ppltasks_winrt.h 416 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466
/***
* ==++==
*
* Copyright (c) Microsoft Corporation. All rights reserved.
*
* Modified for native C++ WRL support by Gregory Morse
*
* ==--==
* =+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
*
* ppltasks_winrt.h
*
* Parallel Patterns Library - PPL Tasks
*
* =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
****/

#pragma once

#ifndef _PPLTASKS_WINRT_H
#define _PPLTASKS_WINRT_H

#include <concrt.h>
#include <ppltasks.h>
#if _MSC_VER >= 1800
#include <pplconcrt.h>

// Cannot build using a compiler that is older than dev10 SP1
#ifdef _MSC_VER
#if _MSC_FULL_VER < 160040219 /*IFSTRIP=IGN*/
#error ERROR: Visual Studio 2010 SP1 or later is required to build ppltasks
#endif /*IFSTRIP=IGN*/
#endif
#else
#include <ppl.h>
#endif
#include <functional>
#include <vector>
#include <utility>
#include <exception>
#if _MSC_VER >= 1800
#include <algorithm>
#endif

#ifndef __cplusplus_winrt

#include <wrl\implements.h>
#include <wrl\async.h>
#if _MSC_VER >= 1800
#include "agile_wrl.h"
#endif
#include <windows.foundation.h>
#include <ctxtcall.h>

#ifndef _UITHREADCTXT_SUPPORT

#ifdef WINAPI_FAMILY /*IFSTRIP=IGN*/

// It is safe to include winapifamily as WINAPI_FAMILY was defined by the user
#include <winapifamily.h>

#if WINAPI_FAMILY == WINAPI_FAMILY_APP /*IFSTRIP=IGN*/
    // UI thread context support is not required for desktop and Windows Store apps
    #define _UITHREADCTXT_SUPPORT 0
#elif WINAPI_FAMILY == WINAPI_FAMILY_DESKTOP_APP /*IFSTRIP=IGN*/
    // UI thread context support is not required for desktop and Windows Store apps
    #define _UITHREADCTXT_SUPPORT 0
#else  /* WINAPI_FAMILY == WINAPI_FAMILY_DESKTOP_APP */
    #define _UITHREADCTXT_SUPPORT 1
#endif  /* WINAPI_FAMILY == WINAPI_FAMILY_DESKTOP_APP */

#else   /* WINAPI_FAMILY */
    // Not supported without a WINAPI_FAMILY setting.
    #define _UITHREADCTXT_SUPPORT 0
#endif  /* WINAPI_FAMILY */

#endif  /* _UITHREADCTXT_SUPPORT */

#if _UITHREADCTXT_SUPPORT
#include <uithreadctxt.h>
#endif  /* _UITHREADCTXT_SUPPORT */

#pragma detect_mismatch("_PPLTASKS_WITH_WINRT", "0")

#ifdef _DEBUG
#define _DBG_ONLY(X) X
#else
#define _DBG_ONLY(X)
#endif // #ifdef _DEBUG

// std::copy_exception changed to std::make_exception_ptr from VS 2010 to VS 11.
#ifdef _MSC_VER
#if _MSC_VER < 1700 /*IFSTRIP=IGN*/
namespace std
{
    template<class _E> exception_ptr make_exception_ptr(_E _Except)
    {
        return copy_exception(_Except);
    }
}
#endif
#ifndef _PPLTASK_ASYNC_LOGGING
#if _MSC_VER >= 1800 && defined(__cplusplus_winrt)
#define _PPLTASK_ASYNC_LOGGING 1  // Only enable async logging under dev12 winrt
#else
#define _PPLTASK_ASYNC_LOGGING 0
#endif
#endif
#endif

#pragma pack(push,_CRT_PACKING)

#pragma warning(push)
#pragma warning(disable: 28197)
#pragma warning(disable: 4100) // Unreferenced formal parameter - needed for document generation
#if _MSC_VER >= 1800
#pragma warning(disable: 4127) // constant express in if condition - we use it for meta programming
#else
#pragma warning(disable: 4702) // Unreachable code - it is caused by user lambda throw exceptions
#endif

// All CRT public header files are required to be protected from the macro new
#pragma push_macro("new")
#undef new

// stuff ported from Dev11 CRT
// NOTE: this doesn't actually match std::declval. it behaves differently for void!
// so don't blindly change it to std::declval.
namespace stdx
{
    template<class _T>
    _T&& declval();
}

/// <summary>
///     The <c>Concurrency_winrt</c> namespace provides classes and functions that give you access to the Concurrency Runtime,
///     a concurrent programming framework for C++. For more information, see <see cref="Concurrency Runtime"/>.
/// </summary>
/**/
namespace Concurrency_winrt
{
    // In debug builds, default to 10 frames, unless this is overridden prior to #includ'ing ppltasks.h.  In retail builds, default to only one frame.
#ifndef PPL_TASK_SAVE_FRAME_COUNT
#ifdef _DEBUG
#define PPL_TASK_SAVE_FRAME_COUNT 10
#else
#define PPL_TASK_SAVE_FRAME_COUNT 1
#endif
#endif

    /// <summary>
    /// Helper macro to determine how many stack frames need to be saved. When any number less or equal to 1 is specified,
    /// only one frame is captured and no stackwalk will be involved. Otherwise, the number of callstack frames will be captured.
    /// </summary>
    /// <ramarks>
    /// This needs to be defined as a macro rather than a function so that if we're only gathering one frame, _ReturnAddress()
    /// will evaluate to client code, rather than a helper function inside of _TaskCreationCallstack, itself.
    /// </remarks>
#ifdef _CAPTURE_CALLSTACK
#undef _CAPTURE_CALLSTACK
#endif
#if PPL_TASK_SAVE_FRAME_COUNT > 1
#if !defined(_DEBUG)
#pragma message ("WARNING: Redefinning PPL_TASK_SAVE_FRAME_COUNT under Release build for non-desktop applications is not supported; only one frame will be captured!")
#define _CAPTURE_CALLSTACK() ::Concurrency_winrt::details::_TaskCreationCallstack::_CaptureSingleFrameCallstack(_ReturnAddress())
#else
#define _CAPTURE_CALLSTACK() ::Concurrency_winrt::details::_TaskCreationCallstack::_CaptureMultiFramesCallstack(PPL_TASK_SAVE_FRAME_COUNT)
#endif
#else
#define _CAPTURE_CALLSTACK() ::Concurrency_winrt::details::_TaskCreationCallstack::_CaptureSingleFrameCallstack(_ReturnAddress())
#endif
/// <summary>

///     A type that represents the terminal state of a task. Valid values are <c>completed</c> and <c>canceled</c>.
/// </summary>
/// <seealso cref="task Class"/>
/**/
typedef Concurrency::task_group_status task_status;

template <typename _Type> class task;
template <> class task<void>;

/// <summary>
///     Returns an indication of whether the task that is currently executing has received a request to cancel its
///     execution. Cancellation is requested on a task if the task was created with a cancellation token, and
///     the token source associated with that token is canceled.
/// </summary>
/// <returns>
///     <c>true</c> if the currently executing task has received a request for cancellation, <c>false</c> otherwise.
/// </returns>
/// <remarks>
///     If you call this method in the body of a task and it returns <c>true</c>, you must respond with a call to
///     <see cref="cancel_current_task Function">cancel_current_task</see> to acknowledge the cancellation request,
///     after performing any cleanup you need. This will abort the execution of the task and cause it to enter into
///     the <c>canceled</c> state. If you do not respond and continue execution, or return instead of calling
///     <c>cancel_current_task</c>, the task will enter the <c>completed</c> state when it is done.
///     state.
///     <para>A task is not cancellable if it was created without a cancellation token.</para>
/// </remarks>
/// <seealso cref="task Class"/>
/// <seealso cref="cancellation_token_source Class"/>
/// <seealso cref="cancellation_token Class"/>
/// <seealso cref="cancel_current_task Function"/>
/**/
#if _MSC_VER >= 1800
inline bool __cdecl is_task_cancellation_requested()
{
    return ::Concurrency::details::_TaskCollection_t::_Is_cancellation_requested();
}
#else
inline bool __cdecl is_task_cancellation_requested()
{
    // ConcRT scheduler under the hood is using TaskCollection, which is same as task_group
    return ::Concurrency::is_current_task_group_canceling();
}
#endif

/// <summary>
///     Cancels the currently executing task. This function can be called from within the body of a task to abort the
///     task's execution and cause it to enter the <c>canceled</c> state. While it may be used in response to
///     the <see cref="is_task_cancellation_requested Function">is_task_cancellation_requested</see> function, you may
///     also use it by itself, to initiate cancellation of the task that is currently executing.
///     <para>It is not a supported scenario to call this function if you are not within the body of a <c>task</c>.
///     Doing so will result in undefined behavior such as a crash or a hang in your application.</para>
/// </summary>
/// <seealso cref="task Class"/>
/// <seealso cref="is_task_cancellation_requested"/>
/**/
//#if _MSC_VER >= 1800
inline __declspec(noreturn) void __cdecl cancel_current_task()
{
    throw Concurrency::task_canceled();
}
//#else
//_CRTIMP2 __declspec(noreturn) void __cdecl cancel_current_task();
//#endif

namespace details
{
#if _MSC_VER >= 1800
    /// <summary>
    ///     Callstack container, which is used to capture and preserve callstacks in ppltasks.
    ///     Members of this class is examined by vc debugger, thus there will be no public access methods.
    ///     Please note that names of this class should be kept stable for debugger examining.
    /// </summary>
    class _TaskCreationCallstack
    {
    private:
        // If _M_SingleFrame != nullptr, there will be only one frame of callstacks, which is stored in _M_SingleFrame;
        // otherwise, _M_Frame will store all the callstack frames.
        void* _M_SingleFrame;
        std::vector<void *> _M_frames;
    public:
        _TaskCreationCallstack()
        {
            _M_SingleFrame = nullptr;
        }

        // Store one frame of callstack. This function works for both Debug / Release CRT.
        static _TaskCreationCallstack _CaptureSingleFrameCallstack(void *_SingleFrame)
        {
            _TaskCreationCallstack _csc;
            _csc._M_SingleFrame = _SingleFrame;
            return _csc;
        }

        // Capture _CaptureFrames number of callstack frames. This function only work properly for Desktop or Debug CRT.
        __declspec(noinline)
            static _TaskCreationCallstack _CaptureMultiFramesCallstack(size_t _CaptureFrames)
        {
                _TaskCreationCallstack _csc;
                _csc._M_frames.resize(_CaptureFrames);
                // skip 2 frames to make sure callstack starts from user code
                _csc._M_frames.resize(::Concurrency::details::platform::CaptureCallstack(&_csc._M_frames[0], 2, _CaptureFrames));
                return _csc;
        }
    };
#endif
    typedef UINT32 _Unit_type;

    struct _TypeSelectorNoAsync {};
    struct _TypeSelectorAsyncOperationOrTask {};
    struct _TypeSelectorAsyncOperation : public _TypeSelectorAsyncOperationOrTask { };
    struct _TypeSelectorAsyncTask : public _TypeSelectorAsyncOperationOrTask { };
    struct _TypeSelectorAsyncAction {};
    struct _TypeSelectorAsyncActionWithProgress {};
    struct _TypeSelectorAsyncOperationWithProgress {};

    template<typename _Ty>
    struct _NormalizeVoidToUnitType
    {
        typedef _Ty _Type;
    };

    template<>
    struct _NormalizeVoidToUnitType<void>
    {
        typedef _Unit_type _Type;
    };

    template<typename _T>
    struct _IsUnwrappedAsyncSelector
    {
        static const bool _Value = true;
    };

    template<>
    struct _IsUnwrappedAsyncSelector<_TypeSelectorNoAsync>
    {
        static const bool _Value = false;
    };

    template <typename _Ty>
    struct _UnwrapTaskType
    {
        typedef _Ty _Type;
    };

    template <typename _Ty>
    struct _UnwrapTaskType<task<_Ty>>
    {
        typedef _Ty _Type;
    };

    template <typename _T>
    _TypeSelectorAsyncTask _AsyncOperationKindSelector(task<_T>);

    _TypeSelectorNoAsync _AsyncOperationKindSelector(...);

    template <typename _Type>
    struct _Unhat
    {
        typedef _Type _Value;
    };

    template <typename _Type>
    struct _Unhat<_Type*>
    {
        typedef _Type _Value;
    };

    //struct _NonUserType { public: int _Dummy; };

    template <typename _Type, bool _IsValueTypeOrRefType = __is_valid_winrt_type(_Type)>
    struct _ValueTypeOrRefType
    {
        typedef _Unit_type _Value;
    };

    template <typename _Type>
    struct _ValueTypeOrRefType<_Type, true>
    {
        typedef _Type _Value;
    };

    template <typename _Ty>
    _Ty _UnwrapAsyncActionWithProgressSelector(ABI::Windows::Foundation::IAsyncActionWithProgress_impl<_Ty>*);

    template <typename _Ty>
    _Ty _UnwrapAsyncActionWithProgressSelector(...);

    template <typename _Ty, typename _Progress>
    _Progress _UnwrapAsyncOperationWithProgressProgressSelector(ABI::Windows::Foundation::IAsyncOperationWithProgress_impl<_Ty, _Progress>*);

    template <typename _Ty, typename _Progress>
    _Progress _UnwrapAsyncOperationWithProgressProgressSelector(...);

    template <typename _T1, typename _T2>
    _T2 _ProgressTypeSelector(ABI::Windows::Foundation::IAsyncOperationWithProgress<_T1, _T2>*);

    template <typename _T1>
    _T1 _ProgressTypeSelector(ABI::Windows::Foundation::IAsyncActionWithProgress<_T1>*);

    template <typename _Type>
    struct _GetProgressType
    {
        typedef decltype(_ProgressTypeSelector(stdx::declval<_Type>())) _Value;
    };

    template <typename _T>
    _TypeSelectorAsyncOperation _AsyncOperationKindSelector(ABI::Windows::Foundation::IAsyncOperation<_T>*);

    _TypeSelectorAsyncAction _AsyncOperationKindSelector(ABI::Windows::Foundation::IAsyncAction*);

    template <typename _T1, typename _T2>
    _TypeSelectorAsyncOperationWithProgress _AsyncOperationKindSelector(ABI::Windows::Foundation::IAsyncOperationWithProgress<_T1, _T2>*);

    template <typename _T>
    _TypeSelectorAsyncActionWithProgress _AsyncOperationKindSelector(ABI::Windows::Foundation::IAsyncActionWithProgress<_T>*);

    template <typename _Type>
    struct _IsIAsyncInfo
    {
        static const bool _Value = std::is_base_of<ABI::Windows::Foundation::IAsyncInfo, typename _Unhat<_Type>::_Value>::value ||
            std::is_same<_TypeSelectorAsyncAction, decltype(details::_AsyncOperationKindSelector(stdx::declval<_Type>()))>::value ||
            std::is_same<_TypeSelectorAsyncOperation, decltype(details::_AsyncOperationKindSelector(stdx::declval<_Type>()))>::value ||
            std::is_same<_TypeSelectorAsyncOperationWithProgress, decltype(details::_AsyncOperationKindSelector(stdx::declval<_Type>()))>::value ||
            std::is_same<_TypeSelectorAsyncActionWithProgress, decltype(details::_AsyncOperationKindSelector(stdx::declval<_Type>()))>::value;
    };

    template <>
    struct _IsIAsyncInfo<void>
    {
        static const bool _Value = false;
    };

    template <typename _Ty>
    _Ty _UnwrapAsyncOperationSelector(ABI::Windows::Foundation::IAsyncOperation_impl<_Ty>*);

    template <typename _Ty>
    _Ty _UnwrapAsyncOperationSelector(...);

    template <typename _Ty, typename _Progress>
    _Ty _UnwrapAsyncOperationWithProgressSelector(ABI::Windows::Foundation::IAsyncOperationWithProgress_impl<_Ty, _Progress>*);

    template <typename _Ty, typename _Progress>
    _Ty _UnwrapAsyncOperationWithProgressSelector(...);

