e.g. one can distinguish more shades between red and yellow
    //  than between yellow and green)
    const int RY = 15;
    const int YG = 6;
    const int GC = 4;
    const int CB = 11;
    const int BM = 13;
    const int MR = 6;
    const int NCOLS = RY + YG + GC + CB + BM + MR;
    static Vec3i colorWheel[NCOLS];

    if (first)
    {
        int k = 0;

        for (int i = 0; i < RY; ++i, ++k)
            colorWheel[k] = Vec3i(255, 255 * i / RY, 0);

        for (int i = 0; i < YG; ++i, ++k)
            colorWheel[k] = Vec3i(255 - 255 * i / YG, 255, 0);

        for (int i = 0; i < GC; ++i, ++k)
            colorWheel[k] = Vec3i(0, 255, 255 * i / GC);

        for (int i = 0; i < CB; ++i, ++k)
            colorWheel[k] = Vec3i(0, 255 - 255 * i / CB, 255);

        for (int i = 0; i < BM; ++i, ++k)
            colorWheel[k] = Vec3i(255 * i / BM, 0, 255);

        for (int i = 0; i < MR; ++i, ++k)
            colorWheel[k] = Vec3i(255, 0, 255 - 255 * i / MR);

        first = false;
    }

    const float rad = sqrt(fx * fx + fy * fy);
    const float a = atan2(-fy, -fx) / (float) CV_PI;

    const float fk = (a + 1.0f) / 2.0f * (NCOLS - 1);
    const int k0 = static_cast<int>(fk);
    const int k1 = (k0 + 1) % NCOLS;
    const float f = fk - k0;

    Vec3b pix;

    for (int b = 0; b < 3; b++)
    {
        const float col0 = colorWheel[k0][b] / 255.0f;
        const float col1 = colorWheel[k1][b] / 255.0f;

        float col = (1 - f) * col0 + f * col1;

        if (rad <= 1)
            col = 1 - rad * (1 - col); // increase saturation with radius
        else
            col *= .75; // out of range

        pix[2 - b] = static_cast<uchar>(255.0 * col);
    }

    return pix;
}

static void drawOpticalFlow(const Mat_<float>& flowx, const Mat_<float>& flowy, Mat& dst, float maxmotion = -1)
{
    dst.create(flowx.size(), CV_8UC3);
    dst.setTo(Scalar::all(0));

    // determine motion range:
    float maxrad = maxmotion;

    if (maxmotion <= 0)
    {
        maxrad = 1;
        for (int y = 0; y < flowx.rows; ++y)
        {
            for (int x = 0; x < flowx.cols; ++x)
            {
                Point2f u(flowx(y, x), flowy(y, x));

                if (!isFlowCorrect(u))
                    continue;

                maxrad = max(maxrad, sqrt(u.x * u.x + u.y * u.y));
            }
        }
    }

    for (int y = 0; y < flowx.rows; ++y)
    {
        for (int x = 0; x < flowx.cols; ++x)
        {
            Point2f u(flowx(y, x), flowy(y, x));

            if (isFlowCorrect(u))
                dst.at<Vec3b>(y, x) = computeColor(u.x / maxrad, u.y / maxrad);
        }
    }
}

static void showFlow(const char* name, const GpuMat& d_flow)
{
    GpuMat planes[2];
    cuda::split(d_flow, planes);

    Mat flowx(planes[0]);
    Mat flowy(planes[1]);

    Mat out;
    drawOpticalFlow(flowx, flowy, out, 10);

    imshow(name, out);
}

int main(int argc, const char* argv[])
{
    string filename1, filename2;
    if (argc < 3)
    {
        cerr << "Usage : " << argv[0] << " <frame0> <frame1>" << endl;
        filename1 = "../data/basketball1.png";
        filename2 = "../data/basketball2.png";
    }
    else
    {
        filename1 = argv[1];
        filename2 = argv[2];
    }

    Mat frame0 = imread(filename1, IMREAD_GRAYSCALE);
    Mat frame1 = imread(filename2, IMREAD_GRAYSCALE);

    if (frame0.empty())
    {
        cerr << "Can't open image ["  << filename1 << "]" << endl;
        return -1;
    }
    if (frame1.empty())
    {
        cerr << "Can't open image ["  << filename2 << "]" << endl;
        return -1;
    }

    if (frame1.size() != frame0.size())
    {
        cerr << "Images should be of equal sizes" << endl;
        return -1;
    }

    GpuMat d_frame0(frame0);
    GpuMat d_frame1(frame1);

    GpuMat d_flow(frame0.size(), CV_32FC2);

    Ptr<cuda::BroxOpticalFlow> brox = cuda::BroxOpticalFlow::create(0.197f, 50.0f, 0.8f, 10, 77, 10);
    Ptr<cuda::DensePyrLKOpticalFlow> lk = cuda::DensePyrLKOpticalFlow::create(Size(7, 7));
    Ptr<cuda::FarnebackOpticalFlow> farn = cuda::FarnebackOpticalFlow::create();
    Ptr<cuda::OpticalFlowDual_TVL1> tvl1 = cuda::OpticalFlowDual_TVL1::create();

    {
        GpuMat d_frame0f;
        GpuMat d_frame1f;

        d_frame0.convertTo(d_frame0f, CV_32F, 1.0 / 255.0);
        d_frame1.convertTo(d_frame1f, CV_32F, 1.0 / 255.0);

        const int64 start = getTickCount();

        brox->calc(d_frame0f, d_frame1f, d_flow);

        const double timeSec = (getTickCount() - start) / getTickFrequency();
        cout << "Brox : " << timeSec << " sec" << endl;

        showFlow("Brox", d_flow);
    }

    {
        const int64 start = getTickCount();

        lk->calc(d_frame0, d_frame1, d_flow);

        const double timeSec = (getTickCount() - start) / getTickFrequency();
        cout << "LK : " << timeSec << " sec" << endl;

        showFlow("LK", d_flow);
    }

    {
        const int64 start = getTickCount();

        farn->calc(d_frame0, d_frame1, d_flow);

        const double timeSec = (getTickCount() - start) / getTickFrequency();
        cout << "Farn : " << timeSec << " sec" << endl;

        showFlow("Farn", d_flow);
    }

    {
        const int64 start = getTickCount();

        tvl1->calc(d_frame0, d_frame1, d_flow);

        const double timeSec = (getTickCount() - start) / getTickFrequency();
        cout << "TVL1 : " << timeSec << " sec" << endl;

        showFlow("TVL1", d_flow);
    }

    imshow("Frame 0", frame0);
    imshow("Frame 1", frame1);
    waitKey();

    return 0;
}