contrib.hpp 38.1 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#ifndef __OPENCV_CONTRIB_HPP__
#define __OPENCV_CONTRIB_HPP__

#include "opencv2/core/core.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/objdetect/objdetect.hpp"

#ifdef __cplusplus

/****************************************************************************************\
*                                   Adaptive Skin Detector                               *
\****************************************************************************************/

class CV_EXPORTS CvAdaptiveSkinDetector
{
private:
    enum {
        GSD_HUE_LT = 3,
        GSD_HUE_UT = 33,
        GSD_INTENSITY_LT = 15,
        GSD_INTENSITY_UT = 250
    };

    class CV_EXPORTS Histogram
    {
    private:
        enum {
            HistogramSize = (GSD_HUE_UT - GSD_HUE_LT + 1)
        };

    protected:
        int findCoverageIndex(double surfaceToCover, int defaultValue = 0);

    public:
        CvHistogram *fHistogram;
        Histogram();
        virtual ~Histogram();

        void findCurveThresholds(int &x1, int &x2, double percent = 0.05);
        void mergeWith(Histogram *source, double weight);
    };

    int nStartCounter, nFrameCount, nSkinHueLowerBound, nSkinHueUpperBound, nMorphingMethod, nSamplingDivider;
    double fHistogramMergeFactor, fHuePercentCovered;
    Histogram histogramHueMotion, skinHueHistogram;
    IplImage *imgHueFrame, *imgSaturationFrame, *imgLastGrayFrame, *imgMotionFrame, *imgFilteredFrame;
    IplImage *imgShrinked, *imgTemp, *imgGrayFrame, *imgHSVFrame;

protected:
    void initData(IplImage *src, int widthDivider, int heightDivider);
    void adaptiveFilter();

public:

    enum {
        MORPHING_METHOD_NONE = 0,
        MORPHING_METHOD_ERODE = 1,
        MORPHING_METHOD_ERODE_ERODE = 2,
        MORPHING_METHOD_ERODE_DILATE = 3
    };

    CvAdaptiveSkinDetector(int samplingDivider = 1, int morphingMethod = MORPHING_METHOD_NONE);
    virtual ~CvAdaptiveSkinDetector();

    virtual void process(IplImage *inputBGRImage, IplImage *outputHueMask);
};


/****************************************************************************************\
 *                                  Fuzzy MeanShift Tracker                               *
 \****************************************************************************************/

class CV_EXPORTS CvFuzzyPoint {
public:
    double x, y, value;

    CvFuzzyPoint(double _x, double _y);
};

class CV_EXPORTS CvFuzzyCurve {
private:
    std::vector<CvFuzzyPoint> points;
    double value, centre;

    bool between(double x, double x1, double x2);

public:
    CvFuzzyCurve();
    ~CvFuzzyCurve();

    void setCentre(double _centre);
    double getCentre();
    void clear();
    void addPoint(double x, double y);
    double calcValue(double param);
    double getValue();
    void setValue(double _value);
};

class CV_EXPORTS CvFuzzyFunction {
public:
    std::vector<CvFuzzyCurve> curves;

    CvFuzzyFunction();
    ~CvFuzzyFunction();
    void addCurve(CvFuzzyCurve *curve, double value = 0);
    void resetValues();
    double calcValue();
    CvFuzzyCurve *newCurve();
};

class CV_EXPORTS CvFuzzyRule {
private:
    CvFuzzyCurve *fuzzyInput1, *fuzzyInput2;
    CvFuzzyCurve *fuzzyOutput;
public:
    CvFuzzyRule();
    ~CvFuzzyRule();
    void setRule(CvFuzzyCurve *c1, CvFuzzyCurve *c2, CvFuzzyCurve *o1);
    double calcValue(double param1, double param2);
    CvFuzzyCurve *getOutputCurve();
};

class CV_EXPORTS CvFuzzyController {
private:
    std::vector<CvFuzzyRule*> rules;
public:
    CvFuzzyController();
    ~CvFuzzyController();
    void addRule(CvFuzzyCurve *c1, CvFuzzyCurve *c2, CvFuzzyCurve *o1);
    double calcOutput(double param1, double param2);
};

class CV_EXPORTS CvFuzzyMeanShiftTracker
{
private:
    class FuzzyResizer
    {
    private:
        CvFuzzyFunction iInput, iOutput;
        CvFuzzyController fuzzyController;
    public:
        FuzzyResizer();
        int calcOutput(double edgeDensity, double density);
    };

    class SearchWindow
    {
    public:
        FuzzyResizer *fuzzyResizer;
        int x, y;
        int width, height, maxWidth, maxHeight, ellipseHeight, ellipseWidth;
        int ldx, ldy, ldw, ldh, numShifts, numIters;
        int xGc, yGc;
        long m00, m01, m10, m11, m02, m20;
        double ellipseAngle;
        double density;
        unsigned int depthLow, depthHigh;
        int verticalEdgeLeft, verticalEdgeRight, horizontalEdgeTop, horizontalEdgeBottom;