    // Unwrap functions for asyncOperations
    template<typename _Ty>
    auto _GetUnwrappedType(ABI::Windows::Foundation::IAsyncOperation<_Ty>*) -> typename ABI::Windows::Foundation::Internal::GetAbiType<decltype(_UnwrapAsyncOperationSelector(stdx::declval<ABI::Windows::Foundation::IAsyncOperation<_Ty>*>()))>::type;

    void _GetUnwrappedType(ABI::Windows::Foundation::IAsyncAction*);

    template<typename _Ty, typename _Progress>
    auto _GetUnwrappedType(ABI::Windows::Foundation::IAsyncOperationWithProgress<_Ty, _Progress>*) -> typename ABI::Windows::Foundation::Internal::GetAbiType<decltype(_UnwrapAsyncOperationWithProgressSelector(stdx::declval<ABI::Windows::Foundation::IAsyncOperationWithProgress<_Ty, _Progress>*>()))>::type;

    template<typename _Progress>
    void _GetUnwrappedType(ABI::Windows::Foundation::IAsyncActionWithProgress<_Progress>*);

    template <typename _T>
    _T _ReturnAsyncOperationKindSelector(ABI::Windows::Foundation::IAsyncOperation<_T>*);

    void _ReturnAsyncOperationKindSelector(ABI::Windows::Foundation::IAsyncAction*);

    template <typename _T1, typename _T2>
    _T1 _ReturnAsyncOperationKindSelector(ABI::Windows::Foundation::IAsyncOperationWithProgress<_T1, _T2>*);

    template <typename _T>
    void _ReturnAsyncOperationKindSelector(ABI::Windows::Foundation::IAsyncActionWithProgress<_T>*);

    class _ProgressReporterCtorArgType{};

    template <typename _Type, bool _IsAsync = _IsIAsyncInfo<_Type>::_Value>
    struct _TaskTypeTraits
    {
        typedef typename details::_UnwrapTaskType<_Type>::_Type _TaskRetType;
        typedef _TaskRetType _TaskRetType_abi;
        typedef decltype(_AsyncOperationKindSelector(stdx::declval<_Type>())) _AsyncKind;
        typedef typename details::_NormalizeVoidToUnitType<_TaskRetType>::_Type _NormalizedTaskRetType;

        static const bool _IsAsyncTask = _IsAsync;
        static const bool _IsUnwrappedTaskOrAsync = details::_IsUnwrappedAsyncSelector<_AsyncKind>::_Value;
    };

    template<typename _Type>
    struct _TaskTypeTraits<_Type, true>
    {
        typedef decltype(_ReturnAsyncOperationKindSelector(stdx::declval<_Type>())) _TaskRetType;
        typedef decltype(_GetUnwrappedType(stdx::declval<_Type>())) _TaskRetType_abi;
        typedef _TaskRetType _NormalizedTaskRetType;
        typedef decltype(_AsyncOperationKindSelector(stdx::declval<_Type>())) _AsyncKind;

        static const bool _IsAsyncTask = true;
        static const bool _IsUnwrappedTaskOrAsync = details::_IsUnwrappedAsyncSelector<_AsyncKind>::_Value;
    };

    template <typename _ReturnType, typename _Function> auto _IsCallable(_Function _Func, int, int, int) -> decltype(_Func(stdx::declval<task<_ReturnType>*>()), std::true_type()) { (void)_Func; return std::true_type(); }
    template <typename _ReturnType, typename _Function> auto _IsCallable(_Function _Func, int, int, ...) -> decltype(_Func(stdx::declval<_ReturnType*>()), std::true_type()) { (void)_Func; return std::true_type(); }
    template <typename _ReturnType, typename _Function> auto _IsCallable(_Function _Func, int, ...) -> decltype(_Func(), std::true_type()) { (void)_Func; return std::true_type(); }
    template <typename _ReturnType, typename _Function> std::false_type _IsCallable(_Function, ...) { return std::false_type(); }

    template <>
    struct _TaskTypeTraits<void>
    {
        typedef void _TaskRetType;
        typedef void _TaskRetType_abi;
        typedef _TypeSelectorNoAsync _AsyncKind;
        typedef _Unit_type _NormalizedTaskRetType;

        static const bool _IsAsyncTask = false;
        static const bool _IsUnwrappedTaskOrAsync = false;
    };

    // ***************************************************************************
    // Template type traits and helpers for async production APIs:
    //

    struct _ZeroArgumentFunctor { };
    struct _OneArgumentFunctor { };
    struct _TwoArgumentFunctor { };
    struct _ThreeArgumentFunctor { };

    // ****************************************
    // CLASS TYPES:

    // mutable functions
    // ********************
    // THREE ARGUMENTS:

    // non-void arg:
    template<typename _Class, typename _ReturnType, typename _Arg1, typename _Arg2, typename _Arg3>
    _Arg1 _Arg1ClassHelperThunk(_ReturnType(_Class::*)(_Arg1, _Arg2, _Arg3));

    // non-void arg:
    template<typename _Class, typename _ReturnType, typename _Arg1, typename _Arg2, typename _Arg3>
    _Arg2 _Arg2ClassHelperThunk(_ReturnType(_Class::*)(_Arg1, _Arg2, _Arg3));

    // non-void arg:
    template<typename _Class, typename _ReturnType, typename _Arg1, typename _Arg2, typename _Arg3>
    _Arg3 _Arg3ClassHelperThunk(_ReturnType(_Class::*)(_Arg1, _Arg2, _Arg3));

    template<typename _Class, typename _ReturnType, typename _Arg1, typename _Arg2, typename _Arg3>
    _ReturnType _ReturnTypeClassHelperThunk(_ReturnType(_Class::*)(_Arg1, _Arg2, _Arg3));

    template<typename _Class, typename _ReturnType, typename _Arg1, typename _Arg2, typename _Arg3>
    _ThreeArgumentFunctor _ArgumentCountHelper(_ReturnType(_Class::*)(_Arg1, _Arg2, _Arg3));

    // ********************
    // TWO ARGUMENTS:

    // non-void arg:
    template<typename _Class, typename _ReturnType, typename _Arg1, typename _Arg2>
    _Arg1 _Arg1ClassHelperThunk(_ReturnType(_Class::*)(_Arg1, _Arg2));

    // non-void arg:
    template<typename _Class, typename _ReturnType, typename _Arg1, typename _Arg2>
    _Arg2 _Arg2ClassHelperThunk(_ReturnType(_Class::*)(_Arg1, _Arg2));

    // non-void arg:
    template<typename _Class, typename _ReturnType, typename _Arg1, typename _Arg2>
    void _Arg3ClassHelperThunk(_ReturnType(_Class::*)(_Arg1, _Arg2));

    template<typename _Class, typename _ReturnType, typename _Arg1, typename _Arg2>
    _ReturnType _ReturnTypeClassHelperThunk(_ReturnType(_Class::*)(_Arg1, _Arg2));

    template<typename _Class, typename _ReturnType, typename _Arg1, typename _Arg2>
    _TwoArgumentFunctor _ArgumentCountHelper(_ReturnType(_Class::*)(_Arg1, _Arg2));

    // ********************
    // ONE ARGUMENT:

    // non-void arg:
    template<typename _Class, typename _ReturnType, typename _Arg1>
    _Arg1 _Arg1ClassHelperThunk(_ReturnType(_Class::*)(_Arg1));

    // non-void arg:
    template<typename _Class, typename _ReturnType, typename _Arg1>
    void _Arg2ClassHelperThunk(_ReturnType(_Class::*)(_Arg1));

    // non-void arg:
    template<typename _Class, typename _ReturnType, typename _Arg1>
    void _Arg3ClassHelperThunk(_ReturnType(_Class::*)(_Arg1));

    template<typename _Class, typename _ReturnType, typename _Arg1>
    _ReturnType _ReturnTypeClassHelperThunk(_ReturnType(_Class::*)(_Arg1));

    template<typename _Class, typename _ReturnType, typename _Arg1>
    _OneArgumentFunctor _ArgumentCountHelper(_ReturnType(_Class::*)(_Arg1));

    // ********************
    // ZERO ARGUMENT:

    // void arg:
    template<typename _Class, typename _ReturnType>
    void _Arg1ClassHelperThunk(_ReturnType(_Class::*)());

    // void arg:
    template<typename _Class, typename _ReturnType>
    void _Arg2ClassHelperThunk(_ReturnType(_Class::*)());

    // void arg:
    template<typename _Class, typename _ReturnType>
    void _Arg3ClassHelperThunk(_ReturnType(_Class::*)());

    // void arg:
    template<typename _Class, typename _ReturnType>
    _ReturnType _ReturnTypeClassHelperThunk(_ReturnType(_Class::*)());

    template<typename _Class, typename _ReturnType>
    _ZeroArgumentFunctor _ArgumentCountHelper(_ReturnType(_Class::*)());

    // ********************
    // THREE ARGUMENTS:

    // non-void arg:
    template<typename _Class, typename _ReturnType, typename _Arg1, typename _Arg2, typename _Arg3>
    _Arg1 _Arg1ClassHelperThunk(_ReturnType(_Class::*)(_Arg1, _Arg2, _Arg3) const);

    // non-void arg:
    template<typename _Class, typename _ReturnType, typename _Arg1, typename _Arg2, typename _Arg3>
    _Arg2 _Arg2ClassHelperThunk(_ReturnType(_Class::*)(_Arg1, _Arg2, _Arg3) const);

    // non-void arg:
    template<typename _Class, typename _ReturnType, typename _Arg1, typename _Arg2, typename _Arg3>
    _Arg3 _Arg3ClassHelperThunk(_ReturnType(_Class::*)(_Arg1, _Arg2, _Arg3) const);

    template<typename _Class, typename _ReturnType, typename _Arg1, typename _Arg2, typename _Arg3>
    _ReturnType _ReturnTypeClassHelperThunk(_ReturnType(_Class::*)(_Arg1, _Arg2, _Arg3) const);

    template<typename _Class, typename _ReturnType, typename _Arg1, typename _Arg2, typename _Arg3>
    _ThreeArgumentFunctor _ArgumentCountHelper(_ReturnType(_Class::*)(_Arg1, _Arg2, _Arg3) const);

    // ********************
    // TWO ARGUMENTS:

    // non-void arg:
    template<typename _Class, typename _ReturnType, typename _Arg1, typename _Arg2>
    _Arg1 _Arg1ClassHelperThunk(_ReturnType(_Class::*)(_Arg1, _Arg2) const);

    // non-void arg:
    template<typename _Class, typename _ReturnType, typename _Arg1, typename _Arg2>
    _Arg2 _Arg2ClassHelperThunk(_ReturnType(_Class::*)(_Arg1, _Arg2) const);

    // non-void arg:
    template<typename _Class, typename _ReturnType, typename _Arg1, typename _Arg2>
    void _Arg3ClassHelperThunk(_ReturnType(_Class::*)(_Arg1, _Arg2) const);

    template<typename _Class, typename _ReturnType, typename _Arg1, typename _Arg2>
    _ReturnType _ReturnTypeClassHelperThunk(_ReturnType(_Class::*)(_Arg1, _Arg2) const);

    template<typename _Class, typename _ReturnType, typename _Arg1, typename _Arg2>
    _TwoArgumentFunctor _ArgumentCountHelper(_ReturnType(_Class::*)(_Arg1, _Arg2) const);

    // ********************
    // ONE ARGUMENT:

    // non-void arg:
    template<typename _Class, typename _ReturnType, typename _Arg1>
    _Arg1 _Arg1ClassHelperThunk(_ReturnType(_Class::*)(_Arg1) const);

    // non-void arg:
    template<typename _Class, typename _ReturnType, typename _Arg1>
    void _Arg2ClassHelperThunk(_ReturnType(_Class::*)(_Arg1) const);

    // non-void arg:
    template<typename _Class, typename _ReturnType, typename _Arg1>
    void _Arg3ClassHelperThunk(_ReturnType(_Class::*)(_Arg1) const);

    template<typename _Class, typename _ReturnType, typename _Arg1>
    _ReturnType _ReturnTypeClassHelperThunk(_ReturnType(_Class::*)(_Arg1) const);

    template<typename _Class, typename _ReturnType, typename _Arg1>
    _OneArgumentFunctor _ArgumentCountHelper(_ReturnType(_Class::*)(_Arg1) const);

    // ********************
    // ZERO ARGUMENT:

    // void arg:
    template<typename _Class, typename _ReturnType>
    void _Arg1ClassHelperThunk(_ReturnType(_Class::*)() const);

    // void arg:
    template<typename _Class, typename _ReturnType>
    void _Arg2ClassHelperThunk(_ReturnType(_Class::*)() const);

    // void arg:
    template<typename _Class, typename _ReturnType>
    void _Arg3ClassHelperThunk(_ReturnType(_Class::*)() const);

    // void arg:
    template<typename _Class, typename _ReturnType>
    _ReturnType _ReturnTypeClassHelperThunk(_ReturnType(_Class::*)() const);

    template<typename _Class, typename _ReturnType>
    _ZeroArgumentFunctor _ArgumentCountHelper(_ReturnType(_Class::*)() const);

    // ****************************************
    // POINTER TYPES:

    // ********************
    // THREE ARGUMENTS:

    template<typename _ReturnType, typename _Arg1, typename _Arg2, typename _Arg3>
    _Arg1 _Arg1PFNHelperThunk(_ReturnType(__cdecl *)(_Arg1, _Arg2, _Arg3));

    template<typename _ReturnType, typename _Arg1, typename _Arg2, typename _Arg3>
    _Arg2 _Arg2PFNHelperThunk(_ReturnType(__cdecl *)(_Arg1, _Arg2, _Arg3));

    template<typename _ReturnType, typename _Arg1, typename _Arg2, typename _Arg3>
    _Arg3 _Arg3PFNHelperThunk(_ReturnType(__cdecl *)(_Arg1, _Arg2, _Arg3));

    template<typename _ReturnType, typename _Arg1, typename _Arg2, typename _Arg3>
    _ReturnType _ReturnTypePFNHelperThunk(_ReturnType(__cdecl *)(_Arg1, _Arg2, _Arg3));

    template<typename _ReturnType, typename _Arg1, typename _Arg2, typename _Arg3>
    _ThreeArgumentFunctor _ArgumentCountHelper(_ReturnType(__cdecl *)(_Arg1, _Arg2, _Arg3));

    template<typename _ReturnType, typename _Arg1, typename _Arg2, typename _Arg3>
    _Arg1 _Arg1PFNHelperThunk(_ReturnType(__stdcall *)(_Arg1, _Arg2, _Arg3));

    template<typename _ReturnType, typename _Arg1, typename _Arg2, typename _Arg3>
    _Arg2 _Arg2PFNHelperThunk(_ReturnType(__stdcall *)(_Arg1, _Arg2, _Arg3));

    template<typename _ReturnType, typename _Arg1, typename _Arg2, typename _Arg3>
    _Arg3 _Arg3PFNHelperThunk(_ReturnType(__stdcall *)(_Arg1, _Arg2, _Arg3));

    template<typename _ReturnType, typename _Arg1, typename _Arg2, typename _Arg3>
    _ReturnType _ReturnTypePFNHelperThunk(_ReturnType(__stdcall *)(_Arg1, _Arg2, _Arg3));

    template<typename _ReturnType, typename _Arg1, typename _Arg2, typename _Arg3>
    _ThreeArgumentFunctor _ArgumentCountHelper(_ReturnType(__stdcall *)(_Arg1, _Arg2, _Arg3));

    template<typename _ReturnType, typename _Arg1, typename _Arg2, typename _Arg3>
    _Arg1 _Arg1PFNHelperThunk(_ReturnType(__fastcall *)(_Arg1, _Arg2, _Arg3));

    template<typename _ReturnType, typename _Arg1, typename _Arg2, typename _Arg3>
    _Arg2 _Arg2PFNHelperThunk(_ReturnType(__fastcall *)(_Arg1, _Arg2, _Arg3));

    template<typename _ReturnType, typename _Arg1, typename _Arg2, typename _Arg3>
    _Arg3 _Arg3PFNHelperThunk(_ReturnType(__fastcall *)(_Arg1, _Arg2, _Arg3));

    template<typename _ReturnType, typename _Arg1, typename _Arg2, typename _Arg3>
    _ReturnType _ReturnTypePFNHelperThunk(_ReturnType(__fastcall *)(_Arg1, _Arg2, _Arg3));

    template<typename _ReturnType, typename _Arg1, typename _Arg2, typename _Arg3>
    _ThreeArgumentFunctor _ArgumentCountHelper(_ReturnType(__fastcall *)(_Arg1, _Arg2, _Arg3));

    // ********************
    // TWO ARGUMENTS:

    template<typename _ReturnType, typename _Arg1, typename _Arg2>
    _Arg1 _Arg1PFNHelperThunk(_ReturnType(__cdecl *)(_Arg1, _Arg2));

    template<typename _ReturnType, typename _Arg1, typename _Arg2>
    _Arg2 _Arg2PFNHelperThunk(_ReturnType(__cdecl *)(_Arg1, _Arg2));

    template<typename _ReturnType, typename _Arg1, typename _Arg2>
    void _Arg3PFNHelperThunk(_ReturnType(__cdecl *)(_Arg1, _Arg2));

    template<typename _ReturnType, typename _Arg1, typename _Arg2>
    _ReturnType _ReturnTypePFNHelperThunk(_ReturnType(__cdecl *)(_Arg1, _Arg2));

    template<typename _ReturnType, typename _Arg1, typename _Arg2>
    _TwoArgumentFunctor _ArgumentCountHelper(_ReturnType(__cdecl *)(_Arg1, _Arg2));

    template<typename _ReturnType, typename _Arg1, typename _Arg2>
    _Arg1 _Arg1PFNHelperThunk(_ReturnType(__stdcall *)(_Arg1, _Arg2));

    template<typename _ReturnType, typename _Arg1, typename _Arg2>
    _Arg2 _Arg2PFNHelperThunk(_ReturnType(__stdcall *)(_Arg1, _Arg2));

    template<typename _ReturnType, typename _Arg1, typename _Arg2>
    void _Arg3PFNHelperThunk(_ReturnType(__stdcall *)(_Arg1, _Arg2));

    template<typename _ReturnType, typename _Arg1, typename _Arg2>
    _ReturnType _ReturnTypePFNHelperThunk(_ReturnType(__stdcall *)(_Arg1, _Arg2));

    template<typename _ReturnType, typename _Arg1, typename _Arg2>
    _TwoArgumentFunctor _ArgumentCountHelper(_ReturnType(__stdcall *)(_Arg1, _Arg2));

    template<typename _ReturnType, typename _Arg1, typename _Arg2>
    _Arg1 _Arg1PFNHelperThunk(_ReturnType(__fastcall *)(_Arg1, _Arg2));

    template<typename _ReturnType, typename _Arg1, typename _Arg2>
    _Arg2 _Arg2PFNHelperThunk(_ReturnType(__fastcall *)(_Arg1, _Arg2));

    template<typename _ReturnType, typename _Arg1, typename _Arg2>
    void _Arg3PFNHelperThunk(_ReturnType(__fastcall *)(_Arg1, _Arg2));

    template<typename _ReturnType, typename _Arg1, typename _Arg2>
    _ReturnType _ReturnTypePFNHelperThunk(_ReturnType(__fastcall *)(_Arg1, _Arg2));

    template<typename _ReturnType, typename _Arg1, typename _Arg2>
    _TwoArgumentFunctor _ArgumentCountHelper(_ReturnType(__fastcall *)(_Arg1, _Arg2));

