alpha_processing_sse2.c 11.3 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
// Copyright 2014 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Utilities for processing transparent channel.
//
// Author: Skal (pascal.massimino@gmail.com)

#include "./dsp.h"

#if defined(WEBP_USE_SSE2)
#include <emmintrin.h>

//------------------------------------------------------------------------------

static int DispatchAlpha(const uint8_t* alpha, int alpha_stride,
                         int width, int height,
                         uint8_t* dst, int dst_stride) {
  // alpha_and stores an 'and' operation of all the alpha[] values. The final
  // value is not 0xff if any of the alpha[] is not equal to 0xff.
  uint32_t alpha_and = 0xff;
  int i, j;
  const __m128i zero = _mm_setzero_si128();
  const __m128i rgb_mask = _mm_set1_epi32(0xffffff00u);  // to preserve RGB
  const __m128i all_0xff = _mm_set_epi32(0, 0, ~0u, ~0u);
  __m128i all_alphas = all_0xff;

  // We must be able to access 3 extra bytes after the last written byte
  // 'dst[4 * width - 4]', because we don't know if alpha is the first or the
  // last byte of the quadruplet.
  const int limit = (width - 1) & ~7;

  for (j = 0; j < height; ++j) {
    __m128i* out = (__m128i*)dst;
    for (i = 0; i < limit; i += 8) {
      // load 8 alpha bytes
      const __m128i a0 = _mm_loadl_epi64((const __m128i*)&alpha[i]);
      const __m128i a1 = _mm_unpacklo_epi8(a0, zero);
      const __m128i a2_lo = _mm_unpacklo_epi16(a1, zero);
      const __m128i a2_hi = _mm_unpackhi_epi16(a1, zero);
      // load 8 dst pixels (32 bytes)
      const __m128i b0_lo = _mm_loadu_si128(out + 0);
      const __m128i b0_hi = _mm_loadu_si128(out + 1);
      // mask dst alpha values
      const __m128i b1_lo = _mm_and_si128(b0_lo, rgb_mask);
      const __m128i b1_hi = _mm_and_si128(b0_hi, rgb_mask);
      // combine
      const __m128i b2_lo = _mm_or_si128(b1_lo, a2_lo);
      const __m128i b2_hi = _mm_or_si128(b1_hi, a2_hi);
      // store
      _mm_storeu_si128(out + 0, b2_lo);
      _mm_storeu_si128(out + 1, b2_hi);
      // accumulate eight alpha 'and' in parallel
      all_alphas = _mm_and_si128(all_alphas, a0);
      out += 2;
    }
    for (; i < width; ++i) {
      const uint32_t alpha_value = alpha[i];
      dst[4 * i] = alpha_value;
      alpha_and &= alpha_value;
    }
    alpha += alpha_stride;
    dst += dst_stride;
  }
  // Combine the eight alpha 'and' into a 8-bit mask.
  alpha_and &= _mm_movemask_epi8(_mm_cmpeq_epi8(all_alphas, all_0xff));
  return (alpha_and != 0xff);
}

static void DispatchAlphaToGreen(const uint8_t* alpha, int alpha_stride,
                                 int width, int height,
                                 uint32_t* dst, int dst_stride) {
  int i, j;
  const __m128i zero = _mm_setzero_si128();
  const int limit = width & ~15;
  for (j = 0; j < height; ++j) {
    for (i = 0; i < limit; i += 16) {   // process 16 alpha bytes
      const __m128i a0 = _mm_loadu_si128((const __m128i*)&alpha[i]);
      const __m128i a1 = _mm_unpacklo_epi8(zero, a0);  // note the 'zero' first!
      const __m128i b1 = _mm_unpackhi_epi8(zero, a0);
      const __m128i a2_lo = _mm_unpacklo_epi16(a1, zero);
      const __m128i b2_lo = _mm_unpacklo_epi16(b1, zero);
      const __m128i a2_hi = _mm_unpackhi_epi16(a1, zero);
      const __m128i b2_hi = _mm_unpackhi_epi16(b1, zero);
      _mm_storeu_si128((__m128i*)&dst[i +  0], a2_lo);
      _mm_storeu_si128((__m128i*)&dst[i +  4], a2_hi);
      _mm_storeu_si128((__m128i*)&dst[i +  8], b2_lo);
      _mm_storeu_si128((__m128i*)&dst[i + 12], b2_hi);
    }
    for (; i < width; ++i) dst[i] = alpha[i] << 8;
    alpha += alpha_stride;
    dst += dst_stride;
  }
}

static int ExtractAlpha(const uint8_t* argb, int argb_stride,
                        int width, int height,
                        uint8_t* alpha, int alpha_stride) {
  // alpha_and stores an 'and' operation of all the alpha[] values. The final
  // value is not 0xff if any of the alpha[] is not equal to 0xff.
  uint32_t alpha_and = 0xff;
  int i, j;
  const __m128i a_mask = _mm_set1_epi32(0xffu);  // to preserve alpha
  const __m128i all_0xff = _mm_set_epi32(0, 0, ~0u, ~0u);
  __m128i all_alphas = all_0xff;