        SearchWindow();
        ~SearchWindow();
        void setSize(int _x, int _y, int _width, int _height);
        void initDepthValues(IplImage *maskImage, IplImage *depthMap);
        bool shift();
        void extractInfo(IplImage *maskImage, IplImage *depthMap, bool initDepth);
        void getResizeAttribsEdgeDensityLinear(int &resizeDx, int &resizeDy, int &resizeDw, int &resizeDh);
        void getResizeAttribsInnerDensity(int &resizeDx, int &resizeDy, int &resizeDw, int &resizeDh);
        void getResizeAttribsEdgeDensityFuzzy(int &resizeDx, int &resizeDy, int &resizeDw, int &resizeDh);
        bool meanShift(IplImage *maskImage, IplImage *depthMap, int maxIteration, bool initDepth);
    };

public:
    enum TrackingState
    {
        tsNone          = 0,
        tsSearching     = 1,
        tsTracking      = 2,
        tsSetWindow     = 3,
        tsDisabled      = 10
    };

    enum ResizeMethod {
        rmEdgeDensityLinear     = 0,
        rmEdgeDensityFuzzy      = 1,
        rmInnerDensity          = 2
    };

    enum {
        MinKernelMass           = 1000
    };

    SearchWindow kernel;
    int searchMode;

private:
    enum
    {
        MaxMeanShiftIteration   = 5,
        MaxSetSizeIteration     = 5
    };

    void findOptimumSearchWindow(SearchWindow &searchWindow, IplImage *maskImage, IplImage *depthMap, int maxIteration, int resizeMethod, bool initDepth);

public:
    CvFuzzyMeanShiftTracker();
    ~CvFuzzyMeanShiftTracker();

    void track(IplImage *maskImage, IplImage *depthMap, int resizeMethod, bool resetSearch, int minKernelMass = MinKernelMass);
};


namespace cv
{

    class CV_EXPORTS Octree
    {
    public:
        struct Node
        {
            Node() {}
            int begin, end;
            float x_min, x_max, y_min, y_max, z_min, z_max;
            int maxLevels;
            bool isLeaf;
            int children[8];
        };

        Octree();
        Octree( const vector<Point3f>& points, int maxLevels = 10, int minPoints = 20 );
        virtual ~Octree();

        virtual void buildTree( const vector<Point3f>& points, int maxLevels = 10, int minPoints = 20 );
        virtual void getPointsWithinSphere( const Point3f& center, float radius,
                                           vector<Point3f>& points ) const;
        const vector<Node>& getNodes() const { return nodes; }
    private:
        int minPoints;
        vector<Point3f> points;
        vector<Node> nodes;

        virtual void buildNext(size_t node_ind);
    };


    class CV_EXPORTS Mesh3D
    {
    public:
        struct EmptyMeshException {};

        Mesh3D();
        Mesh3D(const vector<Point3f>& vtx);
        ~Mesh3D();

        void buildOctree();
        void clearOctree();
        float estimateResolution(float tryRatio = 0.1f);
        void computeNormals(float normalRadius, int minNeighbors = 20);
        void computeNormals(const vector<int>& subset, float normalRadius, int minNeighbors = 20);

        void writeAsVrml(const String& file, const vector<Scalar>& colors = vector<Scalar>()) const;

        vector<Point3f> vtx;
        vector<Point3f> normals;
        float resolution;
        Octree octree;

        const static Point3f allzero;
    };

    class CV_EXPORTS SpinImageModel
    {
    public:

        /* model parameters, leave unset for default or auto estimate */
        float normalRadius;
        int minNeighbors;

        float binSize;
        int imageWidth;

        float lambda;
        float gamma;

        float T_GeometriccConsistency;
        float T_GroupingCorespondances;