    // ********************
    // ONE ARGUMENT:

    template<typename _ReturnType, typename _Arg1>
    _Arg1 _Arg1PFNHelperThunk(_ReturnType(__cdecl *)(_Arg1));

    template<typename _ReturnType, typename _Arg1>
    void _Arg2PFNHelperThunk(_ReturnType(__cdecl *)(_Arg1));

    template<typename _ReturnType, typename _Arg1>
    void _Arg3PFNHelperThunk(_ReturnType(__cdecl *)(_Arg1));

    template<typename _ReturnType, typename _Arg1>
    _ReturnType _ReturnTypePFNHelperThunk(_ReturnType(__cdecl *)(_Arg1));

    template<typename _ReturnType, typename _Arg1>
    _OneArgumentFunctor _ArgumentCountHelper(_ReturnType(__cdecl *)(_Arg1));

    template<typename _ReturnType, typename _Arg1>
    _Arg1 _Arg1PFNHelperThunk(_ReturnType(__stdcall *)(_Arg1));

    template<typename _ReturnType, typename _Arg1>
    void _Arg2PFNHelperThunk(_ReturnType(__stdcall *)(_Arg1));

    template<typename _ReturnType, typename _Arg1>
    void _Arg3PFNHelperThunk(_ReturnType(__stdcall *)(_Arg1));

    template<typename _ReturnType, typename _Arg1>
    _ReturnType _ReturnTypePFNHelperThunk(_ReturnType(__stdcall *)(_Arg1));

    template<typename _ReturnType, typename _Arg1>
    _OneArgumentFunctor _ArgumentCountHelper(_ReturnType(__stdcall *)(_Arg1));

    template<typename _ReturnType, typename _Arg1>
    _Arg1 _Arg1PFNHelperThunk(_ReturnType(__fastcall *)(_Arg1));

    template<typename _ReturnType, typename _Arg1>
    void _Arg2PFNHelperThunk(_ReturnType(__fastcall *)(_Arg1));

    template<typename _ReturnType, typename _Arg1>
    void _Arg3PFNHelperThunk(_ReturnType(__fastcall *)(_Arg1));

    template<typename _ReturnType, typename _Arg1>
    _ReturnType _ReturnTypePFNHelperThunk(_ReturnType(__fastcall *)(_Arg1));

    template<typename _ReturnType, typename _Arg1>
    _OneArgumentFunctor _ArgumentCountHelper(_ReturnType(__fastcall *)(_Arg1));

    // ********************
    // ZERO ARGUMENT:

    template<typename _ReturnType>
    void _Arg1PFNHelperThunk(_ReturnType(__cdecl *)());

    template<typename _ReturnType>
    void _Arg2PFNHelperThunk(_ReturnType(__cdecl *)());

    template<typename _ReturnType>
    void _Arg3PFNHelperThunk(_ReturnType(__cdecl *)());

    template<typename _ReturnType>
    _ReturnType _ReturnTypePFNHelperThunk(_ReturnType(__cdecl *)());

    template<typename _ReturnType>
    _ZeroArgumentFunctor _ArgumentCountHelper(_ReturnType(__cdecl *)());

    template<typename _ReturnType>
    void _Arg1PFNHelperThunk(_ReturnType(__stdcall *)());

    template<typename _ReturnType>
    void _Arg2PFNHelperThunk(_ReturnType(__stdcall *)());

    template<typename _ReturnType>
    void _Arg3PFNHelperThunk(_ReturnType(__stdcall *)());

    template<typename _ReturnType>
    _ReturnType _ReturnTypePFNHelperThunk(_ReturnType(__stdcall *)());

    template<typename _ReturnType>
    _ZeroArgumentFunctor _ArgumentCountHelper(_ReturnType(__stdcall *)());

    template<typename _ReturnType>
    void _Arg1PFNHelperThunk(_ReturnType(__fastcall *)());

    template<typename _ReturnType>
    void _Arg2PFNHelperThunk(_ReturnType(__fastcall *)());

    template<typename _ReturnType>
    void _Arg3PFNHelperThunk(_ReturnType(__fastcall *)());

    template<typename _ReturnType>
    _ReturnType _ReturnTypePFNHelperThunk(_ReturnType(__fastcall *)());

    template<typename _ReturnType>
    _ZeroArgumentFunctor _ArgumentCountHelper(_ReturnType(__fastcall *)());

    template<typename _T>
    struct _FunctorArguments
    {
        static const size_t _Count = 0;
    };

    template<>
    struct _FunctorArguments<_OneArgumentFunctor>
    {
        static const size_t _Count = 1;
    };

    template<>
    struct _FunctorArguments<_TwoArgumentFunctor>
    {
        static const size_t _Count = 2;
    };

    template<>
    struct _FunctorArguments<_ThreeArgumentFunctor>
    {
        static const size_t _Count = 3;
    };

    template<typename _T>
    struct _FunctorTypeTraits
    {
        typedef decltype(_ArgumentCountHelper(&(_T::operator()))) _ArgumentCountType;
        static const size_t _ArgumentCount = _FunctorArguments<_ArgumentCountType>::_Count;

        typedef decltype(_ReturnTypeClassHelperThunk(&(_T::operator()))) _ReturnType;
        typedef decltype(_Arg1ClassHelperThunk(&(_T::operator()))) _Argument1Type;
        typedef decltype(_Arg2ClassHelperThunk(&(_T::operator()))) _Argument2Type;
        typedef decltype(_Arg3ClassHelperThunk(&(_T::operator()))) _Argument3Type;
    };

    template<typename _T>
    struct _FunctorTypeTraits<_T *>
    {
        typedef decltype(_ArgumentCountHelper(stdx::declval<_T*>())) _ArgumentCountType;
        static const size_t _ArgumentCount = _FunctorArguments<_ArgumentCountType>::_Count;

        typedef decltype(_ReturnTypePFNHelperThunk(stdx::declval<_T*>())) _ReturnType;
        typedef decltype(_Arg1PFNHelperThunk(stdx::declval<_T*>())) _Argument1Type;
        typedef decltype(_Arg2PFNHelperThunk(stdx::declval<_T*>())) _Argument2Type;
        typedef decltype(_Arg3PFNHelperThunk(stdx::declval<_T*>())) _Argument3Type;
    };

    task<void> _To_task();

    template <typename _Function> auto _IsVoidConversionHelper(_Function _Func, int) -> typename decltype(_Func(_To_task()), std::true_type());
    template <typename _Function> std::false_type _IsVoidConversionHelper(_Function _Func, ...);

    template <typename T> std::true_type _VoidIsTaskHelper(task<T> _Arg, int);
    template <typename T> std::false_type _VoidIsTaskHelper(T _Arg, ...);

    template<typename _Function, typename _ExpectedParameterType, const bool _IsVoidConversion = std::is_same<decltype(_IsVoidConversionHelper(stdx::declval<_Function>(), 0)), std::true_type>::value, const size_t _Count = _FunctorTypeTraits<_Function>::_ArgumentCount>
    struct _FunctionTypeTraits
    {
        typedef typename _Unhat<typename _FunctorTypeTraits<_Function>::_Argument2Type>::_Value _FuncRetType;
        static_assert(std::is_same<typename _FunctorTypeTraits<_Function>::_Argument1Type, _ExpectedParameterType>::value ||
                    std::is_same<typename _FunctorTypeTraits<_Function>::_Argument1Type, task<_ExpectedParameterType>>::value, "incorrect parameter type for the callable object in 'then'; consider _ExpectedParameterType or task<_ExpectedParameterType> (see below)");

        typedef decltype(_VoidIsTaskHelper(stdx::declval<_FunctorTypeTraits<_Function>::_Argument1Type>(), 0)) _Takes_task;
    };

    //if there is a continuation parameter, then must use void/no return value
    template<typename _Function, typename _ExpectedParameterType, const bool _IsVoidConversion>
    struct _FunctionTypeTraits<_Function, _ExpectedParameterType, _IsVoidConversion, 1>
    {
        typedef void _FuncRetType;
        static_assert(std::is_same<typename _FunctorTypeTraits<_Function>::_Argument1Type, _ExpectedParameterType>::value ||
                    std::is_same<typename _FunctorTypeTraits<_Function>::_Argument1Type, task<_ExpectedParameterType>>::value, "incorrect parameter type for the callable object in 'then'; consider _ExpectedParameterType or task<_ExpectedParameterType> (see below)");

        typedef decltype(_VoidIsTaskHelper(stdx::declval<_FunctorTypeTraits<_Function>::_Argument1Type>(), 0)) _Takes_task;
    };

    template<typename _Function>
    struct _FunctionTypeTraits<_Function, void, true, 1>
    {
        typedef void _FuncRetType;
        static_assert(std::is_same<typename _FunctorTypeTraits<_Function>::_Argument1Type, decltype(_To_task())>::value, "incorrect parameter type for the callable object in 'then'; consider _ExpectedParameterType or task<_ExpectedParameterType> (see below)");

        typedef decltype(_VoidIsTaskHelper(stdx::declval<_FunctorTypeTraits<_Function>::_Argument1Type>(), 0)) _Takes_task;
    };

    template<typename _Function>
    struct _FunctionTypeTraits<_Function, void, false, 1>
    {
        typedef typename _Unhat<typename _FunctorTypeTraits<_Function>::_Argument1Type>::_Value _FuncRetType;

        typedef std::false_type _Takes_task;
    };

    template<typename _Function, typename _ExpectedParameterType, const bool _IsVoidConversion>
    struct _FunctionTypeTraits<_Function, _ExpectedParameterType, _IsVoidConversion, 0>
    {
        typedef void _FuncRetType;

        typedef std::false_type _Takes_task;
    };

    template<typename _Function, typename _ReturnType>
    struct _ContinuationTypeTraits
    {
        typedef typename task<typename _TaskTypeTraits<typename _FunctionTypeTraits<_Function, _ReturnType>::_FuncRetType>::_TaskRetType_abi> _TaskOfType;
    };

    // _InitFunctorTypeTraits is used to decide whether a task constructed with a lambda should be unwrapped. Depending on how the variable is
    // declared, the constructor may or may not perform unwrapping. For eg.
    //
    //  This declaration SHOULD NOT cause unwrapping
    //    task<task<void>> t1([]() -> task<void> {
    //        task<void> t2([]() {});
    //        return t2;
    //    });
    //
    // This declaration SHOULD cause unwrapping
    //    task<void>> t1([]() -> task<void> {
    //        task<void> t2([]() {});
    //        return t2;
    //    });
    // If the type of the task is the same as the return type of the function, no unwrapping should take place. Else normal rules apply.
    template <typename _TaskType, typename _FuncRetType>
    struct _InitFunctorTypeTraits
    {
        typedef typename _TaskTypeTraits<_FuncRetType>::_AsyncKind _AsyncKind;
        static const bool _IsAsyncTask = _TaskTypeTraits<_FuncRetType>::_IsAsyncTask;
        static const bool _IsUnwrappedTaskOrAsync = _TaskTypeTraits<_FuncRetType>::_IsUnwrappedTaskOrAsync;
    };

    template<typename T>
    struct _InitFunctorTypeTraits<T, T>
    {
        typedef _TypeSelectorNoAsync _AsyncKind;
        static const bool _IsAsyncTask = false;
        static const bool _IsUnwrappedTaskOrAsync = false;
    };
    /// <summary>
    ///     Helper object used for LWT invocation.
    /// </summary>
    struct _TaskProcThunk
    {
        _TaskProcThunk(const std::function<HRESULT(void)> & _Callback) :
        _M_func(_Callback)
        {
        }

        static void __cdecl _Bridge(void *_PData)
        {
            _TaskProcThunk *_PThunk = reinterpret_cast<_TaskProcThunk *>(_PData);
#if _MSC_VER >= 1800
            _Holder _ThunkHolder(_PThunk);
#endif
            _PThunk->_M_func();
#if _MSC_VER < 1800
            delete _PThunk;
#endif
        }
    private:
#if _MSC_VER >= 1800
        // RAII holder
        struct _Holder
        {
            _Holder(_TaskProcThunk * _PThunk) : _M_pThunk(_PThunk)
            {
            }

            ~_Holder()
            {
                delete _M_pThunk;
            }

            _TaskProcThunk * _M_pThunk;

        private:
            _Holder& operator=(const _Holder&);
        };
#endif
        std::function<HRESULT(void)> _M_func;
        _TaskProcThunk& operator=(const _TaskProcThunk&);
    };

    /// <summary>
    ///     Schedule a functor with automatic inlining. Note that this is "fire and forget" scheduling, which cannot be
    ///     waited on or canceled after scheduling.
    ///     This schedule method will perform automatic inlining base on <paramref value="_InliningMode"/>.
    /// </summary>
    /// <param name="_Func">
    ///     The user functor need to be scheduled.
    /// </param>
    /// <param name="_InliningMode">
    ///     The inlining scheduling policy for current functor.
    /// </param>
#if _MSC_VER >= 1800
    typedef Concurrency::details::_TaskInliningMode_t _TaskInliningMode;
#else
    typedef Concurrency::details::_TaskInliningMode _TaskInliningMode;
#endif
    static void _ScheduleFuncWithAutoInline(const std::function<HRESULT(void)> & _Func, _TaskInliningMode _InliningMode)
    {
#if _MSC_VER >= 1800
        Concurrency::details::_TaskCollection_t::_RunTask(&_TaskProcThunk::_Bridge, new _TaskProcThunk(_Func), _InliningMode);
#else
        Concurrency::details::_StackGuard _Guard;
        if (_Guard._ShouldInline(_InliningMode))
        {
            _Func();
        }
        else
        {
            Concurrency::details::_CurrentScheduler::_ScheduleTask(reinterpret_cast<Concurrency::TaskProc>(&_TaskProcThunk::_Bridge), new _TaskProcThunk(_Func));
        }
#endif
    }
    class _ContextCallback
    {
        typedef std::function<HRESULT(void)> _CallbackFunction;

    public:

        static _ContextCallback _CaptureCurrent()
        {
            _ContextCallback _Context;
            _Context._Capture();
            return _Context;
        }

        ~_ContextCallback()
        {
            _Reset();
        }

        _ContextCallback(bool _DeferCapture = false)
        {
            if (_DeferCapture)
            {
                _M_context._M_captureMethod = _S_captureDeferred;
            }
            else
            {
                _M_context._M_pContextCallback = nullptr;
            }
        }

        // Resolves a context that was created as _S_captureDeferred based on the environment (ancestor, current context).
        void _Resolve(bool _CaptureCurrent)
        {
            if (_M_context._M_captureMethod == _S_captureDeferred)
            {
                _M_context._M_pContextCallback = nullptr;

                if (_CaptureCurrent)
                {
                    if (_IsCurrentOriginSTA())
                    {
                        _Capture();
                    }
#if _UITHREADCTXT_SUPPORT
                    else
                    {
                        // This method will fail if not called from the UI thread.
                        HRESULT _Hr = CaptureUiThreadContext(&_M_context._M_pContextCallback);
                        if (FAILED(_Hr))
                        {
                            _M_context._M_pContextCallback = nullptr;
                        }
                    }
#endif // _UITHREADCTXT_SUPPORT
                }
            }
        }

        void _Capture()
        {
            HRESULT _Hr = CoGetObjectContext(IID_IContextCallback, reinterpret_cast<void **>(&_M_context._M_pContextCallback));
            if (FAILED(_Hr))
            {
                _M_context._M_pContextCallback = nullptr;
            }
        }

        _ContextCallback(const _ContextCallback& _Src)
        {
            _Assign(_Src._M_context._M_pContextCallback);
        }

        _ContextCallback(_ContextCallback&& _Src)
        {
            _M_context._M_pContextCallback = _Src._M_context._M_pContextCallback;
            _Src._M_context._M_pContextCallback = nullptr;
        }

        _ContextCallback& operator=(const _ContextCallback& _Src)
        {
            if (this != &_Src)
            {
                _Reset();
                _Assign(_Src._M_context._M_pContextCallback);
            }
            return *this;
        }

        _ContextCallback& operator=(_ContextCallback&& _Src)
        {
            if (this != &_Src)
            {
                _M_context._M_pContextCallback = _Src._M_context._M_pContextCallback;
                _Src._M_context._M_pContextCallback = nullptr;
            }
            return *this;
        }

        bool _HasCapturedContext() const
        {
            _CONCRT_ASSERT(_M_context._M_captureMethod != _S_captureDeferred);
            return (_M_context._M_pContextCallback != nullptr);
        }

        HRESULT _CallInContext(_CallbackFunction _Func) const
        {
            if (!_HasCapturedContext())
            {
                _Func();
            }
            else
            {
                ComCallData callData;
                ZeroMemory(&callData, sizeof(callData));
                callData.pUserDefined = reinterpret_cast<void *>(&_Func);

                HRESULT _Hr = _M_context._M_pContextCallback->ContextCallback(&_Bridge, &callData, IID_ICallbackWithNoReentrancyToApplicationSTA, 5, nullptr);
                if (FAILED(_Hr))
                {
                    return _Hr;
                }
            }
            return S_OK;
        }

        bool operator==(const _ContextCallback& _Rhs) const
        {
            return (_M_context._M_pContextCallback == _Rhs._M_context._M_pContextCallback);
        }

        bool operator!=(const _ContextCallback& _Rhs) const
        {
            return !(operator==(_Rhs));
        }

    private:

        void _Reset()
        {
            if (_M_context._M_captureMethod != _S_captureDeferred && _M_context._M_pContextCallback != nullptr)
            {
                _M_context._M_pContextCallback->Release();
            }
        }

        void _Assign(IContextCallback *_PContextCallback)
        {
            _M_context._M_pContextCallback = _PContextCallback;
            if (_M_context._M_captureMethod != _S_captureDeferred && _M_context._M_pContextCallback != nullptr)
            {
                _M_context._M_pContextCallback->AddRef();
            }
        }

        static HRESULT __stdcall _Bridge(ComCallData *_PParam)
        {
            _CallbackFunction *pFunc = reinterpret_cast<_CallbackFunction *>(_PParam->pUserDefined);
            return (*pFunc)();
        }

        // Returns the origin information for the caller (runtime / Windows Runtime apartment as far as task continuations need know)
        static bool _IsCurrentOriginSTA()
        {
            APTTYPE _AptType;
            APTTYPEQUALIFIER _AptTypeQualifier;