  // We must be able to access 3 extra bytes after the last written byte
  // 'src[4 * width - 4]', because we don't know if alpha is the first or the
  // last byte of the quadruplet.
  const int limit = (width - 1) & ~7;

  for (j = 0; j < height; ++j) {
    const __m128i* src = (const __m128i*)argb;
    for (i = 0; i < limit; i += 8) {
      // load 32 argb bytes
      const __m128i a0 = _mm_loadu_si128(src + 0);
      const __m128i a1 = _mm_loadu_si128(src + 1);
      const __m128i b0 = _mm_and_si128(a0, a_mask);
      const __m128i b1 = _mm_and_si128(a1, a_mask);
      const __m128i c0 = _mm_packs_epi32(b0, b1);
      const __m128i d0 = _mm_packus_epi16(c0, c0);
      // store
      _mm_storel_epi64((__m128i*)&alpha[i], d0);
      // accumulate eight alpha 'and' in parallel
      all_alphas = _mm_and_si128(all_alphas, d0);
      src += 2;
    }
    for (; i < width; ++i) {
      const uint32_t alpha_value = argb[4 * i];
      alpha[i] = alpha_value;
      alpha_and &= alpha_value;
    }
    argb += argb_stride;
    alpha += alpha_stride;
  }
  // Combine the eight alpha 'and' into a 8-bit mask.
  alpha_and &= _mm_movemask_epi8(_mm_cmpeq_epi8(all_alphas, all_0xff));
  return (alpha_and == 0xff);
}

//------------------------------------------------------------------------------
// Non-dither premultiplied modes

#define MULTIPLIER(a)   ((a) * 0x8081)
#define PREMULTIPLY(x, m) (((x) * (m)) >> 23)

// We can't use a 'const int' for the SHUFFLE value, because it has to be an
// immediate in the _mm_shufflexx_epi16() instruction. We really need a macro.
// We use: v / 255 = (v * 0x8081) >> 23, where v = alpha * {r,g,b} is a 16bit
// value.
#define APPLY_ALPHA(RGBX, SHUFFLE) do {                              \
  const __m128i argb0 = _mm_loadu_si128((const __m128i*)&(RGBX));    \
  const __m128i argb1_lo = _mm_unpacklo_epi8(argb0, zero);           \
  const __m128i argb1_hi = _mm_unpackhi_epi8(argb0, zero);           \
  const __m128i alpha0_lo = _mm_or_si128(argb1_lo, kMask);           \
  const __m128i alpha0_hi = _mm_or_si128(argb1_hi, kMask);           \
  const __m128i alpha1_lo = _mm_shufflelo_epi16(alpha0_lo, SHUFFLE); \
  const __m128i alpha1_hi = _mm_shufflelo_epi16(alpha0_hi, SHUFFLE); \
  const __m128i alpha2_lo = _mm_shufflehi_epi16(alpha1_lo, SHUFFLE); \
  const __m128i alpha2_hi = _mm_shufflehi_epi16(alpha1_hi, SHUFFLE); \
  /* alpha2 = [ff a0 a0 a0][ff a1 a1 a1] */                          \
  const __m128i A0_lo = _mm_mullo_epi16(alpha2_lo, argb1_lo);        \
  const __m128i A0_hi = _mm_mullo_epi16(alpha2_hi, argb1_hi);        \
  const __m128i A1_lo = _mm_mulhi_epu16(A0_lo, kMult);               \
  const __m128i A1_hi = _mm_mulhi_epu16(A0_hi, kMult);               \
  const __m128i A2_lo = _mm_srli_epi16(A1_lo, 7);                    \
  const __m128i A2_hi = _mm_srli_epi16(A1_hi, 7);                    \
  const __m128i A3 = _mm_packus_epi16(A2_lo, A2_hi);                 \
  _mm_storeu_si128((__m128i*)&(RGBX), A3);                           \
} while (0)

