test_houghcircles.py 2.11 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
#!/usr/bin/python

'''
This example illustrates how to use cv2.HoughCircles() function.
'''

# Python 2/3 compatibility
from __future__ import print_function

import cv2
import numpy as np
import sys
from numpy import pi, sin, cos

from tests_common import NewOpenCVTests

def circleApproximation(circle):

    nPoints = 30
    phi = 0
    dPhi = 2*pi / nPoints
    contour = []
    for i in range(nPoints):
        contour.append(([circle[0] + circle[2]*cos(i*dPhi),
            circle[1] + circle[2]*sin(i*dPhi)]))

    return np.array(contour).astype(int)

def convContoursIntersectiponRate(c1, c2):

    s1 = cv2.contourArea(c1)
    s2 = cv2.contourArea(c2)

    s, _ = cv2.intersectConvexConvex(c1, c2)

    return 2*s/(s1+s2)

class houghcircles_test(NewOpenCVTests):

    def test_houghcircles(self):

wester committed
42
        fn = "samples/cpp/board.jpg"
wester committed
43 44 45 46 47

        src = self.get_sample(fn, 1)
        img = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)
        img = cv2.medianBlur(img, 5)

wester committed
48
        circles = cv2.HoughCircles(img, cv2.cv.CV_HOUGH_GRADIENT, 1, 10, np.array([]), 100, 30, 1, 30)[0]
wester committed
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

        testCircles = [[38, 181, 17.6],
        [99.7, 166, 13.12],
        [142.7, 160, 13.52],
        [223.6, 110, 8.62],
        [79.1, 206.7, 8.62],
        [47.5, 351.6, 11.64],
        [189.5, 354.4, 11.64],
        [189.8, 298.9, 10.64],
        [189.5, 252.4, 14.62],
        [252.5, 393.4, 15.62],
        [602.9, 467.5, 11.42],
        [222, 210.4, 9.12],
        [263.1, 216.7, 9.12],
        [359.8, 222.6, 9.12],
        [518.9, 120.9, 9.12],
        [413.8, 113.4, 9.12],
        [489, 127.2, 9.12],
        [448.4, 121.3, 9.12],
        [384.6, 128.9, 8.62]]

        matches_counter = 0

        for i in range(len(testCircles)):
            for j in range(len(circles)):

                tstCircle = circleApproximation(testCircles[i])
                circle = circleApproximation(circles[j])
                if convContoursIntersectiponRate(tstCircle, circle) > 0.6:
                    matches_counter += 1

        self.assertGreater(float(matches_counter) / len(testCircles), .5)
        self.assertLess(float(len(circles) - matches_counter) / len(circles), .75)