            HRESULT hr = CoGetApartmentType(&_AptType, &_AptTypeQualifier);
            if (SUCCEEDED(hr))
            {
                // We determine the origin of a task continuation by looking at where .then is called, so we can tell whether
                // to need to marshal the continuation back to the originating apartment. If an STA thread is in executing in
                // a neutral aparment when it schedules a continuation, we will not marshal continuations back to the STA,
                // since variables used within a neutral apartment are expected to be apartment neutral.
                switch (_AptType)
                {
                case APTTYPE_MAINSTA:
                case APTTYPE_STA:
                    return true;
                default:
                    break;
                }
            }
            return false;
        }

        union
        {
            IContextCallback *_M_pContextCallback;
            size_t _M_captureMethod;
        } _M_context;

        static const size_t _S_captureDeferred = 1;
    };

#if _MSC_VER >= 1800
    template<typename _Type>
    struct _ResultHolder
    {
        void Set(const _Type& _type)
        {
            _Result = _type;
        }

        _Type Get()
        {
            return _Result;
        }

        _Type _Result;
    };

    template<typename _Type>
    struct _ResultHolder<_Type*>
    {
        void Set(_Type* const & _type)
        {
            _M_Result = _type;
        }

        _Type* Get()
        {
            return _M_Result.Get();
        }
    private:
        // ::Platform::Agile handle specialization of all hats
        // including ::Platform::String and ::Platform::Array
        Agile<_Type*> _M_Result;
    };

    //
    // The below are for composability with tasks auto-created from when_any / when_all / && / || constructs.
    //
    template<typename _Type>
    struct _ResultHolder<std::vector<_Type*>>
    {
        void Set(const std::vector<_Type*>& _type)
        {
            _Result.reserve(_type.size());

            for (auto _PTask = _type.begin(); _PTask != _type.end(); ++_PTask)
            {
                _Result.emplace_back(*_PTask);
            }
        }

        std::vector<_Type*> Get()
        {
            // Return vectory<T^> with the objects that are marshaled in the proper appartment
            std::vector<_Type*> _Return;
            _Return.reserve(_Result.size());

            for (auto _PTask = _Result.begin(); _PTask != _Result.end(); ++_PTask)
            {
                _Return.push_back(_PTask->Get()); // Agile will marshal the object to appropriate appartment if neccessary
            }

            return _Return;
        }

        std::vector< Agile<_Type*> > _Result;
    };

    template<typename _Type>
    struct _ResultHolder<std::pair<_Type*, void*> >
    {
        void Set(const std::pair<_Type*, size_t>& _type)
        {
            _M_Result = _type;
        }

        std::pair<_Type*, size_t> Get()
        {
            return std::make_pair(_M_Result.first, _M_Result.second);
        }
    private:
        std::pair<Agile<_Type*>, size_t> _M_Result;
    };
#else
    template<typename _Type>
    struct _ResultContext
    {
        static _ContextCallback _GetContext(bool /* _RuntimeAggregate */)
        {
            return _ContextCallback();
        }

        static _Type _GetValue(_Type _ObjInCtx, const _ContextCallback & /* _Ctx */, bool /* _RuntimeAggregate */)
        {
            return _ObjInCtx;
        }
    };

    template<typename _Type, size_t N = 0, bool bIsArray = std::is_array<_Type>::value>
    struct _MarshalHelper
    {
    };
    template<typename _Type, size_t N>
    struct _MarshalHelper<_Type, N, true>
    {
        static _Type* _Perform(_Type(&_ObjInCtx)[N], const _ContextCallback& _Ctx)
        {
            static_assert(__is_valid_winrt_type(_Type*), "must be a WinRT array compatible type");
            if (_ObjInCtx == nullptr)
            {
                return nullptr;
            }

            HRESULT _Hr;
            IStream * _PStream;
            _Ctx._CallInContext([&]() -> HRESULT {
                // It isn't safe to simply reinterpret_cast a hat type to IUnknown* because some types do not have a real vtable ptr.
                // Instead, we could to create a property value to make it "grow" the vtable ptr but instead primitives are not marshalled.

                IUnknown * _PUnk = winrt_array_type::create(_ObjInCtx, N);
                _Hr = CoMarshalInterThreadInterfaceInStream(winrt_type<_Type>::getuuid(), _PUnk, &_PStream);
                return S_OK;
            });

            // With an APPX manifest, this call should never fail.
            _CONCRT_ASSERT(SUCCEEDED(_Hr));

            _Type* _Proxy;
            //
            // Cannot use IID_PPV_ARGS with ^ types.
            //
            _Hr = CoGetInterfaceAndReleaseStream(_PStream, winrt_type<_Type>::getuuid(), reinterpret_cast<void**>(&_Proxy));
            if (FAILED(_Hr))
            {
                throw std::make_exception_ptr(_Hr);
            }
            return _Proxy;
        }
    };
    template<typename _Type>
    struct _MarshalHelper<_Type, 0, false>
    {
        static _Type* _Perform(_Type* _ObjInCtx, const _ContextCallback& _Ctx)
        {
            static_assert(std::is_base_of<IUnknown, _Type>::value || __is_valid_winrt_type(_Type), "must be a COM or WinRT type");
            if (_ObjInCtx == nullptr)
            {
                return nullptr;
            }

            HRESULT _Hr;
            IStream * _PStream;
            _Ctx._CallInContext([&]() -> HRESULT {
                // It isn't safe to simply reinterpret_cast a hat type to IUnknown* because some types do not have a real vtable ptr.
                // Instead, we could to create a property value to make it "grow" the vtable ptr but instead primitives are not marshalled.

                IUnknown * _PUnk = winrt_type<_Type>::create(_ObjInCtx);
                _Hr = CoMarshalInterThreadInterfaceInStream(winrt_type<_Type>::getuuid(), _PUnk, &_PStream);
                return S_OK;
            });

            // With an APPX manifest, this call should never fail.
            _CONCRT_ASSERT(SUCCEEDED(_Hr));

            _Type* _Proxy;
            //
            // Cannot use IID_PPV_ARGS with ^ types.
            //
            _Hr = CoGetInterfaceAndReleaseStream(_PStream, winrt_type<_Type>::getuuid(), reinterpret_cast<void**>(&_Proxy));
            if (FAILED(_Hr))
            {
                throw std::make_exception_ptr(_Hr);
            }
            return _Proxy;
        }
    };

    // Arrays must be converted to IPropertyValue objects.

    template<>
    struct _MarshalHelper<HSTRING__>
    {
        static HSTRING _Perform(HSTRING _ObjInCtx, const _ContextCallback& _Ctx)
        {
            return _ObjInCtx;
        }
    };

    template<typename _Type>
    _Type* _Marshal(_Type* _ObjInCtx, const _ContextCallback& _Ctx)
    {
        return _MarshalHelper<_Type>::_Perform(_ObjInCtx, _Ctx);
    }

    template<typename _Type>
    struct _InContext
    {
        static _Type _Get(_Type _ObjInCtx, const _ContextCallback& _Ctx)
        {
            return _ObjInCtx;
        }
    };

    template<typename _Type>
    struct _InContext<_Type*>
    {
        static _Type* _Get(_Type* _ObjInCtx, const _ContextCallback& _Ctx)
        {
            _ContextCallback _CurrentContext = _ContextCallback::_CaptureCurrent();
            if (!_Ctx._HasCapturedContext() || _Ctx == _CurrentContext)
            {
                return _ObjInCtx;
            }

            //
            // The object is from another apartment. If it's marshalable, do so.
            //
            return _Marshal<_Type>(_ObjInCtx, _Ctx);
        }
    };

    template<typename _Type>
    struct _ResultContext<_Type*>
    {
        static _Type* _GetValue(_Type* _ObjInCtx, const _ContextCallback& _Ctx, bool /* _RuntimeAggregate */)
        {
            return _InContext<_Type*>::_Get(_ObjInCtx, _Ctx);
        }

        static _ContextCallback _GetContext(bool /* _RuntimeAggregate */)
        {
            return _ContextCallback::_CaptureCurrent();
        }
    };

    //
    // The below are for composability with tasks auto-created from when_any / when_all / && / || constructs.
    //
    template<typename _Type>
    struct _ResultContext<std::vector<_Type*>>
    {
        static std::vector<_Type*> _GetValue(std::vector<_Type*> _ObjInCtx, const _ContextCallback& _Ctx, bool _RuntimeAggregate)
        {
            if (!_RuntimeAggregate)
            {
                return _ObjInCtx;
            }

            _ContextCallback _CurrentContext = _ContextCallback::_CaptureCurrent();
            if (!_Ctx._HasCapturedContext() || _Ctx == _CurrentContext)
            {
                return _ObjInCtx;
            }

            for (auto _It = _ObjInCtx.begin(); _It != _ObjInCtx.end(); ++_It)
            {
                *_It = _Marshal<_Type>(*_It, _Ctx);
            }

            return _ObjInCtx;
        }

        static _ContextCallback _GetContext(bool _RuntimeAggregate)
        {
            if (!_RuntimeAggregate)
            {
                return _ContextCallback();
            }
            else
            {
                return _ContextCallback::_CaptureCurrent();
            }
        }
    };

    template<typename _Type>
    struct _ResultContext<std::pair<_Type*, size_t>>
    {
        static std::pair<_Type*, size_t> _GetValue(std::pair<_Type*, size_t> _ObjInCtx, const _ContextCallback& _Ctx, bool _RuntimeAggregate)
        {
            if (!_RuntimeAggregate)
            {
                return _ObjInCtx;
            }

            _ContextCallback _CurrentContext = _ContextCallback::_CaptureCurrent();
            if (!_Ctx._HasCapturedContext() || _Ctx == _CurrentContext)
            {
                return _ObjInCtx;
            }

            return std::pair<_Type*, size_t>(_Marshal<_Type>(_ObjInCtx.first, _Ctx), _ObjInCtx.second);
        }

        static _ContextCallback _GetContext(bool _RuntimeAggregate)
        {
            if (!_RuntimeAggregate)
            {
                return _ContextCallback();
            }
            else
            {
                return _ContextCallback::_CaptureCurrent();
            }
        }
    };
#endif
    // An exception thrown by the task body is captured in an exception holder and it is shared with all value based continuations rooted at the task.
    // The exception is 'observed' if the user invokes get()/wait() on any of the tasks that are sharing this exception holder. If the exception
    // is not observed by the time the internal object owned by the shared pointer destructs, the process will fail fast.
    struct _ExceptionHolder
    {
#if _MSC_VER >= 1800
    private:
        void ReportUnhandledError()
        {
            if (_M_winRTException != nullptr)
            {
                throw _M_winRTException.Get();
            }
        }
    public:
        explicit _ExceptionHolder(const std::exception_ptr& _E, const _TaskCreationCallstack &_stackTrace) :
            _M_exceptionObserved(0), _M_stdException(_E), _M_stackTrace(_stackTrace)
        {
        }

        explicit _ExceptionHolder(IRestrictedErrorInfo*& _E, const _TaskCreationCallstack &_stackTrace) :
            _M_exceptionObserved(0), _M_winRTException(_E), _M_stackTrace(_stackTrace)
        {
        }
#else
        explicit _ExceptionHolder(const std::exception_ptr& _E, void* _SourceAddressHint) :
        _M_exceptionObserved(0), _M_stdException(_E), _M_disassembleMe(_SourceAddressHint)
        {
        }

        explicit _ExceptionHolder(IRestrictedErrorInfo*& _E, void* _SourceAddressHint) :
            _M_exceptionObserved(0), _M_disassembleMe(_SourceAddressHint), _M_winRTException(_E)
        {
        }
#endif
        __declspec(noinline)
            ~_ExceptionHolder()
        {
            if (_M_exceptionObserved == 0)
            {
#if _MSC_VER >= 1800
                // If you are trapped here, it means an exception thrown in task chain didn't get handled.
                // Please add task-based continuation to handle all exceptions coming from tasks.
                // this->_M_stackTrace keeps the creation callstack of the task generates this exception.
                _REPORT_PPLTASK_UNOBSERVED_EXCEPTION();
#else
                // Disassemble at this->_M_disassembleMe to get to the source location right after either the creation of the task (constructor
                // or then method) that encountered this exception, or the set_exception call for a task_completion_event.
                Concurrency::details::_ReportUnobservedException();
#endif
            }
        }

        void _RethrowUserException()
        {
            if (_M_exceptionObserved == 0)
            {
#if _MSC_VER >= 1800
                Concurrency::details::atomic_exchange(_M_exceptionObserved, 1l);
#else
                _InterlockedExchange(&_M_exceptionObserved, 1);
#endif
            }

            if (_M_winRTException != nullptr)
            {
                throw _M_winRTException.Get();
            }
            std::rethrow_exception(_M_stdException);
        }

        // A variable that remembers if this exception was every rethrown into user code (and hence handled by the user). Exceptions that
        // are unobserved when the exception holder is destructed will terminate the process.
#if _MSC_VER >= 1800
        Concurrency::details::atomic_long _M_exceptionObserved;
#else
        long volatile _M_exceptionObserved;
#endif

        // Either _M_stdException or _M_winRTException is populated based on the type of exception encountered.
        std::exception_ptr _M_stdException;
        Microsoft::WRL::ComPtr<IRestrictedErrorInfo> _M_winRTException;

        // Disassembling this value will point to a source instruction right after a call instruction. If the call is to create_task,
        // a task constructor or the then method, the task created by that method is the one that encountered this exception. If the call
        // is to task_completion_event::set_exception, the set_exception method was the source of the exception.
        // DO NOT REMOVE THIS VARIABLE. It is extremely helpful for debugging.
#if _MSC_VER >= 1800
        _TaskCreationCallstack _M_stackTrace;
#else
        void* _M_disassembleMe;
#endif
    };

#ifndef RUNTIMECLASS_Concurrency_winrt_details__AsyncInfoImpl_DEFINED
#define RUNTIMECLASS_Concurrency_winrt_details__AsyncInfoImpl_DEFINED
    extern const __declspec(selectany) WCHAR RuntimeClass_Concurrency_winrt_details__AsyncInfoImpl[] = L"Concurrency_winrt.details._AsyncInfoImpl";
#endif

    /// <summary>
    ///     Base converter class for converting asynchronous interfaces to IAsyncOperation
    /// </summary>
    template<typename _AsyncOperationType, typename _CompletionHandlerType, typename _Result_abi>
    struct _AsyncInfoImpl abstract : public Microsoft::WRL::RuntimeClass<
        Microsoft::WRL::RuntimeClassFlags< Microsoft::WRL::RuntimeClassType::WinRt>,
        Microsoft::WRL::Implements<Microsoft::WRL::AsyncBase<_CompletionHandlerType>>>
    {
        InspectableClass(RuntimeClass_Concurrency_winrt_details__AsyncInfoImpl, BaseTrust)
    public:
        // The async action, action with progress or operation with progress that this stub forwards to.
#if _MSC_VER >= 1800
        Agile<_AsyncOperationType> _M_asyncInfo;
#else
        Microsoft::WRL::ComPtr<_AsyncOperationType> _M_asyncInfo;
        // The context in which this async info is valid - may be different from the context where the completion handler runs,
        // and may require marshalling before it is used.
        _ContextCallback _M_asyncInfoContext;
#endif

        Microsoft::WRL::ComPtr<_CompletionHandlerType> _M_CompletedHandler;

        _AsyncInfoImpl(_AsyncOperationType* _AsyncInfo) : _M_asyncInfo(_AsyncInfo)
#if _MSC_VER < 1800
            , _M_asyncInfoContext(_ContextCallback::_CaptureCurrent())
#endif
        {}

    public:
        virtual HRESULT OnStart() { return S_OK; }
        virtual void OnCancel() {
            Microsoft::WRL::ComPtr<ABI::Windows::Foundation::IAsyncInfo> pAsyncInfo;
            HRESULT hr;
#if _MSC_VER >= 1800
            if (SUCCEEDED(hr = _M_asyncInfo.Get()->QueryInterface<ABI::Windows::Foundation::IAsyncInfo>(pAsyncInfo.GetAddressOf())))
#else
            if (SUCCEEDED(hr = _M_asyncInfo.As(&pAsyncInfo)))
#endif
                pAsyncInfo->Cancel();
            else
                throw std::make_exception_ptr(hr);
        }
        virtual void OnClose() {
            Microsoft::WRL::ComPtr<ABI::Windows::Foundation::IAsyncInfo> pAsyncInfo;
            HRESULT hr;
#if _MSC_VER >= 1800
            if (SUCCEEDED(hr = _M_asyncInfo.Get()->QueryInterface<ABI::Windows::Foundation::IAsyncInfo>(pAsyncInfo.GetAddressOf())))
#else
            if (SUCCEEDED(hr = _M_asyncInfo.As(&pAsyncInfo)))
#endif
                pAsyncInfo->Close();
            else
                throw std::make_exception_ptr(hr);
        }

        virtual STDMETHODIMP get_ErrorCode(HRESULT* errorCode)
        {
            Microsoft::WRL::ComPtr<ABI::Windows::Foundation::IAsyncInfo> pAsyncInfo;
            HRESULT hr;
#if _MSC_VER >= 1800
            if (SUCCEEDED(hr = _M_asyncInfo.Get()->QueryInterface<ABI::Windows::Foundation::IAsyncInfo>(pAsyncInfo.GetAddressOf())))
#else
            if (SUCCEEDED(hr = _M_asyncInfo.As(&pAsyncInfo)))
#endif
                return pAsyncInfo->get_ErrorCode(errorCode);
            return hr;
        }

        virtual STDMETHODIMP get_Id(UINT* id)
        {
            Microsoft::WRL::ComPtr<ABI::Windows::Foundation::IAsyncInfo> pAsyncInfo;
            HRESULT hr;
#if _MSC_VER >= 1800
            if (SUCCEEDED(hr = _M_asyncInfo.Get()->QueryInterface<ABI::Windows::Foundation::IAsyncInfo>(pAsyncInfo.GetAddressOf())))
#else
            if (SUCCEEDED(hr = _M_asyncInfo.As(&pAsyncInfo)))
#endif
                return pAsyncInfo->get_Id(id);
            return hr;
        }

        virtual STDMETHODIMP get_Status(ABI::Windows::Foundation::AsyncStatus *status)
        {
            Microsoft::WRL::ComPtr<ABI::Windows::Foundation::IAsyncInfo> pAsyncInfo;
            HRESULT hr;
#if _MSC_VER >= 1800
            if (SUCCEEDED(hr = _M_asyncInfo.Get()->QueryInterface<ABI::Windows::Foundation::IAsyncInfo>(pAsyncInfo.GetAddressOf())))
#else
            if (SUCCEEDED(hr = _M_asyncInfo.As(&pAsyncInfo)))
#endif
                return pAsyncInfo->get_Status(status);
            return hr;
        }

        virtual STDMETHODIMP GetResults(_Result_abi*) { throw std::runtime_error("derived class must implement"); }

        virtual STDMETHODIMP get_Completed(_CompletionHandlerType** handler)
        {
            if (!handler) return E_POINTER;
            _M_CompletedHandler.CopyTo(handler);
            return S_OK;
        }

        virtual    STDMETHODIMP put_Completed(_CompletionHandlerType* value)
        {
            _M_CompletedHandler = value;
            Microsoft::WRL::ComPtr<_CompletionHandlerType> handler = Microsoft::WRL::Callback<_CompletionHandlerType>([&](_AsyncOperationType*, ABI::Windows::Foundation::AsyncStatus status) -> HRESULT {
#if _MSC_VER < 1800
                // Update the saved _M_asyncInfo with a proxy valid in the current context if required. Some Windows APIs return an IAsyncInfo
                // that is only valid for the thread that called the API to retrieve. Since this completion handler can run on any thread, we
                // need to ensure that the async info is valid in the current apartment. _M_asyncInfo will be accessed via calls to 'this' inside
                // _AsyncInit.
                _M_asyncInfo = _ResultContext<_AsyncOperationType*>::_GetValue(_M_asyncInfo.Get(), _M_asyncInfoContext, false);
#endif
                return _M_CompletedHandler->Invoke(_M_asyncInfo.Get(), status);
            });
#if _MSC_VER >= 1800
            return _M_asyncInfo.Get()->put_Completed(handler.Get());
#else
            return _M_asyncInfo->put_Completed(handler.Get());
#endif
        }
    };

    extern const __declspec(selectany) WCHAR RuntimeClass_IAsyncOperationToAsyncOperationConverter[] = L"_IAsyncOperationToAsyncOperationConverter";