        /* public interface */
        SpinImageModel();
        explicit SpinImageModel(const Mesh3D& mesh);
        ~SpinImageModel();

        void setLogger(std::ostream* log);
        void selectRandomSubset(float ratio);
        void setSubset(const vector<int>& subset);
        void compute();

        void match(const SpinImageModel& scene, vector< vector<Vec2i> >& result);

        Mat packRandomScaledSpins(bool separateScale = false, size_t xCount = 10, size_t yCount = 10) const;

        size_t getSpinCount() const { return spinImages.rows; }
        Mat getSpinImage(size_t index) const { return spinImages.row((int)index); }
        const Point3f& getSpinVertex(size_t index) const { return mesh.vtx[subset[index]]; }
        const Point3f& getSpinNormal(size_t index) const { return mesh.normals[subset[index]]; }

        const Mesh3D& getMesh() const { return mesh; }
        Mesh3D& getMesh() { return mesh; }

        /* static utility functions */
        static bool spinCorrelation(const Mat& spin1, const Mat& spin2, float lambda, float& result);

        static Point2f calcSpinMapCoo(const Point3f& point, const Point3f& vertex, const Point3f& normal);

        static float geometricConsistency(const Point3f& pointScene1, const Point3f& normalScene1,
                                          const Point3f& pointModel1, const Point3f& normalModel1,
                                          const Point3f& pointScene2, const Point3f& normalScene2,
                                          const Point3f& pointModel2, const Point3f& normalModel2);

        static float groupingCreteria(const Point3f& pointScene1, const Point3f& normalScene1,
                                      const Point3f& pointModel1, const Point3f& normalModel1,
                                      const Point3f& pointScene2, const Point3f& normalScene2,
                                      const Point3f& pointModel2, const Point3f& normalModel2,
                                      float gamma);
    protected:
        void defaultParams();

        void matchSpinToModel(const Mat& spin, vector<int>& indeces,
                              vector<float>& corrCoeffs, bool useExtremeOutliers = true) const;

        void repackSpinImages(const vector<uchar>& mask, Mat& spinImages, bool reAlloc = true) const;

        vector<int> subset;
        Mesh3D mesh;
        Mat spinImages;
        std::ostream* out;
    };

    class CV_EXPORTS TickMeter
    {
    public:
        TickMeter();
        void start();
        void stop();

        int64 getTimeTicks() const;
        double getTimeMicro() const;
        double getTimeMilli() const;
        double getTimeSec()   const;
        int64 getCounter() const;

        void reset();
    private:
        int64 counter;
        int64 sumTime;
        int64 startTime;
    };

    CV_EXPORTS std::ostream& operator<<(std::ostream& out, const TickMeter& tm);

    class CV_EXPORTS SelfSimDescriptor
    {
    public:
        SelfSimDescriptor();
        SelfSimDescriptor(int _ssize, int _lsize,
                          int _startDistanceBucket=DEFAULT_START_DISTANCE_BUCKET,
                          int _numberOfDistanceBuckets=DEFAULT_NUM_DISTANCE_BUCKETS,
                          int _nangles=DEFAULT_NUM_ANGLES);
        SelfSimDescriptor(const SelfSimDescriptor& ss);
        virtual ~SelfSimDescriptor();
        SelfSimDescriptor& operator = (const SelfSimDescriptor& ss);

        size_t getDescriptorSize() const;
        Size getGridSize( Size imgsize, Size winStride ) const;

        virtual void compute(const Mat& img, vector<float>& descriptors, Size winStride=Size(),
                             const vector<Point>& locations=vector<Point>()) const;
        virtual void computeLogPolarMapping(Mat& mappingMask) const;
        virtual void SSD(const Mat& img, Point pt, Mat& ssd) const;

        int smallSize;
        int largeSize;
        int startDistanceBucket;
        int numberOfDistanceBuckets;
        int numberOfAngles;

        enum { DEFAULT_SMALL_SIZE = 5, DEFAULT_LARGE_SIZE = 41,
            DEFAULT_NUM_ANGLES = 20, DEFAULT_START_DISTANCE_BUCKET = 3,
            DEFAULT_NUM_DISTANCE_BUCKETS = 7 };
    };


    typedef bool (*BundleAdjustCallback)(int iteration, double norm_error, void* user_data);

    class CV_EXPORTS LevMarqSparse {
    public:
        LevMarqSparse();
        LevMarqSparse(int npoints, // number of points
                      int ncameras, // number of cameras
                      int nPointParams, // number of params per one point  (3 in case of 3D points)
                      int nCameraParams, // number of parameters per one camera
                      int nErrParams, // number of parameters in measurement vector
                      // for 1 point at one camera (2 in case of 2D projections)
                      Mat& visibility, // visibility matrix. rows correspond to points, columns correspond to cameras
                      // 1 - point is visible for the camera, 0 - invisible
                      Mat& P0, // starting vector of parameters, first cameras then points
                      Mat& X, // measurements, in order of visibility. non visible cases are skipped
                      TermCriteria criteria, // termination criteria

