test_lr.cpp 7.81 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
///////////////////////////////////////////////////////////////////////////////////////
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.

//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.

// This is a implementation of the Logistic Regression algorithm in C++ in OpenCV.

// AUTHOR:
// Rahul Kavi rahulkavi[at]live[at]com
//

// contains a subset of data from the popular Iris Dataset (taken from "http://archive.ics.uci.edu/ml/datasets/Iris")

// # You are free to use, change, or redistribute the code in any way you wish for
// # non-commercial purposes, but please maintain the name of the original author.
// # This code comes with no warranty of any kind.

// #
// # You are free to use, change, or redistribute the code in any way you wish for
// # non-commercial purposes, but please maintain the name of the original author.
// # This code comes with no warranty of any kind.

// # Logistic Regression ALGORITHM


//                           License Agreement
//                For Open Source Computer Vision Library

// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.

// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:

//   * Redistributions of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.

//   * Redistributions in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.

//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.

// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.

#include "test_precomp.hpp"

using namespace std;
using namespace cv;
using namespace cv::ml;

static bool calculateError( const Mat& _p_labels, const Mat& _o_labels, float& error)
{
    error = 0.0f;
    float accuracy = 0.0f;
    Mat _p_labels_temp;
    Mat _o_labels_temp;
    _p_labels.convertTo(_p_labels_temp, CV_32S);
    _o_labels.convertTo(_o_labels_temp, CV_32S);

    CV_Assert(_p_labels_temp.total() == _o_labels_temp.total());
    CV_Assert(_p_labels_temp.rows == _o_labels_temp.rows);

    accuracy = (float)countNonZero(_p_labels_temp == _o_labels_temp)/_p_labels_temp.rows;
    error = 1 - accuracy;
    return true;
}

//--------------------------------------------------------------------------------------------

class CV_LRTest : public cvtest::BaseTest
{
public:
    CV_LRTest() {}
protected:
    virtual void run( int start_from );
};

void CV_LRTest::run( int /*start_from*/ )
{
    // initialize varibles from the popular Iris Dataset
    string dataFileName = ts->get_data_path() + "iris.data";
    Ptr<TrainData> tdata = TrainData::loadFromCSV(dataFileName, 0);

    // run LR classifier train classifier
    Ptr<LogisticRegression> p = LogisticRegression::create();
    p->setLearningRate(1.0);
    p->setIterations(10001);
    p->setRegularization(LogisticRegression::REG_L2);
    p->setTrainMethod(LogisticRegression::BATCH);
    p->setMiniBatchSize(10);
    p->train(tdata);

    // predict using the same data
    Mat responses;
    p->predict(tdata->getSamples(), responses);

    // calculate error
    int test_code = cvtest::TS::OK;
    float error = 0.0f;
    if(!calculateError(responses, tdata->getResponses(), error))
    {
        ts->printf(cvtest::TS::LOG, "Bad prediction labels\n" );
        test_code = cvtest::TS::FAIL_INVALID_OUTPUT;
    }
    else if(error > 0.05f)
    {
        ts->printf(cvtest::TS::LOG, "Bad accuracy of (%f)\n", error);
        test_code = cvtest::TS::FAIL_BAD_ACCURACY;
    }

    {
        FileStorage s("debug.xml", FileStorage::WRITE);
        s << "original" << tdata->getResponses();
        s << "predicted1" << responses;
        s << "learnt" << p->get_learnt_thetas();
        s << "error" << error;
        s.release();
    }
    ts->set_failed_test_info(test_code);
}

//--------------------------------------------------------------------------------------------
class CV_LRTest_SaveLoad : public cvtest::BaseTest
{
public:
    CV_LRTest_SaveLoad(){}
protected:
    virtual void run(int start_from);
};


void CV_LRTest_SaveLoad::run( int /*start_from*/ )
{
    int code = cvtest::TS::OK;

    // initialize varibles from the popular Iris Dataset
    string dataFileName = ts->get_data_path() + "iris.data";
    Ptr<TrainData> tdata = TrainData::loadFromCSV(dataFileName, 0);

    Mat responses1, responses2;
    Mat learnt_mat1, learnt_mat2;

    // train and save the classifier
    String filename = tempfile(".xml");
    try
    {
        // run LR classifier train classifier
        Ptr<LogisticRegression> lr1 = LogisticRegression::create();
        lr1->setLearningRate(1.0);
        lr1->setIterations(10001);
        lr1->setRegularization(LogisticRegression::REG_L2);
        lr1->setTrainMethod(LogisticRegression::BATCH);
        lr1->setMiniBatchSize(10);
        lr1->train(tdata);
        lr1->predict(tdata->getSamples(), responses1);
        learnt_mat1 = lr1->get_learnt_thetas();
        lr1->save(filename);
    }
    catch(...)
    {
        ts->printf(cvtest::TS::LOG, "Crash in write method.\n" );
        ts->set_failed_test_info(cvtest::TS::FAIL_EXCEPTION);
    }

    // and load to another
    try
    {
        Ptr<LogisticRegression> lr2 = Algorithm::load<LogisticRegression>(filename);
        lr2->predict(tdata->getSamples(), responses2);
        learnt_mat2 = lr2->get_learnt_thetas();
    }
    catch(...)
    {
        ts->printf(cvtest::TS::LOG, "Crash in write method.\n" );
        ts->set_failed_test_info(cvtest::TS::FAIL_EXCEPTION);
    }

    CV_Assert(responses1.rows == responses2.rows);

    // compare difference in learnt matrices before and after loading from disk
    Mat comp_learnt_mats;
    comp_learnt_mats = (learnt_mat1 == learnt_mat2);
    comp_learnt_mats = comp_learnt_mats.reshape(1, comp_learnt_mats.rows*comp_learnt_mats.cols);
    comp_learnt_mats.convertTo(comp_learnt_mats, CV_32S);
    comp_learnt_mats = comp_learnt_mats/255;

    // compare difference in prediction outputs and stored inputs
    // check if there is any difference between computed learnt mat and retreived mat

    float errorCount = 0.0;
    errorCount += 1 - (float)countNonZero(responses1 == responses2)/responses1.rows;
    errorCount += 1 - (float)sum(comp_learnt_mats)[0]/comp_learnt_mats.rows;

    if(errorCount>0)
    {
        ts->printf( cvtest::TS::LOG, "Different prediction results before writing and after reading (errorCount=%d).\n", errorCount );
        code = cvtest::TS::FAIL_BAD_ACCURACY;
    }

    remove( filename.c_str() );

    ts->set_failed_test_info( code );
}

TEST(ML_LR, accuracy) { CV_LRTest test; test.safe_run(); }
TEST(ML_LR, save_load) { CV_LRTest_SaveLoad test; test.safe_run(); }