simplex_downhill.h 5.61 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
/***********************************************************************
 * Software License Agreement (BSD License)
 *
 * Copyright 2008-2009  Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
 * Copyright 2008-2009  David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
 *
 * THE BSD LICENSE
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *************************************************************************/

#ifndef OPENCV_FLANN_SIMPLEX_DOWNHILL_H_
#define OPENCV_FLANN_SIMPLEX_DOWNHILL_H_

namespace cvflann
{

/**
    Adds val to array vals (and point to array points) and keeping the arrays sorted by vals.
 */
template <typename T>
void addValue(int pos, float val, float* vals, T* point, T* points, int n)
{
    vals[pos] = val;
    for (int i=0; i<n; ++i) {
        points[pos*n+i] = point[i];
    }

    // bubble down
    int j=pos;
    while (j>0 && vals[j]<vals[j-1]) {
        swap(vals[j],vals[j-1]);
        for (int i=0; i<n; ++i) {
            swap(points[j*n+i],points[(j-1)*n+i]);
        }
        --j;
    }
}


/**
    Simplex downhill optimization function.
    Preconditions: points is a 2D mattrix of size (n+1) x n
                    func is the cost function taking n an array of n params and returning float
                    vals is the cost function in the n+1 simplex points, if NULL it will be computed

    Postcondition: returns optimum value and points[0..n] are the optimum parameters
 */
template <typename T, typename F>
float optimizeSimplexDownhill(T* points, int n, F func, float* vals = NULL )
{
    const int MAX_ITERATIONS = 10;

    assert(n>0);

    T* p_o = new T[n];
    T* p_r = new T[n];
    T* p_e = new T[n];

    int alpha = 1;

    int iterations = 0;

    bool ownVals = false;
    if (vals == NULL) {
        ownVals = true;
        vals = new float[n+1];
        for (int i=0; i<n+1; ++i) {
            float val = func(points+i*n);
            addValue(i, val, vals, points+i*n, points, n);
        }
    }
    int nn = n*n;

    while (true) {

        if (iterations++ > MAX_ITERATIONS) break;

        // compute average of simplex points (except the highest point)
        for (int j=0; j<n; ++j) {
            p_o[j] = 0;
            for (int i=0; i<n; ++i) {
                p_o[i] += points[j*n+i];
            }
        }
        for (int i=0; i<n; ++i) {
            p_o[i] /= n;
        }

        bool converged = true;
        for (int i=0; i<n; ++i) {
            if (p_o[i] != points[nn+i]) {
                converged = false;
            }
        }
        if (converged) break;

        // trying a reflection
        for (int i=0; i<n; ++i) {
            p_r[i] = p_o[i] + alpha*(p_o[i]-points[nn+i]);
        }
        float val_r = func(p_r);

        if ((val_r>=vals[0])&&(val_r<vals[n])) {
            // reflection between second highest and lowest
            // add it to the simplex
            Logger::info("Choosing reflection\n");
            addValue(n, val_r,vals, p_r, points, n);
            continue;
        }

        if (val_r<vals[0]) {
            // value is smaller than smalest in simplex

            // expand some more to see if it drops further
            for (int i=0; i<n; ++i) {
                p_e[i] = 2*p_r[i]-p_o[i];
            }
            float val_e = func(p_e);

            if (val_e<val_r) {
                Logger::info("Choosing reflection and expansion\n");
                addValue(n, val_e,vals,p_e,points,n);
            }
            else {
                Logger::info("Choosing reflection\n");
                addValue(n, val_r,vals,p_r,points,n);
            }
            continue;
        }
        if (val_r>=vals[n]) {
            for (int i=0; i<n; ++i) {
                p_e[i] = (p_o[i]+points[nn+i])/2;
            }
            float val_e = func(p_e);

            if (val_e<vals[n]) {
                Logger::info("Choosing contraction\n");
                addValue(n,val_e,vals,p_e,points,n);
                continue;
            }
        }
        {
            Logger::info("Full contraction\n");
            for (int j=1; j<=n; ++j) {
                for (int i=0; i<n; ++i) {
                    points[j*n+i] = (points[j*n+i]+points[i])/2;
                }
                float val = func(points+j*n);
                addValue(j,val,vals,points+j*n,points,n);
            }
        }
    }

    float bestVal = vals[0];

    delete[] p_r;
    delete[] p_o;
    delete[] p_e;
    if (ownVals) delete[] vals;

    return bestVal;
}

}

#endif //OPENCV_FLANN_SIMPLEX_DOWNHILL_H_