                      // callback for estimation of Jacobian matrices
                      void (CV_CDECL * fjac)(int i, int j, Mat& point_params,
                                             Mat& cam_params, Mat& A, Mat& B, void* data),
                      // callback for estimation of backprojection errors
                      void (CV_CDECL * func)(int i, int j, Mat& point_params,
                                             Mat& cam_params, Mat& estim, void* data),
                      void* data, // user-specific data passed to the callbacks
                      BundleAdjustCallback cb, void* user_data
                      );

        virtual ~LevMarqSparse();

        virtual void run( int npoints, // number of points
                         int ncameras, // number of cameras
                         int nPointParams, // number of params per one point  (3 in case of 3D points)
                         int nCameraParams, // number of parameters per one camera
                         int nErrParams, // number of parameters in measurement vector
                         // for 1 point at one camera (2 in case of 2D projections)
                         Mat& visibility, // visibility matrix. rows correspond to points, columns correspond to cameras
                         // 1 - point is visible for the camera, 0 - invisible
                         Mat& P0, // starting vector of parameters, first cameras then points
                         Mat& X, // measurements, in order of visibility. non visible cases are skipped
                         TermCriteria criteria, // termination criteria

                         // callback for estimation of Jacobian matrices
                         void (CV_CDECL * fjac)(int i, int j, Mat& point_params,
                                                Mat& cam_params, Mat& A, Mat& B, void* data),
                         // callback for estimation of backprojection errors
                         void (CV_CDECL * func)(int i, int j, Mat& point_params,
                                                Mat& cam_params, Mat& estim, void* data),
                         void* data // user-specific data passed to the callbacks
                         );

        virtual void clear();

        // useful function to do simple bundle adjustment tasks
        static void bundleAdjust(vector<Point3d>& points, // positions of points in global coordinate system (input and output)
                                 const vector<vector<Point2d> >& imagePoints, // projections of 3d points for every camera
                                 const vector<vector<int> >& visibility, // visibility of 3d points for every camera
                                 vector<Mat>& cameraMatrix, // intrinsic matrices of all cameras (input and output)
                                 vector<Mat>& R, // rotation matrices of all cameras (input and output)
                                 vector<Mat>& T, // translation vector of all cameras (input and output)
                                 vector<Mat>& distCoeffs, // distortion coefficients of all cameras (input and output)
                                 const TermCriteria& criteria=
                                 TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, DBL_EPSILON),
                                 BundleAdjustCallback cb = 0, void* user_data = 0);

    public:
        virtual void optimize(CvMat &_vis); //main function that runs minimization

        //iteratively asks for measurement for visible camera-point pairs
        void ask_for_proj(CvMat &_vis,bool once=false);
        //iteratively asks for Jacobians for every camera_point pair
        void ask_for_projac(CvMat &_vis);

        CvMat* err; //error X-hX
        double prevErrNorm, errNorm;
        double lambda;
        CvTermCriteria criteria;
        int iters;

        CvMat** U; //size of array is equal to number of cameras
        CvMat** V; //size of array is equal to number of points
        CvMat** inv_V_star; //inverse of V*

        CvMat** A;
        CvMat** B;
        CvMat** W;

        CvMat* X; //measurement
        CvMat* hX; //current measurement extimation given new parameter vector

        CvMat* prevP; //current already accepted parameter.
        CvMat* P; // parameters used to evaluate function with new params
        // this parameters may be rejected

        CvMat* deltaP; //computed increase of parameters (result of normal system solution )

        CvMat** ea; // sum_i  AijT * e_ij , used as right part of normal equation
        // length of array is j = number of cameras
        CvMat** eb; // sum_j  BijT * e_ij , used as right part of normal equation
        // length of array is i = number of points