    /// <summary>
    ///     Class _IAsyncOperationToAsyncOperationConverter is used to convert an instance of IAsyncOperationWithProgress<T> into IAsyncOperation<T>
    /// </summary>
    template<typename _Result>
    struct _IAsyncOperationToAsyncOperationConverter :
        _AsyncInfoImpl<ABI::Windows::Foundation::IAsyncOperation<_Result>,
        ABI::Windows::Foundation::IAsyncOperationCompletedHandler<_Result>,
        typename ABI::Windows::Foundation::Internal::GetAbiType<decltype(_UnwrapAsyncOperationSelector(stdx::declval<ABI::Windows::Foundation::IAsyncOperation<_Result>*>()))>::type>
    {
        typedef typename ABI::Windows::Foundation::Internal::GetAbiType<decltype(_UnwrapAsyncOperationSelector(stdx::declval<ABI::Windows::Foundation::IAsyncOperation<_Result>*>()))>::type _Result_abi;

        InspectableClass(RuntimeClass_IAsyncOperationToAsyncOperationConverter, BaseTrust)
    public:
        _IAsyncOperationToAsyncOperationConverter(ABI::Windows::Foundation::IAsyncOperation<_Result>* _Operation) :
            _AsyncInfoImpl<ABI::Windows::Foundation::IAsyncOperation<_Result>,
            ABI::Windows::Foundation::IAsyncOperationCompletedHandler<_Result>,
            _Result_abi>(_Operation) {}
    public:
        virtual STDMETHODIMP GetResults(_Result_abi* results) override {
            if (!results) return E_POINTER;
#if _MSC_VER >= 1800
            return _M_asyncInfo.Get()->GetResults(results);
#else
            return _M_asyncInfo->GetResults(results);
#endif
        }
    };

    extern const __declspec(selectany) WCHAR RuntimeClass_IAsyncOperationWithProgressToAsyncOperationConverter[] = L"_IAsyncOperationWithProgressToAsyncOperationConverter";

    /// <summary>
    ///     Class _IAsyncOperationWithProgressToAsyncOperationConverter is used to convert an instance of IAsyncOperationWithProgress<T> into IAsyncOperation<T>
    /// </summary>
    template<typename _Result, typename _Progress>
    struct _IAsyncOperationWithProgressToAsyncOperationConverter :
    _AsyncInfoImpl<ABI::Windows::Foundation::IAsyncOperationWithProgress<_Result, _Progress>,
        ABI::Windows::Foundation::IAsyncOperationWithProgressCompletedHandler<_Result, _Progress>,
        typename ABI::Windows::Foundation::Internal::GetAbiType<decltype(_UnwrapAsyncOperationWithProgressSelector(stdx::declval<ABI::Windows::Foundation::IAsyncOperationWithProgress<_Result, _Progress>*>()))>::type>
    {
        typedef typename ABI::Windows::Foundation::Internal::GetAbiType<decltype(_UnwrapAsyncOperationWithProgressSelector(stdx::declval<ABI::Windows::Foundation::IAsyncOperationWithProgress<_Result, _Progress>*>()))>::type _Result_abi;

        InspectableClass(RuntimeClass_IAsyncOperationWithProgressToAsyncOperationConverter, BaseTrust)
    public:
        _IAsyncOperationWithProgressToAsyncOperationConverter(ABI::Windows::Foundation::IAsyncOperationWithProgress<_Result, _Progress>* _Operation) :
            _AsyncInfoImpl<ABI::Windows::Foundation::IAsyncOperationWithProgress<_Result, _Progress>,
            ABI::Windows::Foundation::IAsyncOperationWithProgressCompletedHandler<_Result, _Progress>,
            _Result_abi>(_Operation) {}
    public:
        virtual STDMETHODIMP GetResults(_Result_abi* results) override {
            if (!results) return E_POINTER;
#if _MSC_VER >= 1800
            return _M_asyncInfo.Get()->GetResults(results);
#else
            return _M_asyncInfo->GetResults(results);
#endif
        }
    };

    extern const __declspec(selectany) WCHAR RuntimeClass_IAsyncActionToAsyncOperationConverter[] = L"_IAsyncActionToAsyncOperationConverter";

    /// <summary>
    ///     Class _IAsyncActionToAsyncOperationConverter is used to convert an instance of IAsyncAction into IAsyncOperation<_Unit_type>
    /// </summary>
    struct _IAsyncActionToAsyncOperationConverter :
    _AsyncInfoImpl<ABI::Windows::Foundation::IAsyncAction,
        ABI::Windows::Foundation::IAsyncActionCompletedHandler,
        _Unit_type>
    {
        InspectableClass(RuntimeClass_IAsyncActionToAsyncOperationConverter, BaseTrust)
    public:
        _IAsyncActionToAsyncOperationConverter(ABI::Windows::Foundation::IAsyncAction* _Operation) :
            _AsyncInfoImpl<ABI::Windows::Foundation::IAsyncAction,
            ABI::Windows::Foundation::IAsyncActionCompletedHandler,
            _Unit_type>(_Operation) {}

    public:
        virtual STDMETHODIMP GetResults(details::_Unit_type* results)
        {
            if (!results) return E_POINTER;
            // Invoke GetResults on the IAsyncAction to allow exceptions to be thrown to higher layers before returning a dummy value.
#if _MSC_VER >= 1800
            HRESULT hr = _M_asyncInfo.Get()->GetResults();
#else
            HRESULT hr = _M_asyncInfo->GetResults();
#endif
            if (SUCCEEDED(hr)) *results = _Unit_type();
            return hr;
        }
    };

    extern const __declspec(selectany) WCHAR RuntimeClass_IAsyncActionWithProgressToAsyncOperationConverter[] = L"_IAsyncActionWithProgressToAsyncOperationConverter";

    /// <summary>
    ///     Class _IAsyncActionWithProgressToAsyncOperationConverter is used to convert an instance of IAsyncActionWithProgress into IAsyncOperation<_Unit_type>
    /// </summary>
    template<typename _Progress>
    struct _IAsyncActionWithProgressToAsyncOperationConverter :
    _AsyncInfoImpl<ABI::Windows::Foundation::IAsyncActionWithProgress<_Progress>,
        ABI::Windows::Foundation::IAsyncActionWithProgressCompletedHandler<_Progress>,
        _Unit_type>
    {
        InspectableClass(RuntimeClass_IAsyncActionWithProgressToAsyncOperationConverter, BaseTrust)
    public:
        _IAsyncActionWithProgressToAsyncOperationConverter(ABI::Windows::Foundation::IAsyncActionWithProgress<_Progress>* _Action) :
            _AsyncInfoImpl<ABI::Windows::Foundation::IAsyncActionWithProgress<_Progress>,
            ABI::Windows::Foundation::IAsyncActionWithProgressCompletedHandler<_Progress>,
            _Unit_type>(_Action) {}
    public:
        virtual STDMETHODIMP GetResults(_Unit_type* results) override
        {
            if (!results) return E_POINTER;
            // Invoke GetResults on the IAsyncActionWithProgress to allow exceptions to be thrown before returning a dummy value.
#if _MSC_VER >= 1800
            HRESULT hr = _M_asyncInfo.Get()->GetResults();
#else
            HRESULT hr = _M_asyncInfo->GetResults();
#endif
            if (SUCCEEDED(hr)) *results = _Unit_type();
            return hr;
        }
    };
}

/// <summary>
///     The <c>task_continuation_context</c> class allows you to specify where you would like a continuation to be executed.
///     It is only useful to use this class from a Windows Store app. For non-Windows Store apps, the task continuation's
///     execution context is determined by the runtime, and not configurable.
/// </summary>
/// <seealso cref="task Class"/>
/**/
class task_continuation_context : public details::_ContextCallback
{
public:

    /// <summary>
    ///     Creates the default task continuation context.
    /// </summary>
    /// <returns>
    ///     The default continuation context.
    /// </returns>
    /// <remarks>
    ///     The default context is used if you don't specifiy a continuation context when you call the <c>then</c> method. In Windows
    ///     applications for Windows 7 and below, as well as desktop applications on Windows 8 and higher, the runtime determines where
    ///     task continuations will execute. However, in a Windows Store app, the default continuation context for a continuation on an
    ///     apartment aware task is the apartment where <c>then</c> is invoked.
    ///     <para>An apartment aware task is a task that unwraps a Windows Runtime <c>IAsyncInfo</c> interface, or a task that is descended from such
    ///     a task. Therefore, if you schedule a continuation on an apartment aware task in a Windows Runtime STA, the continuation will execute in
    ///     that STA.</para>
    ///     <para>A continuation on a non-apartment aware task will execute in a context the Runtime chooses.</para>
    /// </remarks>
    /**/
    static task_continuation_context use_default()
    {
        // The callback context is created with the context set to CaptureDeferred and resolved when it is used in .then()
        return task_continuation_context(true); // sets it to deferred, is resolved in the constructor of _ContinuationTaskHandle
    }

    /// <summary>
    ///     Creates a task continuation context which allows the Runtime to choose the execution context for a continuation.
    /// </summary>
    /// <returns>
    ///     A task continuation context that represents an arbitrary location.
    /// </returns>
    /// <remarks>
    ///     When this continuation context is used the continuation will execute in a context the runtime chooses even if the antecedent task
    ///     is apartment aware.
    ///     <para><c>use_arbitrary</c> can be used to turn off the default behavior for a continuation on an apartment
    ///     aware task created in an STA. </para>
    ///     <para>This method is only available to Windows Store apps.</para>
    /// </remarks>
    /**/
    static task_continuation_context use_arbitrary()
    {
        task_continuation_context _Arbitrary(true);
        _Arbitrary._Resolve(false);
        return _Arbitrary;
    }

    /// <summary>
    ///     Returns a task continuation context object that represents the current execution context.
    /// </summary>
    /// <returns>
    ///     The current execution context.
    /// </returns>
    /// <remarks>
    ///     This method captures the caller's Windows Runtime context so that continuations can be executed in the right apartment.
    ///     <para>The value returned by <c>use_current</c> can be used to indicate to the Runtime that the continuation should execute in
    ///     the captured context (STA vs MTA) regardless of whether or not the antecedent task is apartment aware. An apartment aware task is
    ///     a task that unwraps a Windows Runtime <c>IAsyncInfo</c> interface, or a task that is descended from such a task. </para>
    ///     <para>This method is only available to Windows Store apps.</para>
    /// </remarks>
    /**/
    static task_continuation_context use_current()
    {
        task_continuation_context _Current(true);
        _Current._Resolve(true);
        return _Current;
    }

private:

    task_continuation_context(bool _DeferCapture = false) : details::_ContextCallback(_DeferCapture)
    {
    }
};

#if _MSC_VER >= 1800
class task_options;
namespace details
{
    struct _Internal_task_options
    {
        bool _M_hasPresetCreationCallstack;
        _TaskCreationCallstack _M_presetCreationCallstack;

        void _set_creation_callstack(const _TaskCreationCallstack &_callstack)
        {
            _M_hasPresetCreationCallstack = true;
            _M_presetCreationCallstack = _callstack;
        }
        _Internal_task_options()
        {
            _M_hasPresetCreationCallstack = false;
        }
    };

    inline _Internal_task_options &_get_internal_task_options(task_options &options);
    inline const _Internal_task_options &_get_internal_task_options(const task_options &options);
}
/// <summary>
///     Represents the allowed options for creating a task
/// </summary>
class task_options
{
public:


    /// <summary>
    ///     Default list of task creation options
    /// </summary>
    task_options()
        : _M_Scheduler(Concurrency::get_ambient_scheduler()),
        _M_CancellationToken(Concurrency::cancellation_token::none()),
        _M_ContinuationContext(task_continuation_context::use_default()),
        _M_HasCancellationToken(false),
        _M_HasScheduler(false)
    {
    }

    /// <summary>
    ///     Task option that specify a cancellation token
    /// </summary>
    task_options(Concurrency::cancellation_token _Token)
        : _M_Scheduler(Concurrency::get_ambient_scheduler()),
        _M_CancellationToken(_Token),
        _M_ContinuationContext(task_continuation_context::use_default()),
        _M_HasCancellationToken(true),
        _M_HasScheduler(false)
    {
    }

    /// <summary>
    ///     Task option that specify a continuation context. This is valid only for continuations (then)
    /// </summary>
    task_options(task_continuation_context _ContinuationContext)
        : _M_Scheduler(Concurrency::get_ambient_scheduler()),
        _M_CancellationToken(Concurrency::cancellation_token::none()),
        _M_ContinuationContext(_ContinuationContext),
        _M_HasCancellationToken(false),
        _M_HasScheduler(false)
    {
    }

    /// <summary>
    ///     Task option that specify a cancellation token and a continuation context. This is valid only for continuations (then)
    /// </summary>
    task_options(Concurrency::cancellation_token _Token, task_continuation_context _ContinuationContext)
        : _M_Scheduler(Concurrency::get_ambient_scheduler()),
        _M_CancellationToken(_Token),
        _M_ContinuationContext(_ContinuationContext),
        _M_HasCancellationToken(false),
        _M_HasScheduler(false)
    {
    }

    /// <summary>
    ///     Task option that specify a scheduler with shared lifetime
    /// </summary>
    template<typename _SchedType>
    task_options(std::shared_ptr<_SchedType> _Scheduler)
        : _M_Scheduler(std::move(_Scheduler)),
        _M_CancellationToken(cancellation_token::none()),
        _M_ContinuationContext(task_continuation_context::use_default()),
        _M_HasCancellationToken(false),
        _M_HasScheduler(true)
    {
    }

    /// <summary>
    ///     Task option that specify a scheduler reference
    /// </summary>
    task_options(Concurrency::scheduler_interface& _Scheduler)
        : _M_Scheduler(&_Scheduler),
        _M_CancellationToken(Concurrency::cancellation_token::none()),
        _M_ContinuationContext(task_continuation_context::use_default()),
        _M_HasCancellationToken(false),
        _M_HasScheduler(true)
    {
    }

    /// <summary>
    ///     Task option that specify a scheduler
    /// </summary>
    task_options(Concurrency::scheduler_ptr _Scheduler)
        : _M_Scheduler(std::move(_Scheduler)),
        _M_CancellationToken(Concurrency::cancellation_token::none()),
        _M_ContinuationContext(task_continuation_context::use_default()),
        _M_HasCancellationToken(false),
        _M_HasScheduler(true)
    {
    }

    /// <summary>
    ///     Task option copy constructor
    /// </summary>
    task_options(const task_options& _TaskOptions)
        : _M_Scheduler(_TaskOptions.get_scheduler()),
        _M_CancellationToken(_TaskOptions.get_cancellation_token()),
        _M_ContinuationContext(_TaskOptions.get_continuation_context()),
        _M_HasCancellationToken(_TaskOptions.has_cancellation_token()),
        _M_HasScheduler(_TaskOptions.has_scheduler())
    {
    }

    /// <summary>
    ///     Sets the given token in the options
    /// </summary>
    void set_cancellation_token(Concurrency::cancellation_token _Token)
    {
        _M_CancellationToken = _Token;
        _M_HasCancellationToken = true;
    }

    /// <summary>
    ///     Sets the given continuation context in the options
    /// </summary>
    void set_continuation_context(task_continuation_context _ContinuationContext)
    {
        _M_ContinuationContext = _ContinuationContext;
    }

    /// <summary>
    ///     Indicates whether a cancellation token was specified by the user
    /// </summary>
    bool has_cancellation_token() const
    {
        return _M_HasCancellationToken;
    }

