optflowbm.cpp 8.55 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

wester committed
45
using namespace std;
wester committed
46
using namespace cv;
wester committed
47
using namespace cv::gpu;
wester committed
48 49 50

#if !defined HAVE_CUDA || defined(CUDA_DISABLER)

wester committed
51 52 53
void cv::gpu::calcOpticalFlowBM(const GpuMat&, const GpuMat&, Size, Size, Size, bool, GpuMat&, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }

void cv::gpu::FastOpticalFlowBM::operator ()(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, int, int, Stream&) { throw_nogpu(); }
wester committed
54 55 56 57 58 59 60 61 62

#else // HAVE_CUDA

namespace optflowbm
{
    void calc(PtrStepSzb prev, PtrStepSzb curr, PtrStepSzf velx, PtrStepSzf vely, int2 blockSize, int2 shiftSize, bool usePrevious,
              int maxX, int maxY, int acceptLevel, int escapeLevel, const short2* ss, int ssCount, cudaStream_t stream);
}

wester committed
63
void cv::gpu::calcOpticalFlowBM(const GpuMat& prev, const GpuMat& curr, Size blockSize, Size shiftSize, Size maxRange, bool usePrevious, GpuMat& velx, GpuMat& vely, GpuMat& buf, Stream& st)
wester committed
64 65 66 67 68 69 70 71 72 73 74
{
    CV_Assert( prev.type() == CV_8UC1 );
    CV_Assert( curr.size() == prev.size() && curr.type() == prev.type() );

    const Size velSize((prev.cols - blockSize.width + shiftSize.width) / shiftSize.width,
                       (prev.rows - blockSize.height + shiftSize.height) / shiftSize.height);

    velx.create(velSize, CV_32FC1);
    vely.create(velSize, CV_32FC1);

    // scanning scheme coordinates
wester committed
75
    vector<short2> ss((2 * maxRange.width + 1) * (2 * maxRange.height + 1));
wester committed
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
    int ssCount = 0;

    // Calculate scanning scheme
    const int minCount = std::min(maxRange.width, maxRange.height);

    // use spiral search pattern
    //
    //     9 10 11 12
    //     8  1  2 13
    //     7  *  3 14
    //     6  5  4 15
    //... 20 19 18 17
    //

    for (int i = 0; i < minCount; ++i)
    {
        // four cycles along sides
        int x = -i - 1, y = x;

        // upper side
        for (int j = -i; j <= i + 1; ++j, ++ssCount)
        {
wester committed
98 99
            ss[ssCount].x = ++x;
            ss[ssCount].y = y;
wester committed
100 101 102 103 104
        }

        // right side
        for (int j = -i; j <= i + 1; ++j, ++ssCount)
        {
wester committed
105 106
            ss[ssCount].x = x;
            ss[ssCount].y = ++y;
wester committed
107 108 109 110 111
        }

        // bottom side
        for (int j = -i; j <= i + 1; ++j, ++ssCount)
        {
wester committed
112 113
            ss[ssCount].x = --x;
            ss[ssCount].y = y;
wester committed
114 115 116 117 118
        }

        // left side
        for (int j = -i; j <= i + 1; ++j, ++ssCount)
        {
wester committed
119 120
            ss[ssCount].x = x;
            ss[ssCount].y = --y;
wester committed
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
        }
    }

    // the rest part
    if (maxRange.width < maxRange.height)
    {
        const int xleft = -minCount;

        // cycle by neighbor rings
        for (int i = minCount; i < maxRange.height; ++i)
        {
            // two cycles by x
            int y = -(i + 1);
            int x = xleft;

            // upper side
            for (int j = -maxRange.width; j <= maxRange.width; ++j, ++ssCount, ++x)
            {
wester committed
139 140
                ss[ssCount].x = x;
                ss[ssCount].y = y;
wester committed
141 142 143 144 145 146 147 148
            }

            x = xleft;
            y = -y;

            // bottom side
            for (int j = -maxRange.width; j <= maxRange.width; ++j, ++ssCount, ++x)
            {
wester committed
149 150
                ss[ssCount].x = x;
                ss[ssCount].y = y;
wester committed
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
            }
        }
    }
    else if (maxRange.width > maxRange.height)
    {
        const int yupper = -minCount;