        CvMat** Yj; //length of array is i = num_points

        CvMat* S; //big matrix of block Sjk  , each block has size num_cam_params x num_cam_params

        CvMat* JtJ_diag; //diagonal of JtJ,  used to backup diagonal elements before augmentation

        CvMat* Vis_index; // matrix which element is index of measurement for point i and camera j

        int num_cams;
        int num_points;
        int num_err_param;
        int num_cam_param;
        int num_point_param;

        //target function and jacobian pointers, which needs to be initialized
        void (*fjac)(int i, int j, Mat& point_params, Mat& cam_params, Mat& A, Mat& B, void* data);
        void (*func)(int i, int j, Mat& point_params, Mat& cam_params, Mat& estim, void* data);

        void* data;

        BundleAdjustCallback cb;
        void* user_data;
    };

    CV_EXPORTS_W int chamerMatching( Mat& img, Mat& templ,
                                  CV_OUT vector<vector<Point> >& results, CV_OUT vector<float>& cost,
                                  double templScale=1, int maxMatches = 20,
                                  double minMatchDistance = 1.0, int padX = 3,
                                  int padY = 3, int scales = 5, double minScale = 0.6, double maxScale = 1.6,
                                  double orientationWeight = 0.5, double truncate = 20);


    class CV_EXPORTS_W StereoVar
    {
    public:
        // Flags
        enum {USE_INITIAL_DISPARITY = 1, USE_EQUALIZE_HIST = 2, USE_SMART_ID = 4, USE_AUTO_PARAMS = 8, USE_MEDIAN_FILTERING = 16};
        enum {CYCLE_O, CYCLE_V};
        enum {PENALIZATION_TICHONOV, PENALIZATION_CHARBONNIER, PENALIZATION_PERONA_MALIK};

        //! the default constructor
        CV_WRAP StereoVar();

        //! the full constructor taking all the necessary algorithm parameters
        CV_WRAP StereoVar(int levels, double pyrScale, int nIt, int minDisp, int maxDisp, int poly_n, double poly_sigma, float fi, float lambda, int penalization, int cycle, int flags);

        //! the destructor
        virtual ~StereoVar();

        //! the stereo correspondence operator that computes disparity map for the specified rectified stereo pair
        CV_WRAP_AS(compute) virtual void operator()(const Mat& left, const Mat& right, CV_OUT Mat& disp);

        CV_PROP_RW int      levels;
        CV_PROP_RW double   pyrScale;
        CV_PROP_RW int      nIt;
        CV_PROP_RW int      minDisp;
        CV_PROP_RW int      maxDisp;
        CV_PROP_RW int      poly_n;
        CV_PROP_RW double   poly_sigma;
        CV_PROP_RW float    fi;
        CV_PROP_RW float    lambda;
        CV_PROP_RW int      penalization;
        CV_PROP_RW int      cycle;
        CV_PROP_RW int      flags;

    private:
        void autoParams();
        void FMG(Mat &I1, Mat &I2, Mat &I2x, Mat &u, int level);
        void VCycle_MyFAS(Mat &I1_h, Mat &I2_h, Mat &I2x_h, Mat &u_h, int level);
        void VariationalSolver(Mat &I1_h, Mat &I2_h, Mat &I2x_h, Mat &u_h, int level);
    };

    CV_EXPORTS void polyfit(const Mat& srcx, const Mat& srcy, Mat& dst, int order);

    class CV_EXPORTS Directory
    {
        public:
            static std::vector<std::string> GetListFiles  ( const std::string& path, const std::string & exten = "*", bool addPath = true );
            static std::vector<std::string> GetListFilesR ( const std::string& path, const std::string & exten = "*", bool addPath = true );
            static std::vector<std::string> GetListFolders( const std::string& path, const std::string & exten = "*", bool addPath = true );
    };

    /*
     * Generation of a set of different colors by the following way:
     * 1) generate more then need colors (in "factor" times) in RGB,
     * 2) convert them to Lab,
     * 3) choose the needed count of colors from the set that are more different from
     *    each other,
     * 4) convert the colors back to RGB
     */
    CV_EXPORTS void generateColors( std::vector<Scalar>& colors, size_t count, size_t factor=100 );