    /// <summary>
    ///     Returns the cancellation token
    /// </summary>
    Concurrency::cancellation_token get_cancellation_token() const
    {
        return _M_CancellationToken;
    }

    /// <summary>
    ///     Returns the continuation context
    /// </summary>
    task_continuation_context get_continuation_context() const
    {
        return _M_ContinuationContext;
    }

    /// <summary>
    ///     Indicates whether a scheduler n was specified by the user
    /// </summary>
    bool has_scheduler() const
    {
        return _M_HasScheduler;
    }

    /// <summary>
    ///     Returns the scheduler
    /// </summary>
    Concurrency::scheduler_ptr get_scheduler() const
    {
        return _M_Scheduler;
    }

private:

    task_options const& operator=(task_options const& _Right);
    friend details::_Internal_task_options &details::_get_internal_task_options(task_options &);
    friend const details::_Internal_task_options &details::_get_internal_task_options(const task_options &);

    Concurrency::scheduler_ptr _M_Scheduler;
    Concurrency::cancellation_token _M_CancellationToken;
    task_continuation_context _M_ContinuationContext;
    details::_Internal_task_options _M_InternalTaskOptions;
    bool _M_HasCancellationToken;
    bool _M_HasScheduler;
};
#endif

namespace details
{
#if _MSC_VER >= 1800
    inline _Internal_task_options & _get_internal_task_options(task_options &options)
    {
        return options._M_InternalTaskOptions;
    }
    inline const _Internal_task_options & _get_internal_task_options(const task_options &options)
    {
        return options._M_InternalTaskOptions;
    }
#endif
    struct _Task_impl_base;
    template<typename _ReturnType> struct _Task_impl;

    template<typename _ReturnType>
    struct _Task_ptr
    {
        typedef std::shared_ptr<_Task_impl<_ReturnType>> _Type;
#if _MSC_VER >= 1800
        static _Type _Make(Concurrency::details::_CancellationTokenState * _Ct, Concurrency::scheduler_ptr _Scheduler_arg) { return std::make_shared<_Task_impl<_ReturnType>>(_Ct, _Scheduler_arg); }
#else
        static _Type _Make(Concurrency::details::_CancellationTokenState * _Ct) { return std::make_shared<_Task_impl<_ReturnType>>(_Ct); }
#endif
    };
#if _MSC_VER >= 1800
    typedef Concurrency::details::_TaskCollection_t::_TaskProcHandle_t _UnrealizedChore_t;
    typedef _UnrealizedChore_t _UnrealizedChore;
    typedef Concurrency::extensibility::scoped_critical_section_t scoped_lock;
    typedef Concurrency::extensibility::critical_section_t critical_section;
    typedef Concurrency::details::atomic_size_t atomic_size_t;
#else
    typedef Concurrency::details::_UnrealizedChore _UnrealizedChore;
    typedef Concurrency::critical_section::scoped_lock scoped_lock;
    typedef Concurrency::critical_section critical_section;
    typedef volatile size_t atomic_size_t;
#endif
    typedef std::shared_ptr<_Task_impl_base> _Task_ptr_base;
    // The weak-typed base task handler for continuation tasks.
    struct _ContinuationTaskHandleBase : _UnrealizedChore
    {
        _ContinuationTaskHandleBase * _M_next;
        task_continuation_context _M_continuationContext;
        bool _M_isTaskBasedContinuation;

        // This field gives inlining scheduling policy for current chore.
        _TaskInliningMode _M_inliningMode;

        virtual _Task_ptr_base _GetTaskImplBase() const = 0;

        _ContinuationTaskHandleBase() :
            _M_next(nullptr), _M_isTaskBasedContinuation(false), _M_continuationContext(task_continuation_context::use_default()), _M_inliningMode(Concurrency::details::_NoInline)
        {
        }
        virtual ~_ContinuationTaskHandleBase() {}
    };
#if _MSC_VER >= 1800
#if _PPLTASK_ASYNC_LOGGING
    // GUID used for identifying causality logs from PPLTask
    const ::Platform::Guid _PPLTaskCausalityPlatformID(0x7A76B220, 0xA758, 0x4E6E, 0xB0, 0xE0, 0xD7, 0xC6, 0xD7, 0x4A, 0x88, 0xFE);

    __declspec(selectany) volatile long _isCausalitySupported = 0;

    inline bool _IsCausalitySupported()
    {
#if WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_DESKTOP)
        if (_isCausalitySupported == 0)
        {
            long _causality = 1;
            OSVERSIONINFOEX _osvi = {};
            _osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);

            // The Causality is supported on Windows version higher than Windows 8
            _osvi.dwMajorVersion = 6;
            _osvi.dwMinorVersion = 3;

            DWORDLONG _conditionMask = 0;
            VER_SET_CONDITION(_conditionMask, VER_MAJORVERSION, VER_GREATER_EQUAL);
            VER_SET_CONDITION(_conditionMask, VER_MINORVERSION, VER_GREATER_EQUAL);

            if (::VerifyVersionInfo(&_osvi, VER_MAJORVERSION | VER_MINORVERSION, _conditionMask))
            {
                _causality = 2;
            }

            _isCausalitySupported = _causality;
            return _causality == 2;
        }

        return _isCausalitySupported == 2 ? true : false;
#else
        return true;
#endif
    }

    // Stateful logger rests inside task_impl_base.
    struct _TaskEventLogger
    {
        _Task_impl_base *_M_task;
        bool _M_scheduled;
        bool _M_taskPostEventStarted;

        // Log before scheduling task
        void _LogScheduleTask(bool _isContinuation)
        {
            if (details::_IsCausalitySupported())
            {
                ::Windows::Foundation::Diagnostics::AsyncCausalityTracer::TraceOperationCreation(::Windows::Foundation::Diagnostics::CausalityTraceLevel::Required, ::Windows::Foundation::Diagnostics::CausalitySource::Library,
                    _PPLTaskCausalityPlatformID, reinterpret_cast<unsigned long long>(_M_task),
                    _isContinuation ? "Concurrency::PPLTask::ScheduleContinuationTask" : "Concurrency::PPLTask::ScheduleTask", 0);
                _M_scheduled = true;
            }
        }

        // It will log the cancel event but not canceled state. _LogTaskCompleted will log the terminal state, which includes cancel state.
        void _LogCancelTask()
        {
            if (details::_IsCausalitySupported())
            {
                ::Windows::Foundation::Diagnostics::AsyncCausalityTracer::TraceOperationRelation(::Windows::Foundation::Diagnostics::CausalityTraceLevel::Important, ::Windows::Foundation::Diagnostics::CausalitySource::Library,
                    _PPLTaskCausalityPlatformID, reinterpret_cast<unsigned long long>(_M_task), ::Windows::Foundation::Diagnostics::CausalityRelation::Cancel);

            }
        }

        // Log when task reaches terminal state. Note: the task can reach a terminal state (by cancellation or exception) without having run
        void _LogTaskCompleted();

        // Log when task body (which includes user lambda and other scheduling code) begin to run
        void _LogTaskExecutionStarted() { }

        // Log when task body finish executing
        void _LogTaskExecutionCompleted()
        {
            if (_M_taskPostEventStarted && details::_IsCausalitySupported())
            {
                ::Windows::Foundation::Diagnostics::AsyncCausalityTracer::TraceSynchronousWorkCompletion(::Windows::Foundation::Diagnostics::CausalityTraceLevel::Required, ::Windows::Foundation::Diagnostics::CausalitySource::Library,
                    ::Windows::Foundation::Diagnostics::CausalitySynchronousWork::CompletionNotification);
            }
        }

        // Log right before user lambda being invoked
        void _LogWorkItemStarted()
        {
            if (details::_IsCausalitySupported())
            {
                ::Windows::Foundation::Diagnostics::AsyncCausalityTracer::TraceSynchronousWorkStart(::Windows::Foundation::Diagnostics::CausalityTraceLevel::Required, ::Windows::Foundation::Diagnostics::CausalitySource::Library,
                    _PPLTaskCausalityPlatformID, reinterpret_cast<unsigned long long>(_M_task), ::Windows::Foundation::Diagnostics::CausalitySynchronousWork::Execution);
            }
        }

        // Log right after user lambda being invoked
        void _LogWorkItemCompleted()
        {
            if (details::_IsCausalitySupported())
            {
                ::Windows::Foundation::Diagnostics::AsyncCausalityTracer::TraceSynchronousWorkCompletion(::Windows::Foundation::Diagnostics::CausalityTraceLevel::Required, ::Windows::Foundation::Diagnostics::CausalitySource::Library,
                    ::Windows::Foundation::Diagnostics::CausalitySynchronousWork::Execution);

                ::Windows::Foundation::Diagnostics::AsyncCausalityTracer::TraceSynchronousWorkStart(::Windows::Foundation::Diagnostics::CausalityTraceLevel::Required, ::Windows::Foundation::Diagnostics::CausalitySource::Library,
                    _PPLTaskCausalityPlatformID, reinterpret_cast<unsigned long long>(_M_task), ::Windows::Foundation::Diagnostics::CausalitySynchronousWork::CompletionNotification);
                _M_taskPostEventStarted = true;
            }
        }

        _TaskEventLogger(_Task_impl_base *_task) : _M_task(_task)
        {
            _M_scheduled = false;
            _M_taskPostEventStarted = false;
        }
    };

    // Exception safe logger for user lambda
    struct _TaskWorkItemRAIILogger
    {
        _TaskEventLogger &_M_logger;
        _TaskWorkItemRAIILogger(_TaskEventLogger &_taskHandleLogger) : _M_logger(_taskHandleLogger)
        {
            _M_logger._LogWorkItemStarted();
        }

        ~_TaskWorkItemRAIILogger()
        {
            _M_logger._LogWorkItemCompleted();
        }
        _TaskWorkItemRAIILogger &operator =(const _TaskWorkItemRAIILogger &); // cannot be assigned
    };

#else
    inline void _LogCancelTask(_Task_impl_base *) {}
    struct _TaskEventLogger
    {
        void _LogScheduleTask(bool) {}
        void _LogCancelTask() {}
        void _LogWorkItemStarted() {}
        void _LogWorkItemCompleted() {}
        void _LogTaskExecutionStarted() {}
        void _LogTaskExecutionCompleted() {}
        void _LogTaskCompleted() {}
        _TaskEventLogger(_Task_impl_base *) {}
    };
    struct _TaskWorkItemRAIILogger
    {
        _TaskWorkItemRAIILogger(_TaskEventLogger &) {}
    };
#endif
#endif
    /// <summary>
    ///     The _PPLTaskHandle is the strong-typed task handle base. All user task functions need to be wrapped in this task handler
    ///     to be executable by PPL. By deriving from a different _BaseTaskHandle, it can be used for both initial tasks and continuation tasks.
    ///     For initial tasks, _PPLTaskHandle will be derived from _UnrealizedChore, and for continuation tasks, it will be derived from
    ///     _ContinuationTaskHandleBase. The life time of the _PPLTaskHandle object is be managed by runtime if task handle is scheduled.
    /// </summary>
    /// <typeparam name="_ReturnType">
    ///     The result type of the _Task_impl.
    /// </typeparam>
    /// <typeparam name="_DerivedTaskHandle">
    ///     The derived task handle class. The <c>operator ()</c> needs to be implemented.
    /// </typeparam>
    /// <typeparam name="_BaseTaskHandle">
    ///     The base class from which _PPLTaskHandle should be derived. This is either _UnrealizedChore or _ContinuationTaskHandleBase.
    /// </typeparam>
    template<typename _ReturnType, typename _DerivedTaskHandle, typename _BaseTaskHandle>
    struct _PPLTaskHandle : _BaseTaskHandle
    {
        _PPLTaskHandle(const typename _Task_ptr<_ReturnType>::_Type & _PTask) : _M_pTask(_PTask)
        {
#if _MSC_VER < 1800
            m_pFunction = reinterpret_cast <Concurrency::TaskProc> (&_UnrealizedChore::_InvokeBridge<_PPLTaskHandle>);
            _SetRuntimeOwnsLifetime(true);
#endif
        }
        virtual ~_PPLTaskHandle() {
#if _MSC_VER >= 1800
            // Here is the sink of all task completion code paths
            _M_pTask->_M_taskEventLogger._LogTaskCompleted();
#endif
        }
#if _MSC_VER >= 1800
        virtual void invoke() const
#else
        void operator()() const
#endif
        {
            // All exceptions should be rethrown to finish cleanup of the task collection. They will be caught and handled
            // by the runtime.
            _CONCRT_ASSERT(_M_pTask != nullptr);
            if (!_M_pTask->_TransitionedToStarted()) {
#if _MSC_VER >= 1800
                static_cast<const _DerivedTaskHandle *>(this)->_SyncCancelAndPropagateException();
#endif
                return;
            }
#if _MSC_VER >= 1800
            _M_pTask->_M_taskEventLogger._LogTaskExecutionStarted();
#endif
            try
            {
                // All derived task handle must implement this contract function.
                static_cast<const _DerivedTaskHandle *>(this)->_Perform();
            }
            catch (const Concurrency::task_canceled &)
            {
                _M_pTask->_Cancel(true);
#if _MSC_VER < 1800
                throw;
#endif
            }
            catch (const Concurrency::details::_Interruption_exception &)
            {
                _M_pTask->_Cancel(true);
#if _MSC_VER < 1800
                throw;
#endif
            }
            catch (IRestrictedErrorInfo*& _E)
            {
                _M_pTask->_CancelWithException(_E);
#if _MSC_VER < 1800
                throw;
#endif
            }
            catch (...)
            {
                _M_pTask->_CancelWithException(std::current_exception());
#if _MSC_VER < 1800
                throw;
#endif
            }
#if _MSC_VER >= 1800
            _M_pTask->_M_taskEventLogger._LogTaskExecutionCompleted();
#endif
        }

        // Cast _M_pTask pointer to "type-less" _Task_impl_base pointer, which can be used in _ContinuationTaskHandleBase.
        // The return value should be automatically optimized by R-value ref.
        _Task_ptr_base _GetTaskImplBase() const
        {
            return _M_pTask;
        }

        typename _Task_ptr<_ReturnType>::_Type _M_pTask;

    private:
        _PPLTaskHandle const & operator=(_PPLTaskHandle const&);    // no assignment operator
    };

    /// <summary>
    ///     The base implementation of a first-class task. This class contains all the non-type specific
    ///     implementation details of the task.
    /// </summary>
    /**/
    struct _Task_impl_base
    {
        enum _TaskInternalState
        {
            // Tracks the state of the task, rather than the task collection on which the task is scheduled
            _Created,
            _Started,
            _PendingCancel,
            _Completed,
            _Canceled
        };
#if _MSC_VER >= 1800
        _Task_impl_base(Concurrency::details::_CancellationTokenState * _PTokenState, Concurrency::scheduler_ptr _Scheduler_arg)
            : _M_TaskState(_Created),
            _M_fFromAsync(false), _M_fUnwrappedTask(false),
            _M_pRegistration(nullptr), _M_Continuations(nullptr), _M_TaskCollection(_Scheduler_arg),
            _M_taskEventLogger(this)
#else
        _Task_impl_base(Concurrency::details::_CancellationTokenState * _PTokenState) : _M_TaskState(_Created),
            _M_fFromAsync(false), _M_fRuntimeAggregate(false), _M_fUnwrappedTask(false),
            _M_pRegistration(nullptr), _M_Continuations(nullptr), _M_pTaskCollection(nullptr),
            _M_pTaskCreationAddressHint(nullptr)
#endif
        {
            // Set cancelation token
            _M_pTokenState = _PTokenState;
            _CONCRT_ASSERT(_M_pTokenState != nullptr);
            if (_M_pTokenState != Concurrency::details::_CancellationTokenState::_None())
                _M_pTokenState->_Reference();

        }

        virtual ~_Task_impl_base()
        {
            _CONCRT_ASSERT(_M_pTokenState != nullptr);
            if (_M_pTokenState != Concurrency::details::_CancellationTokenState::_None())
            {
                _M_pTokenState->_Release();
            }
#if _MSC_VER < 1800
            if (_M_pTaskCollection != nullptr)
            {
                _M_pTaskCollection->_Release();
                _M_pTaskCollection = nullptr;
            }
#endif
        }

        task_status _Wait()
        {
            bool _DoWait = true;

            if (_IsNonBlockingThread())
            {
                // In order to prevent Windows Runtime STA threads from blocking the UI, calling task.wait() task.get() is illegal
                // if task has not been completed.
                if (!_IsCompleted() && !_IsCanceled())
                {
                    throw Concurrency::invalid_operation("Illegal to wait on a task in a Windows Runtime STA");
                }
                else
                {
                    // Task Continuations are 'scheduled' *inside* the chore that is executing on the ancestors's task group. If a continuation
                    // needs to be marshalled to a different apartment, instead of scheduling, we make a synchronous cross apartment COM
                    // call to execute the continuation. If it then happens to do something which waits on the ancestor (say it calls .get(), which
                    // task based continuations are wont to do), waiting on the task group results in on the chore that is making this
                    // synchronous callback, which causes a deadlock. To avoid this, we test the state ancestor's event , and we will NOT wait on
                    // if it has finished execution (which means now we are on the inline synchronous callback).
                    _DoWait = false;
                }
            }
            if (_DoWait)
            {
#if _MSC_VER < 1800
                // Wait for the task to be actually scheduled, otherwise the underlying task collection
                // might not be created yet. If we don't wait, we will miss the chance to inline this task.
                _M_Scheduled.wait();


                // A PPL task created by a task_completion_event does not have an underlying TaskCollection. For
                // These tasks, a call to wait should wait for the event to be set. The TaskCollection must either
                // be nullptr or allocated (the setting of _M_Scheduled) ensures that.
#endif
                // If this task was created from a Windows Runtime async operation, do not attempt to inline it. The
                // async operation will take place on a thread in the appropriate apartment Simply wait for the completed
                // event to be set.
#if _MSC_VER >= 1800
                if (_M_fFromAsync)
#else
                if ((_M_pTaskCollection == nullptr) || _M_fFromAsync)
#endif
                {
#if _MSC_VER >= 1800
                    _M_TaskCollection._Wait();
#else
                    _M_Completed.wait();
#endif
                }
                else
                {
                    // Wait on the task collection to complete. The task collection is guaranteed to still be
                    // valid since the task must be still within scope so that the _Task_impl_base destructor
                    // has not yet been called. This call to _Wait potentially inlines execution of work.
                    try
                    {
                        // Invoking wait on a task collection resets the state of the task collection. This means that
                        // if the task collection itself were canceled, or had encountered an exception, only the first
                        // call to wait will receive this status. However, both cancellation and exceptions flowing through
                        // tasks set state in the task impl itself.

