matchers.hpp 9.1 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                          License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#ifndef __OPENCV_STITCHING_MATCHERS_HPP__
#define __OPENCV_STITCHING_MATCHERS_HPP__

#include "opencv2/core.hpp"
#include "opencv2/features2d.hpp"

#include "opencv2/opencv_modules.hpp"

#ifdef HAVE_OPENCV_XFEATURES2D
#  include "opencv2/xfeatures2d/cuda.hpp"
#endif

namespace cv {
namespace detail {

//! @addtogroup stitching_match
//! @{

/** @brief Structure containing image keypoints and descriptors. */
struct CV_EXPORTS ImageFeatures
{
    int img_idx;
    Size img_size;
    std::vector<KeyPoint> keypoints;
    UMat descriptors;
};

/** @brief Feature finders base class */
class CV_EXPORTS FeaturesFinder
{
public:
    virtual ~FeaturesFinder() {}
    /** @overload */
    void operator ()(InputArray image, ImageFeatures &features);
    /** @brief Finds features in the given image.

    @param image Source image
    @param features Found features
    @param rois Regions of interest

    @sa detail::ImageFeatures, Rect_
    */
    void operator ()(InputArray image, ImageFeatures &features, const std::vector<cv::Rect> &rois);
    /** @brief Frees unused memory allocated before if there is any. */
    virtual void collectGarbage() {}

protected:
    /** @brief This method must implement features finding logic in order to make the wrappers
    detail::FeaturesFinder::operator()_ work.

    @param image Source image
    @param features Found features

    @sa detail::ImageFeatures */
    virtual void find(InputArray image, ImageFeatures &features) = 0;
};

/** @brief SURF features finder.

@sa detail::FeaturesFinder, SURF
*/
class CV_EXPORTS SurfFeaturesFinder : public FeaturesFinder
{
public:
    SurfFeaturesFinder(double hess_thresh = 300., int num_octaves = 3, int num_layers = 4,
                       int num_octaves_descr = /*4*/3, int num_layers_descr = /*2*/4);

private:
    void find(InputArray image, ImageFeatures &features);

    Ptr<FeatureDetector> detector_;
    Ptr<DescriptorExtractor> extractor_;
    Ptr<Feature2D> surf;
};

/** @brief ORB features finder. :

@sa detail::FeaturesFinder, ORB
*/
class CV_EXPORTS OrbFeaturesFinder : public FeaturesFinder
{
public:
    OrbFeaturesFinder(Size _grid_size = Size(3,1), int nfeatures=1500, float scaleFactor=1.3f, int nlevels=5);

private:
    void find(InputArray image, ImageFeatures &features);

    Ptr<ORB> orb;
    Size grid_size;
};


#ifdef HAVE_OPENCV_XFEATURES2D
class CV_EXPORTS SurfFeaturesFinderGpu : public FeaturesFinder
{
public:
    SurfFeaturesFinderGpu(double hess_thresh = 300., int num_octaves = 3, int num_layers = 4,
                          int num_octaves_descr = 4, int num_layers_descr = 2);

    void collectGarbage();

private:
    void find(InputArray image, ImageFeatures &features);

    cuda::GpuMat image_;
    cuda::GpuMat gray_image_;
    cuda::SURF_CUDA surf_;
    cuda::GpuMat keypoints_;
    cuda::GpuMat descriptors_;
    int num_octaves_, num_layers_;
    int num_octaves_descr_, num_layers_descr_;
};
#endif

/** @brief Structure containing information about matches between two images.

It's assumed that there is a homography between those images.
*/
struct CV_EXPORTS MatchesInfo
{
    MatchesInfo();
    MatchesInfo(const MatchesInfo &other);
    const MatchesInfo& operator =(const MatchesInfo &other);

    int src_img_idx, dst_img_idx;       //!< Images indices (optional)
    std::vector<DMatch> matches;
    std::vector<uchar> inliers_mask;    //!< Geometrically consistent matches mask
    int num_inliers;                    //!< Number of geometrically consistent matches
    Mat H;                              //!< Estimated homography
    double confidence;                  //!< Confidence two images are from the same panorama
};

/** @brief Feature matchers base class. */
class CV_EXPORTS FeaturesMatcher
{
public:
    virtual ~FeaturesMatcher() {}

    /** @overload
    @param features1 First image features
    @param features2 Second image features
    @param matches_info Found matches
    */
    void operator ()(const ImageFeatures &features1, const ImageFeatures &features2,
                     MatchesInfo& matches_info) { match(features1, features2, matches_info); }

    /** @brief Performs images matching.

    @param features Features of the source images
    @param pairwise_matches Found pairwise matches
    @param mask Mask indicating which image pairs must be matched

    The function is parallelized with the TBB library.

    @sa detail::MatchesInfo
    */
    void operator ()(const std::vector<ImageFeatures> &features, std::vector<MatchesInfo> &pairwise_matches,
                     const cv::UMat &mask = cv::UMat());

    /** @return True, if it's possible to use the same matcher instance in parallel, false otherwise
    */
    bool isThreadSafe() const { return is_thread_safe_; }

    /** @brief Frees unused memory allocated before if there is any.
    */
    virtual void collectGarbage() {}

protected:
    FeaturesMatcher(bool is_thread_safe = false) : is_thread_safe_(is_thread_safe) {}

    /** @brief This method must implement matching logic in order to make the wrappers
    detail::FeaturesMatcher::operator()_ work.

    @param features1 first image features
    @param features2 second image features
    @param matches_info found matches
     */
    virtual void match(const ImageFeatures &features1, const ImageFeatures &features2,
                       MatchesInfo& matches_info) = 0;

    bool is_thread_safe_;
};

/** @brief Features matcher which finds two best matches for each feature and leaves the best one only if the
ratio between descriptor distances is greater than the threshold match_conf

@sa detail::FeaturesMatcher
 */
class CV_EXPORTS BestOf2NearestMatcher : public FeaturesMatcher
{
public:
    /** @brief Constructs a "best of 2 nearest" matcher.

    @param try_use_gpu Should try to use GPU or not
    @param match_conf Match distances ration threshold
    @param num_matches_thresh1 Minimum number of matches required for the 2D projective transform
    estimation used in the inliers classification step
    @param num_matches_thresh2 Minimum number of matches required for the 2D projective transform
    re-estimation on inliers
     */
    BestOf2NearestMatcher(bool try_use_gpu = false, float match_conf = 0.3f, int num_matches_thresh1 = 6,
                          int num_matches_thresh2 = 6);

    void collectGarbage();

protected:
    void match(const ImageFeatures &features1, const ImageFeatures &features2, MatchesInfo &matches_info);

    int num_matches_thresh1_;
    int num_matches_thresh2_;
    Ptr<FeaturesMatcher> impl_;
};

class CV_EXPORTS BestOf2NearestRangeMatcher : public BestOf2NearestMatcher
{
public:
    BestOf2NearestRangeMatcher(int range_width = 5, bool try_use_gpu = false, float match_conf = 0.3f,
                            int num_matches_thresh1 = 6, int num_matches_thresh2 = 6);

    void operator ()(const std::vector<ImageFeatures> &features, std::vector<MatchesInfo> &pairwise_matches,
                     const cv::UMat &mask = cv::UMat());


protected:
    int range_width_;
};

//! @} stitching_match

} // namespace detail
} // namespace cv

#endif // __OPENCV_STITCHING_MATCHERS_HPP__