    /*
     *  Estimate the rigid body motion from frame0 to frame1. The method is based on the paper
     *  "Real-Time Visual Odometry from Dense RGB-D Images", F. Steinbucker, J. Strum, D. Cremers, ICCV, 2011.
     */
    enum { ROTATION          = 1,
           TRANSLATION       = 2,
           RIGID_BODY_MOTION = 4
         };
    CV_EXPORTS bool RGBDOdometry( Mat& Rt, const Mat& initRt,
                                  const Mat& image0, const Mat& depth0, const Mat& mask0,
                                  const Mat& image1, const Mat& depth1, const Mat& mask1,
                                  const Mat& cameraMatrix, float minDepth=0.f, float maxDepth=4.f, float maxDepthDiff=0.07f,
                                  const std::vector<int>& iterCounts=std::vector<int>(),
                                  const std::vector<float>& minGradientMagnitudes=std::vector<float>(),
                                  int transformType=RIGID_BODY_MOTION );

    /**
    *Bilinear interpolation technique.
    *
    *The value of a desired cortical pixel is obtained through a bilinear interpolation of the values
    *of the four nearest neighbouring Cartesian pixels to the center of the RF.
    *The same principle is applied to the inverse transformation.
    *
    *More details can be found in http://dx.doi.org/10.1007/978-3-642-23968-7_5
    */
    class CV_EXPORTS LogPolar_Interp
    {
    public:

        LogPolar_Interp() {}

        /**
        *Constructor
        *\param w the width of the input image
        *\param h the height of the input image
        *\param center the transformation center: where the output precision is maximal
        *\param R the number of rings of the cortical image (default value 70 pixel)
        *\param ro0 the radius of the blind spot (default value 3 pixel)
        *\param interp interpolation algorithm
        *\param full \a 1 (default value) means that the retinal image (the inverse transform) is computed within the circumscribing circle.
        *            \a 0 means that the retinal image is computed within the inscribed circle.
        *\param S the number of sectors of the cortical image (default value 70 pixel).
        *         Its value is usually internally computed to obtain a pixel aspect ratio equals to 1.
        *\param sp \a 1 (default value) means that the parameter \a S is internally computed.
        *          \a 0 means that the parameter \a S is provided by the user.
        */
        LogPolar_Interp(int w, int h, Point2i center, int R=70, double ro0=3.0,
                        int interp=INTER_LINEAR, int full=1, int S=117, int sp=1);
        /**
        *Transformation from Cartesian image to cortical (log-polar) image.
        *\param source the Cartesian image
        *\return the transformed image (cortical image)
        */
        const Mat to_cortical(const Mat &source);
        /**
        *Transformation from cortical image to retinal (inverse log-polar) image.
        *\param source the cortical image
        *\return the transformed image (retinal image)
        */
        const Mat to_cartesian(const Mat &source);
        /**
        *Destructor
        */
        ~LogPolar_Interp();

    protected:

        Mat Rsri;
        Mat Csri;

        int S, R, M, N;
        int top, bottom,left,right;
        double ro0, romax, a, q;
        int interp;

        Mat ETAyx;
        Mat CSIyx;

        void create_map(int M, int N, int R, int S, double ro0);
    };

    /**
    *Overlapping circular receptive fields technique
    *
    *The Cartesian plane is divided in two regions: the fovea and the periphery.
    *The fovea (oversampling) is handled by using the bilinear interpolation technique described above, whereas in
    *the periphery we use the overlapping Gaussian circular RFs.
    *
    *More details can be found in http://dx.doi.org/10.1007/978-3-642-23968-7_5
    */
    class CV_EXPORTS LogPolar_Overlapping
    {
    public:
        LogPolar_Overlapping() {}

        /**
        *Constructor
        *\param w the width of the input image
        *\param h the height of the input image
        *\param center the transformation center: where the output precision is maximal
        *\param R the number of rings of the cortical image (default value 70 pixel)
        *\param ro0 the radius of the blind spot (default value 3 pixel)
        *\param full \a 1 (default value) means that the retinal image (the inverse transform) is computed within the circumscribing circle.
        *            \a 0 means that the retinal image is computed within the inscribed circle.
        *\param S the number of sectors of the cortical image (default value 70 pixel).
        *         Its value is usually internally computed to obtain a pixel aspect ratio equals to 1.
        *\param sp \a 1 (default value) means that the parameter \a S is internally computed.
        *          \a 0 means that the parameter \a S is provided by the user.
        */
        LogPolar_Overlapping(int w, int h, Point2i center, int R=70,
                             double ro0=3.0, int full=1, int S=117, int sp=1);
        /**
        *Transformation from Cartesian image to cortical (log-polar) image.
        *\param source the Cartesian image
        *\return the transformed image (cortical image)
        */
        const Mat to_cortical(const Mat &source);
        /**
        *Transformation from cortical image to retinal (inverse log-polar) image.
        *\param source the cortical image
        *\return the transformed image (retinal image)
        */
        const Mat to_cartesian(const Mat &source);
        /**
        *Destructor
        */
        ~LogPolar_Overlapping();

    protected:

        Mat Rsri;
        Mat Csri;
        vector<int> Rsr;
        vector<int> Csr;
        vector<double> Wsr;

        int S, R, M, N, ind1;
        int top, bottom,left,right;
        double ro0, romax, a, q;

        struct kernel
        {
            kernel() { w = 0; }
            vector<double> weights;
            int w;
        };

        Mat ETAyx;
        Mat CSIyx;
        vector<kernel> w_ker_2D;

        void create_map(int M, int N, int R, int S, double ro0);
    };

    /**
    * Adjacent receptive fields technique
    *
    *All the Cartesian pixels, whose coordinates in the cortical domain share the same integer part, are assigned to the same RF.
    *The precision of the boundaries of the RF can be improved by breaking each pixel into subpixels and assigning each of them to the correct RF.
    *This technique is implemented from: Traver, V., Pla, F.: Log-polar mapping template design: From task-level requirements
    *to geometry parameters. Image Vision Comput. 26(10) (2008) 1354-1370
    *
    *More details can be found in http://dx.doi.org/10.1007/978-3-642-23968-7_5
    */
    class CV_EXPORTS LogPolar_Adjacent
    {
    public:
        LogPolar_Adjacent() {}

        /**
         *Constructor
         *\param w the width of the input image
         *\param h the height of the input image
         *\param center the transformation center: where the output precision is maximal
         *\param R the number of rings of the cortical image (default value 70 pixel)
         *\param ro0 the radius of the blind spot (default value 3 pixel)
         *\param smin the size of the subpixel (default value 0.25 pixel)
         *\param full \a 1 (default value) means that the retinal image (the inverse transform) is computed within the circumscribing circle.
         *            \a 0 means that the retinal image is computed within the inscribed circle.
         *\param S the number of sectors of the cortical image (default value 70 pixel).
         *         Its value is usually internally computed to obtain a pixel aspect ratio equals to 1.
         *\param sp \a 1 (default value) means that the parameter \a S is internally computed.
         *          \a 0 means that the parameter \a S is provided by the user.
         */
        LogPolar_Adjacent(int w, int h, Point2i center, int R=70, double ro0=3.0, double smin=0.25, int full=1, int S=117, int sp=1);
        /**
         *Transformation from Cartesian image to cortical (log-polar) image.
         *\param source the Cartesian image
         *\return the transformed image (cortical image)
         */
        const Mat to_cortical(const Mat &source);
        /**
         *Transformation from cortical image to retinal (inverse log-polar) image.
         *\param source the cortical image
         *\return the transformed image (retinal image)
         */
        const Mat to_cartesian(const Mat &source);
        /**
         *Destructor
         */
        ~LogPolar_Adjacent();

    protected:
        struct pixel
        {
            pixel() { u = v = 0; a = 0.; }
            int u;
            int v;
            double a;
        };
        int S, R, M, N;
        int top, bottom,left,right;
        double ro0, romax, a, q;
        vector<vector<pixel> > L;
        vector<double> A;

        void subdivide_recursively(double x, double y, int i, int j, double length, double smin);
        bool get_uv(double x, double y, int&u, int&v);
        void create_map(int M, int N, int R, int S, double ro0, double smin);
    };

    CV_EXPORTS Mat subspaceProject(InputArray W, InputArray mean, InputArray src);
    CV_EXPORTS Mat subspaceReconstruct(InputArray W, InputArray mean, InputArray src);

    class CV_EXPORTS LDA
    {
    public:
        // Initializes a LDA with num_components (default 0).
        LDA(int num_components = 0) :
            _num_components(num_components) {};

        // Initializes and performs a Discriminant Analysis with Fisher's
        // Optimization Criterion on given data in src and corresponding labels
        // in labels. If 0 (or less) number of components are given, they are
        // automatically determined for given data in computation.
        LDA(const Mat& src, vector<int> labels,
                int num_components = 0) :
                    _num_components(num_components)
        {
            this->compute(src, labels); //! compute eigenvectors and eigenvalues
        }