                        // When it returns cancelled, either work chore or the cancel thread should already have set task's state
                        // properly -- cancelled state or completed state (because there was no interruption point).
                        // For tasks with unwrapped tasks, we should not change the state of current task, since the unwrapped task are still running.
#if _MSC_VER >= 1800
                        _M_TaskCollection._RunAndWait();
#else
                        _M_pTaskCollection->_RunAndWait();
#endif
                    }
                    catch (Concurrency::details::_Interruption_exception&)
                    {
                        // The _TaskCollection will never be an interruption point since it has a none token.
                        _CONCRT_ASSERT(false);
                    }
                    catch (Concurrency::task_canceled&)
                    {
                        // task_canceled is a special exception thrown by cancel_current_task. The spec states that cancel_current_task
                        // must be called from code that is executed within the task (throwing it from parallel work created by and waited
                        // upon by the task is acceptable). We can safely assume that the task wrapper _PPLTaskHandle::operator() has seen
                        // the exception and canceled the task. Swallow the exception here.
                        _CONCRT_ASSERT(_IsCanceled());
                    }
                    catch (IRestrictedErrorInfo*& _E)
                    {
                        // Its possible the task body hasn't seen the exception, if so we need to cancel with exception here.
                        if(!_HasUserException())
                        {
                            _CancelWithException(_E);
                        }
                        // Rethrow will mark the exception as observed.
                        _M_exceptionHolder->_RethrowUserException();
                    }
                    catch (...)
                    {
                        // Its possible the task body hasn't seen the exception, if so we need to cancel with exception here.
                        if (!_HasUserException())
                        {
                            _CancelWithException(std::current_exception());
                        }
                        // Rethrow will mark the exception as observed.
                        _M_exceptionHolder->_RethrowUserException();
                    }

                    // If the lambda body for this task (executed or waited upon in _RunAndWait above) happened to return a task
                    // which is to be unwrapped and plumbed to the output of this task, we must not only wait on the lambda body, we must
                    // wait on the **INNER** body. It is in theory possible that we could inline such if we plumb a series of things through;
                    // however, this takes the tact of simply waiting upon the completion signal.
                    if (_M_fUnwrappedTask)
                    {
#if _MSC_VER >= 1800
                        _M_TaskCollection._Wait();
#else
                        _M_Completed.wait();
#endif
                    }
                }
            }

            if (_HasUserException())
            {
                _M_exceptionHolder->_RethrowUserException();
            }
            else if (_IsCanceled())
            {
                return Concurrency::canceled;
            }
            _CONCRT_ASSERT(_IsCompleted());
            return Concurrency::completed;
        }
        /// <summary>
        ///     Requests cancellation on the task and schedules continuations if the task can be transitioned to a terminal state.
        /// </summary>
        /// <param name="_SynchronousCancel">
        ///     Set to true if the cancel takes place as a result of the task body encountering an exception, or because an ancestor or task_completion_event the task
        ///     was registered with were canceled with an exception. A synchronous cancel is one that assures the task could not be running on a different thread at
        ///     the time the cancellation is in progress. An asynchronous cancel is one where the thread performing the cancel has no control over the thread that could
        ///     be executing the task, that is the task could execute concurrently while the cancellation is in progress.
        /// </param>
        /// <param name="_UserException">
        ///     Whether an exception other than the internal runtime cancellation exceptions caused this cancellation.
        /// </param>
        /// <param name="_PropagatedFromAncestor">
        ///     Whether this exception came from an ancestor task or a task_completion_event as opposed to an exception that was encountered by the task itself. Only valid when
        ///     _UserException is set to true.
        /// </param>
        /// <param name="_ExHolder">
        ///     The exception holder that represents the exception. Only valid when _UserException is set to true.
        /// </param>
        virtual bool _CancelAndRunContinuations(bool _SynchronousCancel, bool _UserException, bool _PropagatedFromAncestor, const std::shared_ptr<_ExceptionHolder>& _ExHolder) = 0;

        bool _Cancel(bool _SynchronousCancel)
        {
            // Send in a dummy value for exception. It is not used when the first parameter is false.
            return _CancelAndRunContinuations(_SynchronousCancel, false, false, _M_exceptionHolder);
        }

        bool _CancelWithExceptionHolder(const std::shared_ptr<_ExceptionHolder>& _ExHolder, bool _PropagatedFromAncestor)
        {
            // This task was canceled because an ancestor task encountered an exception.
            return _CancelAndRunContinuations(true, true, _PropagatedFromAncestor, _ExHolder);
        }

        bool _CancelWithException(IRestrictedErrorInfo*& _Exception)
        {
            // This task was canceled because the task body encountered an exception.
            _CONCRT_ASSERT(!_HasUserException());
#if _MSC_VER >= 1800
            return _CancelAndRunContinuations(true, true, false, std::make_shared<_ExceptionHolder>(_Exception, _GetTaskCreationCallstack()));
#else
            return _CancelAndRunContinuations(true, true, false, std::make_shared<_ExceptionHolder>(_Exception, _GetTaskCreationAddressHint()));
#endif
        }
        bool _CancelWithException(const std::exception_ptr& _Exception)
        {
            // This task was canceled because the task body encountered an exception.
            _CONCRT_ASSERT(!_HasUserException());
#if _MSC_VER >= 1800
            return _CancelAndRunContinuations(true, true, false, std::make_shared<_ExceptionHolder>(_Exception, _GetTaskCreationCallstack()));
#else
            return _CancelAndRunContinuations(true, true, false, std::make_shared<_ExceptionHolder>(_Exception, _GetTaskCreationAddressHint()));
#endif
        }

#if _MSC_VER >= 1800
        void _RegisterCancellation(std::weak_ptr<_Task_impl_base> _WeakPtr)
#else
        void _RegisterCancellation()
#endif
        {
            _CONCRT_ASSERT(Concurrency::details::_CancellationTokenState::_IsValid(_M_pTokenState));
#if _MSC_VER >= 1800
            auto _CancellationCallback = [_WeakPtr](){
                // Taking ownership of the task prevents dead lock during destruction
                // if the destructor waits for the cancellations to be finished
                auto _task = _WeakPtr.lock();
                if (_task != nullptr)
                    _task->_Cancel(false);
            };

            _M_pRegistration = new Concurrency::details::_CancellationTokenCallback<decltype(_CancellationCallback)>(_CancellationCallback);
            _M_pTokenState->_RegisterCallback(_M_pRegistration);
#else
            _M_pRegistration = _M_pTokenState->_RegisterCallback(reinterpret_cast<Concurrency::TaskProc>(&_CancelViaToken), (_Task_impl_base *)this);
#endif
        }

        void _DeregisterCancellation()
        {
            if (_M_pRegistration != nullptr)
            {
                _M_pTokenState->_DeregisterCallback(_M_pRegistration);
                _M_pRegistration->_Release();
                _M_pRegistration = nullptr;
            }
        }
#if _MSC_VER < 1800
        static void _CancelViaToken(_Task_impl_base *_PImpl)
        {
            _PImpl->_Cancel(false);
        }
#endif
        bool _IsCreated()
        {
            return (_M_TaskState == _Created);
        }

        bool _IsStarted()
        {
            return (_M_TaskState == _Started);
        }

        bool _IsPendingCancel()
        {
            return (_M_TaskState == _PendingCancel);
        }

        bool _IsCompleted()
        {
            return (_M_TaskState == _Completed);
        }

        bool _IsCanceled()
        {
            return (_M_TaskState == _Canceled);
        }

        bool _HasUserException()
        {
            return static_cast<bool>(_M_exceptionHolder);
        }
#if _MSC_VER < 1800
        void _SetScheduledEvent()
        {
            _M_Scheduled.set();
        }
#endif
        const std::shared_ptr<_ExceptionHolder>& _GetExceptionHolder()
        {
            _CONCRT_ASSERT(_HasUserException());
            return _M_exceptionHolder;
        }

        bool _IsApartmentAware()
        {
            return _M_fFromAsync;
        }

        void _SetAsync(bool _Async = true)
        {
            _M_fFromAsync = _Async;
        }
#if _MSC_VER >= 1800
        _TaskCreationCallstack _GetTaskCreationCallstack()
        {
            return _M_pTaskCreationCallstack;
        }

        void _SetTaskCreationCallstack(const _TaskCreationCallstack &_Callstack)
        {
            _M_pTaskCreationCallstack = _Callstack;
        }
#else
        void* _GetTaskCreationAddressHint()
        {
            return _M_pTaskCreationAddressHint;
        }

        void _SetTaskCreationAddressHint(void* _AddressHint)
        {
            _M_pTaskCreationAddressHint = _AddressHint;
        }
#endif
        /// <summary>
        ///     Helper function to schedule the task on the Task Collection.
        /// </summary>
        /// <param name="_PTaskHandle">
        ///     The task chore handle that need to be executed.
        /// </param>
        /// <param name="_InliningMode">
        ///     The inlining scheduling policy for current _PTaskHandle.
        /// </param>
        void _ScheduleTask(_UnrealizedChore * _PTaskHandle, _TaskInliningMode _InliningMode)
        {
#if _MSC_VER < 1800
            // Construct the task collection; We use none token to provent it becoming interruption point.
            _M_pTaskCollection = Concurrency::details::_AsyncTaskCollection::_NewCollection(Concurrency::details::_CancellationTokenState::_None());
            // _M_pTaskCollection->_ScheduleWithAutoInline will schedule the chore onto AsyncTaskCollection with automatic inlining, in a way that honors cancellation etc.
#endif
            try
            {
#if _MSC_VER >= 1800
                _M_TaskCollection._ScheduleTask(_PTaskHandle, _InliningMode);
#else
                // Do not need to check its returning state, more details please refer to _Wait method.
                _M_pTaskCollection->_ScheduleWithAutoInline(_PTaskHandle, _InliningMode);
#endif
            }
            catch (const Concurrency::task_canceled &)
            {
                // task_canceled is a special exception thrown by cancel_current_task. The spec states that cancel_current_task
                // must be called from code that is executed within the task (throwing it from parallel work created by and waited
                // upon by the task is acceptable). We can safely assume that the task wrapper _PPLTaskHandle::operator() has seen
                // the exception and canceled the task. Swallow the exception here.
                _CONCRT_ASSERT(_IsCanceled());
            }
            catch (const Concurrency::details::_Interruption_exception &)
            {
                // The _TaskCollection will never be an interruption point since it has a none token.
                _CONCRT_ASSERT(false);
            }
            catch (...)
            {
                // This exception could only have come from within the chore body. It should've been caught
                // and the task should be canceled with exception. Swallow the exception here.
                _CONCRT_ASSERT(_HasUserException());
            }
#if _MSC_VER < 1800
            // Set the event in case anyone is waiting to notify that this task has been scheduled. In the case where we
            // execute the chore inline, the event should be set after the chore has executed, to prevent a different thread
            // performing a wait on the task from waiting on the task collection before the chore is actually added to it,
            // and thereby returning from the wait() before the chore has executed.
            _SetScheduledEvent();
#endif
        }

        /// <summary>
        ///     Function executes a continuation. This function is recorded by a parent task implementation
        ///     when a continuation is created in order to execute later.
        /// </summary>
        /// <param name="_PTaskHandle">
        ///     The continuation task chore handle that need to be executed.
        /// </param>
        /**/
        void _RunContinuation(_ContinuationTaskHandleBase * _PTaskHandle)
        {
            _Task_ptr_base _ImplBase = _PTaskHandle->_GetTaskImplBase();
            if (_IsCanceled() && !_PTaskHandle->_M_isTaskBasedContinuation)
            {
                if (_HasUserException())
                {
                    // If the ancestor encountered an exception, transfer the exception to the continuation
                    // This traverses down the tree to propagate the exception.
                    _ImplBase->_CancelWithExceptionHolder(_GetExceptionHolder(), true);
                }
                else
                {
                    // If the ancestor was canceled, then your own execution should be canceled.
                    // This traverses down the tree to cancel it.
                    _ImplBase->_Cancel(true);
                }
            }
            else
            {
                // This can only run when the ancestor has completed or it's a task based continuation that fires when a task is canceled
                // (with or without a user exception).
                _CONCRT_ASSERT(_IsCompleted() || _PTaskHandle->_M_isTaskBasedContinuation);

#if _MSC_VER >= 1800
                _CONCRT_ASSERT(!_ImplBase->_IsCanceled());
                return _ImplBase->_ScheduleContinuationTask(_PTaskHandle);
#else
                // If it has been canceled here (before starting), do nothing. The guy firing cancel will do the clean up.
                if (!_ImplBase->_IsCanceled())
                {
                    return _ImplBase->_ScheduleContinuationTask(_PTaskHandle);
                }
#endif
            }

            // If the handle is not scheduled, we need to manually delete it.
            delete _PTaskHandle;
        }

        // Schedule a continuation to run
        void _ScheduleContinuationTask(_ContinuationTaskHandleBase * _PTaskHandle)
        {
#if _MSC_VER >= 1800
            _M_taskEventLogger._LogScheduleTask(true);
#endif
            // Ensure that the continuation runs in proper context (this might be on a Concurrency Runtime thread or in a different Windows Runtime apartment)
            if (_PTaskHandle->_M_continuationContext._HasCapturedContext())
            {
                // For those continuations need to be scheduled inside captured context, we will try to apply automatic inlining to their inline modes,
                // if they haven't been specified as _ForceInline yet. This change will encourage those continuations to be executed inline so that reduce
                // the cost of marshaling.
                // For normal continuations we won't do any change here, and their inline policies are completely decided by ._ThenImpl method.
                if (_PTaskHandle->_M_inliningMode != Concurrency::details::_ForceInline)
                {
                    _PTaskHandle->_M_inliningMode = Concurrency::details::_DefaultAutoInline;
                }
                details::_ScheduleFuncWithAutoInline([_PTaskHandle]() -> HRESULT {
                    // Note that we cannot directly capture "this" pointer, instead, we should use _TaskImplPtr, a shared_ptr to the _Task_impl_base.
                    // Because "this" pointer will be invalid as soon as _PTaskHandle get deleted. _PTaskHandle will be deleted after being scheduled.
                    auto _TaskImplPtr = _PTaskHandle->_GetTaskImplBase();
                    if (details::_ContextCallback::_CaptureCurrent() == _PTaskHandle->_M_continuationContext)
                    {
                        _TaskImplPtr->_ScheduleTask(_PTaskHandle, Concurrency::details::_ForceInline);
                    }
                    else
                    {
                        //
                        // It's entirely possible that the attempt to marshal the call into a differing context will fail. In this case, we need to handle
                        // the exception and mark the continuation as canceled with the appropriate exception. There is one slight hitch to this:
                        //
                        // NOTE: COM's legacy behavior is to swallow SEH exceptions and marshal them back as HRESULTS. This will in effect turn an SEH into
                        // a C++ exception that gets tagged on the task. One unfortunate result of this is that various pieces of the task infrastructure will
                        // not be in a valid state after this in /EHsc (due to the lack of destructors running, etc...).
                        //
                        try
                        {
                            // Dev10 compiler needs this!
                            auto _PTaskHandle1 = _PTaskHandle;
                            _PTaskHandle->_M_continuationContext._CallInContext([_PTaskHandle1, _TaskImplPtr]() -> HRESULT {
                                _TaskImplPtr->_ScheduleTask(_PTaskHandle1, Concurrency::details::_ForceInline);
                                return S_OK;
                            });
                        }
                        catch (IRestrictedErrorInfo*& _E)
                        {
                            _TaskImplPtr->_CancelWithException(_E);
                        }
                        catch (...)
                        {
                            _TaskImplPtr->_CancelWithException(std::current_exception());
                        }
                    }
                    return S_OK;
                }, _PTaskHandle->_M_inliningMode);
            }
            else
            {
                _ScheduleTask(_PTaskHandle, _PTaskHandle->_M_inliningMode);
            }
        }

        /// <summary>
        ///     Schedule the actual continuation. This will either schedule the function on the continuation task's implementation
        ///     if the task has completed or append it to a list of functions to execute when the task actually does complete.
        /// </summary>
        /// <typeparam name="_FuncInputType">
        ///     The input type of the task.
        /// </typeparam>
        /// <typeparam name="_FuncOutputType">
        ///     The output type of the task.
        /// </typeparam>
        /**/
        void _ScheduleContinuation(_ContinuationTaskHandleBase * _PTaskHandle)
        {
            enum { _Nothing, _Schedule, _Cancel, _CancelWithException } _Do = _Nothing;

            // If the task has canceled, cancel the continuation. If the task has completed, execute the continuation right away.
            // Otherwise, add it to the list of pending continuations
            {
                scoped_lock _LockHolder(_M_ContinuationsCritSec);
                if (_IsCompleted() || (_IsCanceled() && _PTaskHandle->_M_isTaskBasedContinuation))
                {
                    _Do = _Schedule;
                }
                else if (_IsCanceled())
                {
                    if (_HasUserException())
                    {
                        _Do = _CancelWithException;
                    }
                    else
                    {
                        _Do = _Cancel;
                    }
                }
                else
                {
                    // chain itself on the continuation chain.
                    _PTaskHandle->_M_next = _M_Continuations;
                    _M_Continuations = _PTaskHandle;
                }
            }