static void ApplyAlphaMultiply_SSE2(uint8_t* rgba, int alpha_first,
                                    int w, int h, int stride) {
  const __m128i zero = _mm_setzero_si128();
  const __m128i kMult = _mm_set1_epi16(0x8081u);
  const __m128i kMask = _mm_set_epi16(0, 0xff, 0xff, 0, 0, 0xff, 0xff, 0);
  const int kSpan = 4;
  while (h-- > 0) {
    uint32_t* const rgbx = (uint32_t*)rgba;
    int i;
    if (!alpha_first) {
      for (i = 0; i + kSpan <= w; i += kSpan) {
        APPLY_ALPHA(rgbx[i], _MM_SHUFFLE(2, 3, 3, 3));
      }
    } else {
      for (i = 0; i + kSpan <= w; i += kSpan) {
        APPLY_ALPHA(rgbx[i], _MM_SHUFFLE(0, 0, 0, 1));
      }
    }
    // Finish with left-overs.
    for (; i < w; ++i) {
      uint8_t* const rgb = rgba + (alpha_first ? 1 : 0);
      const uint8_t* const alpha = rgba + (alpha_first ? 0 : 3);
      const uint32_t a = alpha[4 * i];
      if (a != 0xff) {
        const uint32_t mult = MULTIPLIER(a);
        rgb[4 * i + 0] = PREMULTIPLY(rgb[4 * i + 0], mult);
        rgb[4 * i + 1] = PREMULTIPLY(rgb[4 * i + 1], mult);
        rgb[4 * i + 2] = PREMULTIPLY(rgb[4 * i + 2], mult);
      }
    }
    rgba += stride;
  }
}
#undef MULTIPLIER
#undef PREMULTIPLY

// -----------------------------------------------------------------------------
// Apply alpha value to rows

static void MultARGBRow_SSE2(uint32_t* const ptr, int width, int inverse) {
  int x = 0;
  if (!inverse) {
    const int kSpan = 2;
    const __m128i zero = _mm_setzero_si128();
    const __m128i k128 = _mm_set1_epi16(128);
    const __m128i kMult = _mm_set1_epi16(0x0101);
    const __m128i kMask = _mm_set_epi16(0, 0xff, 0, 0, 0, 0xff, 0, 0);
    for (x = 0; x + kSpan <= width; x += kSpan) {
      // To compute 'result = (int)(a * x / 255. + .5)', we use:
      //   tmp = a * v + 128, result = (tmp * 0x0101u) >> 16
      const __m128i A0 = _mm_loadl_epi64((const __m128i*)&ptr[x]);
      const __m128i A1 = _mm_unpacklo_epi8(A0, zero);
      const __m128i A2 = _mm_or_si128(A1, kMask);
      const __m128i A3 = _mm_shufflelo_epi16(A2, _MM_SHUFFLE(2, 3, 3, 3));
      const __m128i A4 = _mm_shufflehi_epi16(A3, _MM_SHUFFLE(2, 3, 3, 3));
      // here, A4 = [ff a0 a0 a0][ff a1 a1 a1]
      const __m128i A5 = _mm_mullo_epi16(A4, A1);
      const __m128i A6 = _mm_add_epi16(A5, k128);
      const __m128i A7 = _mm_mulhi_epu16(A6, kMult);
      const __m128i A10 = _mm_packus_epi16(A7, zero);
      _mm_storel_epi64((__m128i*)&ptr[x], A10);
    }
  }
  width -= x;
  if (width > 0) WebPMultARGBRowC(ptr + x, width, inverse);
}

static void MultRow_SSE2(uint8_t* const ptr, const uint8_t* const alpha,
                         int width, int inverse) {
  int x = 0;
  if (!inverse) {
    const __m128i zero = _mm_setzero_si128();
    const __m128i k128 = _mm_set1_epi16(128);
    const __m128i kMult = _mm_set1_epi16(0x0101);
    for (x = 0; x + 8 <= width; x += 8) {
      const __m128i v0 = _mm_loadl_epi64((__m128i*)&ptr[x]);
      const __m128i a0 = _mm_loadl_epi64((const __m128i*)&alpha[x]);
      const __m128i v1 = _mm_unpacklo_epi8(v0, zero);
      const __m128i a1 = _mm_unpacklo_epi8(a0, zero);
      const __m128i v2 = _mm_mullo_epi16(v1, a1);
      const __m128i v3 = _mm_add_epi16(v2, k128);
      const __m128i v4 = _mm_mulhi_epu16(v3, kMult);
      const __m128i v5 = _mm_packus_epi16(v4, zero);
      _mm_storel_epi64((__m128i*)&ptr[x], v5);
    }
  }
  width -= x;
  if (width > 0) WebPMultRowC(ptr + x, alpha + x, width, inverse);
}

//------------------------------------------------------------------------------
// Entry point

extern void WebPInitAlphaProcessingSSE2(void);

WEBP_TSAN_IGNORE_FUNCTION void WebPInitAlphaProcessingSSE2(void) {
  WebPMultARGBRow = MultARGBRow_SSE2;
  WebPMultRow = MultRow_SSE2;
  WebPApplyAlphaMultiply = ApplyAlphaMultiply_SSE2;
  WebPDispatchAlpha = DispatchAlpha;
  WebPDispatchAlphaToGreen = DispatchAlphaToGreen;
  WebPExtractAlpha = ExtractAlpha;
}

#else  // !WEBP_USE_SSE2

WEBP_DSP_INIT_STUB(WebPInitAlphaProcessingSSE2)

#endif  // WEBP_USE_SSE2