        // Initializes and performs a Discriminant Analysis with Fisher's
        // Optimization Criterion on given data in src and corresponding labels
        // in labels. If 0 (or less) number of components are given, they are
        // automatically determined for given data in computation.
        LDA(InputArrayOfArrays src, InputArray labels,
                int num_components = 0) :
                    _num_components(num_components)
        {
            this->compute(src, labels); //! compute eigenvectors and eigenvalues
        }

        // Serializes this object to a given filename.
        void save(const string& filename) const;

        // Deserializes this object from a given filename.
        void load(const string& filename);

        // Serializes this object to a given cv::FileStorage.
        void save(FileStorage& fs) const;

            // Deserializes this object from a given cv::FileStorage.
        void load(const FileStorage& node);

        // Destructor.
        ~LDA() {}

        /** Compute the discriminants for data in src (row aligned) and labels.
          */
        void compute(InputArrayOfArrays src, InputArray labels);

        /** Projects samples into the LDA subspace.
            src may be one or more row aligned samples.
          */
        Mat project(InputArray src);

        /** Reconstructs projections from the LDA subspace.
            src may be one or more row aligned projections.
          */
        Mat reconstruct(InputArray src);

        // Returns the eigenvectors of this LDA.
        Mat eigenvectors() const { return _eigenvectors; };

        // Returns the eigenvalues of this LDA.
        Mat eigenvalues() const { return _eigenvalues; }

    protected:
        bool _dataAsRow; // unused, but needed for ABI compatibility.
        int _num_components;
        Mat _eigenvectors;
        Mat _eigenvalues;

        void lda(InputArrayOfArrays src, InputArray labels);
    };

    class CV_EXPORTS_W FaceRecognizer : public Algorithm
    {
    public:
        //! virtual destructor
        virtual ~FaceRecognizer() {}

        // Trains a FaceRecognizer.
        CV_WRAP virtual void train(InputArrayOfArrays src, InputArray labels) = 0;

        // Updates a FaceRecognizer.
        CV_WRAP void update(InputArrayOfArrays src, InputArray labels);

        // Gets a prediction from a FaceRecognizer.
        virtual int predict(InputArray src) const = 0;

        // Predicts the label and confidence for a given sample.
        CV_WRAP virtual void predict(InputArray src, CV_OUT int &label, CV_OUT double &confidence) const = 0;

        // Serializes this object to a given filename.
        CV_WRAP virtual void save(const string& filename) const;

        // Deserializes this object from a given filename.
        CV_WRAP virtual void load(const string& filename);

        // Serializes this object to a given cv::FileStorage.
        virtual void save(FileStorage& fs) const = 0;

        // Deserializes this object from a given cv::FileStorage.
        virtual void load(const FileStorage& fs) = 0;

        // Sets additional information as pairs label - info.
        void setLabelsInfo(const std::map<int, string>& labelsInfo);

        // Gets string information by label
        string getLabelInfo(const int &label);

        // Gets labels by string
        vector<int> getLabelsByString(const string& str);
    };

    CV_EXPORTS_W Ptr<FaceRecognizer> createEigenFaceRecognizer(int num_components = 0, double threshold = DBL_MAX);
    CV_EXPORTS_W Ptr<FaceRecognizer> createFisherFaceRecognizer(int num_components = 0, double threshold = DBL_MAX);
    CV_EXPORTS_W Ptr<FaceRecognizer> createLBPHFaceRecognizer(int radius=1, int neighbors=8,
                                                            int grid_x=8, int grid_y=8, double threshold = DBL_MAX);

    enum
    {
        COLORMAP_AUTUMN = 0,
        COLORMAP_BONE = 1,
        COLORMAP_JET = 2,
        COLORMAP_WINTER = 3,
        COLORMAP_RAINBOW = 4,
        COLORMAP_OCEAN = 5,
        COLORMAP_SUMMER = 6,
        COLORMAP_SPRING = 7,
        COLORMAP_COOL = 8,
        COLORMAP_HSV = 9,
        COLORMAP_PINK = 10,
        COLORMAP_HOT = 11
    };

    CV_EXPORTS_W void applyColorMap(InputArray src, OutputArray dst, int colormap);

    CV_EXPORTS bool initModule_contrib();
}

#include "opencv2/contrib/retina.hpp"

#include "opencv2/contrib/openfabmap.hpp"

#endif

#endif