        // cycle by neighbor rings
        for (int i = minCount; i < maxRange.width; ++i)
        {
            // two cycles by y
            int x = -(i + 1);
            int y = yupper;

            // left side
            for (int j = -maxRange.height; j <= maxRange.height; ++j, ++ssCount, ++y)
            {
wester committed
168 169
                ss[ssCount].x = x;
                ss[ssCount].y = y;
wester committed
170 171 172 173 174 175 176 177
            }

            y = yupper;
            x = -x;

            // right side
            for (int j = -maxRange.height; j <= maxRange.height; ++j, ++ssCount, ++y)
            {
wester committed
178 179
                ss[ssCount].x = x;
                ss[ssCount].y = y;
wester committed
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
            }
        }
    }

    const cudaStream_t stream = StreamAccessor::getStream(st);

    ensureSizeIsEnough(1, ssCount, CV_16SC2, buf);
    if (stream == 0)
        cudaSafeCall( cudaMemcpy(buf.data, &ss[0], ssCount * sizeof(short2), cudaMemcpyHostToDevice) );
    else
        cudaSafeCall( cudaMemcpyAsync(buf.data, &ss[0], ssCount * sizeof(short2), cudaMemcpyHostToDevice, stream) );

    const int maxX = prev.cols - blockSize.width;
    const int maxY = prev.rows - blockSize.height;

    const int SMALL_DIFF = 2;
    const int BIG_DIFF = 128;

    const int blSize = blockSize.area();
    const int acceptLevel = blSize * SMALL_DIFF;
    const int escapeLevel = blSize * BIG_DIFF;

    optflowbm::calc(prev, curr, velx, vely,
                    make_int2(blockSize.width, blockSize.height), make_int2(shiftSize.width, shiftSize.height), usePrevious,
                    maxX, maxY, acceptLevel, escapeLevel, buf.ptr<short2>(), ssCount, stream);
}

wester committed
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
namespace optflowbm_fast
{
    void get_buffer_size(int src_cols, int src_rows, int search_window, int block_window, int& buffer_cols, int& buffer_rows);

    template <typename T>
    void calc(PtrStepSzb I0, PtrStepSzb I1, PtrStepSzf velx, PtrStepSzf vely, PtrStepi buffer, int search_window, int block_window, cudaStream_t stream);
}

void cv::gpu::FastOpticalFlowBM::operator ()(const GpuMat& I0, const GpuMat& I1, GpuMat& flowx, GpuMat& flowy, int search_window, int block_window, Stream& stream)
{
    CV_Assert( I0.type() == CV_8UC1 );
    CV_Assert( I1.size() == I0.size() && I1.type() == I0.type() );

    int border_size = search_window / 2 + block_window / 2;
    Size esize = I0.size() + Size(border_size, border_size) * 2;

    ensureSizeIsEnough(esize, I0.type(), extended_I0);
    ensureSizeIsEnough(esize, I0.type(), extended_I1);

    copyMakeBorder(I0, extended_I0, border_size, border_size, border_size, border_size, cv::BORDER_DEFAULT, Scalar(), stream);
    copyMakeBorder(I1, extended_I1, border_size, border_size, border_size, border_size, cv::BORDER_DEFAULT, Scalar(), stream);

    GpuMat I0_hdr = extended_I0(Rect(Point2i(border_size, border_size), I0.size()));
    GpuMat I1_hdr = extended_I1(Rect(Point2i(border_size, border_size), I0.size()));

    int bcols, brows;
    optflowbm_fast::get_buffer_size(I0.cols, I0.rows, search_window, block_window, bcols, brows);

    ensureSizeIsEnough(brows, bcols, CV_32SC1, buffer);

    flowx.create(I0.size(), CV_32FC1);
    flowy.create(I0.size(), CV_32FC1);

    optflowbm_fast::calc<uchar>(I0_hdr, I1_hdr, flowx, flowy, buffer, search_window, block_window, StreamAccessor::getStream(stream));
}

wester committed
243
#endif // HAVE_CUDA