            // Cancellation and execution of continuations should be performed after releasing the lock. Continuations off of
            // async tasks may execute inline.
            switch (_Do)
            {
            case _Schedule:
            {
                              _PTaskHandle->_GetTaskImplBase()->_ScheduleContinuationTask(_PTaskHandle);
                              break;
            }
            case _Cancel:
            {
                            // If the ancestor was canceled, then your own execution should be canceled.
                            // This traverses down the tree to cancel it.
                            _PTaskHandle->_GetTaskImplBase()->_Cancel(true);

                            delete _PTaskHandle;
                            break;
            }
            case _CancelWithException:
            {
                                         // If the ancestor encountered an exception, transfer the exception to the continuation
                                         // This traverses down the tree to propagate the exception.
                                         _PTaskHandle->_GetTaskImplBase()->_CancelWithExceptionHolder(_GetExceptionHolder(), true);

                                         delete _PTaskHandle;
                                         break;
            }
            case _Nothing:
            default:
                // In this case, we have inserted continuation to continuation chain,
                // nothing more need to be done, just leave.
                break;
            }
        }

        void _RunTaskContinuations()
        {
            // The link list can no longer be modified at this point,
            // since all following up continuations will be scheduled by themselves.
            _ContinuationList _Cur = _M_Continuations, _Next;
            _M_Continuations = nullptr;
            while (_Cur)
            {
                // Current node might be deleted after running,
                // so we must fetch the next first.
                _Next = _Cur->_M_next;
                _RunContinuation(_Cur);
                _Cur = _Next;
            }
        }
        static bool  _IsNonBlockingThread()
        {
            APTTYPE _AptType;
            APTTYPEQUALIFIER _AptTypeQualifier;

            HRESULT hr = CoGetApartmentType(&_AptType, &_AptTypeQualifier);
            //
            // If it failed, it's not a Windows Runtime/COM initialized thread. This is not a failure.
            //
            if (SUCCEEDED(hr))
            {
                switch (_AptType)
                {
                case APTTYPE_STA:
                case APTTYPE_MAINSTA:
                    return true;
                    break;
                case APTTYPE_NA:
                    switch (_AptTypeQualifier)
                    {
                        // A thread executing in a neutral apartment is either STA or MTA. To find out if this thread is allowed
                        // to wait, we check the app qualifier. If it is an STA thread executing in a neutral apartment, waiting
                        // is illegal, because the thread is responsible for pumping messages and waiting on a task could take the
                        // thread out of circulation for a while.
                    case APTTYPEQUALIFIER_NA_ON_STA:
                    case APTTYPEQUALIFIER_NA_ON_MAINSTA:
                        return true;
                        break;
                    }
                    break;
                }
            }
#if _UITHREADCTXT_SUPPORT
            // This method is used to throw an exepection in _Wait() if called within STA.  We
            // want the same behavior if _Wait is called on the UI thread.
            if (SUCCEEDED(CaptureUiThreadContext(nullptr)))
            {
                return true;
            }
#endif // _UITHREADCTXT_SUPPORT

            return false;
        }

        template<typename _ReturnType, typename _Result, typename _OpType, typename _CompHandlerType, typename _ResultType>
        static void _AsyncInit(const typename _Task_ptr<_ReturnType>::_Type & _OuterTask,
            _AsyncInfoImpl<_OpType, _CompHandlerType, _ResultType>* _AsyncOp)
        {
            typedef typename ABI::Windows::Foundation::Internal::GetAbiType<decltype(_GetUnwrappedType(stdx::declval<_OpType*>()))>::type _Result_abi;
            // This method is invoked either when a task is created from an existing async operation or
            // when a lambda that creates an async operation executes.

            // If the outer task is pending cancel, cancel the async operation before setting the completed handler. The COM reference on
            // the IAsyncInfo object will be released when all *references to the operation go out of scope.

            // This assertion uses the existence of taskcollection to determine if the task was created from an event.
            // That is no longer valid as even tasks created from a user lambda could have no underlying taskcollection
            // when a custom scheduler is used.
#if _MSC_VER < 1800
            _CONCRT_ASSERT(((_OuterTask->_M_pTaskCollection == nullptr) || _OuterTask->_M_fUnwrappedTask) && !_OuterTask->_IsCanceled());
#endif

            // Pass the shared_ptr by value into the lambda instead of using 'this'.

            _AsyncOp->put_Completed(Microsoft::WRL::Callback<_CompHandlerType>(
                [_OuterTask, _AsyncOp](_OpType* _Operation, ABI::Windows::Foundation::AsyncStatus _Status) mutable -> HRESULT
            {
                HRESULT hr = S_OK;
                if (_Status == ABI::Windows::Foundation::AsyncStatus::Canceled)
                {
                    _OuterTask->_Cancel(true);
                }
                else if (_Status == ABI::Windows::Foundation::AsyncStatus::Error)
                {
                    HRESULT _hr;
                    Microsoft::WRL::ComPtr<ABI::Windows::Foundation::IAsyncInfo> pAsyncInfo;
                    if (SUCCEEDED(hr = _Operation->QueryInterface<ABI::Windows::Foundation::IAsyncInfo>(pAsyncInfo.GetAddressOf())) && SUCCEEDED(hr = pAsyncInfo->get_ErrorCode(&_hr)))
                        _OuterTask->_CancelWithException(std::make_exception_ptr(_hr));
                }
                else
                {
                    _CONCRT_ASSERT(_Status == ABI::Windows::Foundation::AsyncStatus::Completed);
                    _NormalizeVoidToUnitType<_Result_abi>::_Type results;
                    if (SUCCEEDED(hr = _AsyncOp->GetResults(&results)))
                        _OuterTask->_FinalizeAndRunContinuations(results);
                }
                // Take away this shared pointers reference on the task instead of waiting for the delegate to be released. It could
                // be released on a different thread after a delay, and not releasing the reference here could cause the tasks to hold
                // on to resources longer than they should. As an example, without this reset, writing to a file followed by reading from
                // it using the Windows Runtime Async APIs causes a sharing violation.
                // Using const_cast is the workaround for failed mutable keywords
                const_cast<_Task_ptr<_ReturnType>::_Type &>(_OuterTask).reset();
                return hr;
            }).Get());
            _OuterTask->_SetUnwrappedAsyncOp(_AsyncOp);
        }
        template<typename _ReturnType, typename _InternalReturnType>
        static void _AsyncInit(const typename _Task_ptr<_ReturnType>::_Type& _OuterTask, const task<_InternalReturnType> & _UnwrappedTask)
        {
            _CONCRT_ASSERT(_OuterTask->_M_fUnwrappedTask && !_OuterTask->_IsCanceled());
            //
            // We must ensure that continuations off _OuterTask (especially exception handling ones) continue to function in the
            // presence of an exception flowing out of the inner task _UnwrappedTask. This requires an exception handling continuation
            // off the inner task which does the appropriate funnelling to the outer one. We use _Then instead of then to prevent
            // the exception from being marked as observed by our internal continuation. This continuation must be scheduled regardless
            // of whether or not the _OuterTask task is canceled.
            //
            _UnwrappedTask._Then([_OuterTask](task<_InternalReturnType> _AncestorTask) -> HRESULT {

                if (_AncestorTask._GetImpl()->_IsCompleted())
                {
                    _OuterTask->_FinalizeAndRunContinuations(_AncestorTask._GetImpl()->_GetResult());
                }
                else
                {
                    _CONCRT_ASSERT(_AncestorTask._GetImpl()->_IsCanceled());
                    if (_AncestorTask._GetImpl()->_HasUserException())
                    {
                        // Set _PropagatedFromAncestor to false, since _AncestorTask is not an ancestor of _UnwrappedTask.
                        // Instead, it is the enclosing task.
                        _OuterTask->_CancelWithExceptionHolder(_AncestorTask._GetImpl()->_GetExceptionHolder(), false);
                    }
                    else
                    {
                        _OuterTask->_Cancel(true);
                    }
                }
                return S_OK;
#if _MSC_VER >= 1800
            }, nullptr, Concurrency::details::_DefaultAutoInline);
#else
            }, nullptr, false, Concurrency::details::_DefaultAutoInline);
#endif
        }

#if _MSC_VER >= 1800
        Concurrency::scheduler_ptr _GetScheduler() const
        {
            return _M_TaskCollection._GetScheduler();
        }
#else
        Concurrency::event _M_Completed;
        Concurrency::event _M_Scheduled;
#endif

        // Tracks the internal state of the task
        volatile _TaskInternalState _M_TaskState;
        // Set to true either if the ancestor task had the flag set to true, or if the lambda that does the work of this task returns an
        // async operation or async action that is unwrapped by the runtime.
        bool _M_fFromAsync;
#if _MSC_VER < 1800
        // Set to true if we need to marshal the inner parts of an aggregate type like std::vector<T^> or std::pair<T^, size_t>. We only marshal
        // the contained T^s if we create the vector or pair, such as on a when_any or a when_all operation.
        bool _M_fRuntimeAggregate;
#endif
        // Set to true when a continuation unwraps a task or async operation.
        bool _M_fUnwrappedTask;

        // An exception thrown by the task body is captured in an exception holder and it is shared with all value based continuations rooted at the task.
        // The exception is 'observed' if the user invokes get()/wait() on any of the tasks that are sharing this exception holder. If the exception
        // is not observed by the time the internal object owned by the shared pointer destructs, the process will fail fast.
        std::shared_ptr<_ExceptionHolder> _M_exceptionHolder;

        typedef _ContinuationTaskHandleBase * _ContinuationList;

        critical_section _M_ContinuationsCritSec;
        _ContinuationList _M_Continuations;

        // The cancellation token state.
        Concurrency::details::_CancellationTokenState * _M_pTokenState;

        // The registration on the token.
        Concurrency::details::_CancellationTokenRegistration * _M_pRegistration;

        // The async task collection wrapper
#if _MSC_VER >= 1800
        Concurrency::details::_TaskCollection_t _M_TaskCollection;

        // Callstack for function call (constructor or .then) that created this task impl.
        _TaskCreationCallstack _M_pTaskCreationCallstack;

        _TaskEventLogger _M_taskEventLogger;
#else
        Concurrency::details::_AsyncTaskCollection * _M_pTaskCollection;

        // Points to the source code instruction right after the function call (constructor or .then) that created this task impl.
        void* _M_pTaskCreationAddressHint;
#endif

    private:
        // Must not be copied by value:
        _Task_impl_base(const _Task_impl_base&);
        _Task_impl_base const & operator=(_Task_impl_base const&);
    };

#if _MSC_VER >= 1800
#if _PPLTASK_ASYNC_LOGGING
    inline void _TaskEventLogger::_LogTaskCompleted()
    {
        if (_M_scheduled)
        {
            ::Windows::Foundation::AsyncStatus _State;
            if (_M_task->_IsCompleted())
                _State = ::Windows::Foundation::AsyncStatus::Completed;
            else if (_M_task->_HasUserException())
                _State = ::Windows::Foundation::AsyncStatus::Error;
            else
                _State = ::Windows::Foundation::AsyncStatus::Canceled;

            if (details::_IsCausalitySupported())
            {
                ::Windows::Foundation::Diagnostics::AsyncCausalityTracer::TraceOperationCompletion(::Windows::Foundation::Diagnostics::CausalityTraceLevel::Required, ::Windows::Foundation::Diagnostics::CausalitySource::Library,
                    _PPLTaskCausalityPlatformID, reinterpret_cast<unsigned long long>(_M_task), _State);
            }
        }
    }
#endif
#endif

    template<typename _ReturnType>
    struct _Task_impl : public _Task_impl_base
    {
        typedef ABI::Windows::Foundation::IAsyncInfo _AsyncOperationType;
#if _MSC_VER >= 1800
        _Task_impl(Concurrency::details::_CancellationTokenState * _Ct, Concurrency::scheduler_ptr _Scheduler_arg)
            : _Task_impl_base(_Ct, _Scheduler_arg)
#else
        _Task_impl(Concurrency::details::_CancellationTokenState * _Ct) : _Task_impl_base(_Ct)
#endif
        {
            _M_unwrapped_async_op = nullptr;
        }
        virtual ~_Task_impl()
        {
            // We must invoke _DeregisterCancellation in the derived class destructor. Calling it in the base class destructor could cause
            // a partially initialized _Task_impl to be in the list of registrations for a cancellation token.
            _DeregisterCancellation();
        }
        virtual bool _CancelAndRunContinuations(bool _SynchronousCancel, bool _UserException, bool _PropagatedFromAncestor, const std::shared_ptr<_ExceptionHolder> & _ExceptionHolder)
        {
            enum { _Nothing, _RunContinuations, _Cancel } _Do = _Nothing;
            {
                scoped_lock _LockHolder(_M_ContinuationsCritSec);
                if (_UserException)
                {
                    _CONCRT_ASSERT(_SynchronousCancel && !_IsCompleted());
                    // If the state is _Canceled, the exception has to be coming from an ancestor.
                    _CONCRT_ASSERT(!_IsCanceled() || _PropagatedFromAncestor);
#if _MSC_VER < 1800
                    // If the state is _Started or _PendingCancel, the exception cannot be coming from an ancestor.
                    _CONCRT_ASSERT((!_IsStarted() && !_IsPendingCancel()) || !_PropagatedFromAncestor);
#endif
                    // We should not be canceled with an exception more than once.
                    _CONCRT_ASSERT(!_HasUserException());

                    if (_M_TaskState == _Canceled)
                    {
                        // If the task has finished cancelling there should not be any continuation records in the array.
                        return false;
                    }
                    else
                    {
                        _CONCRT_ASSERT(_M_TaskState != _Completed);
                        _M_exceptionHolder = _ExceptionHolder;
                    }
                }
                else
                {
                    // Completed is a non-cancellable state, and if this is an asynchronous cancel, we're unable to do better than the last async cancel
                    // which is to say, cancellation is already initiated, so return early.
                    if (_IsCompleted() || _IsCanceled() || (_IsPendingCancel() && !_SynchronousCancel))
                    {
                        _CONCRT_ASSERT(!_IsCompleted() || !_HasUserException());
                        return false;
                    }
                    _CONCRT_ASSERT(!_SynchronousCancel || !_HasUserException());
                }

#if _MSC_VER >= 1800
                if (_SynchronousCancel)
#else
                if (_SynchronousCancel || _IsCreated())
#endif
                {
                    // Be aware that this set must be done BEFORE _M_Scheduled being set, or race will happen between this and wait()
                    _M_TaskState = _Canceled;
#if _MSC_VER < 1800
                    _M_Scheduled.set();
#endif

                    // Cancellation completes the task, so all dependent tasks must be run to cancel them
                    // They are canceled when they begin running (see _RunContinuation) and see that their
                    // ancestor has been canceled.
                    _Do = _RunContinuations;
                }
                else
                {
#if _MSC_VER >= 1800
                    _CONCRT_ASSERT(!_UserException);

                    if (_IsStarted())
                    {
                        // should not initiate cancellation under a lock
                        _Do = _Cancel;
                    }

                    // The _M_TaskState variable transitions to _Canceled when cancellation is completed (the task is not executing user code anymore).
                    // In the case of a synchronous cancel, this can happen immediately, whereas with an asynchronous cancel, the task has to move from
                    // _Started to _PendingCancel before it can move to _Canceled when it is finished executing.
                    _M_TaskState = _PendingCancel;

                    _M_taskEventLogger._LogCancelTask();
                }
            }

            switch (_Do)
            {
            case _Cancel:
            {
#else
                    _CONCRT_ASSERT(_IsStarted() && !_UserException);
#endif
                    // The _M_TaskState variable transitions to _Canceled when cancellation is completed (the task is not executing user code anymore).
                    // In the case of a synchronous cancel, this can happen immediately, whereas with an asynchronous cancel, the task has to move from
                    // _Started to _PendingCancel before it can move to _Canceled when it is finished executing.
                    _M_TaskState = _PendingCancel;
                    if (_M_unwrapped_async_op != nullptr)
                    {
                        // We will only try to cancel async operation but not unwrapped tasks, since unwrapped tasks cannot be canceled without its token.
                        if (_M_unwrapped_async_op)    _M_unwrapped_async_op->Cancel();
                    }
#if _MSC_VER >= 1800
                        _M_TaskCollection._Cancel();
                        break;
#else
                // Optimistic trying for cancelation
                if (_M_pTaskCollection != nullptr)
                {
                    _M_pTaskCollection->_Cancel();
                }
#endif
                }
#if _MSC_VER < 1800
            }
#endif

            // Only execute continuations and mark the task as completed if we were able to move the task to the _Canceled state.
#if _MSC_VER >= 1800
            case _RunContinuations:
            {
                _M_TaskCollection._Complete();
#else
            if (_RunContinuations)
            {
                _M_Completed.set();
#endif

                if (_M_Continuations)
                {
                    // Scheduling cancellation with automatic inlining.
                    details::_ScheduleFuncWithAutoInline([=]() -> HRESULT { _RunTaskContinuations(); return S_OK; }, Concurrency::details::_DefaultAutoInline);
                }
#if _MSC_VER >= 1800
                break;
            }
#endif
            }
            return true;
        }
        void _FinalizeAndRunContinuations(_ReturnType _Result)
        {

#if _MSC_VER >= 1800
            _M_Result.Set(_Result);
#else
            _M_Result = _Result;
            _M_ResultContext = _ResultContext<_ReturnType>::_GetContext(_M_fRuntimeAggregate);
#endif
            {
                //
                // Hold this lock to ensure continuations being concurrently either get added
                // to the _M_Continuations vector or wait for the result
                //
                scoped_lock _LockHolder(_M_ContinuationsCritSec);

                // A task could still be in the _Created state if it was created with a task_completion_event.
                // It could also be in the _Canceled state for the same reason.
                _CONCRT_ASSERT(!_HasUserException() && !_IsCompleted());
                if (_IsCanceled())
                {
                    return;
                }

                // Always transition to "completed" state, even in the face of unacknowledged pending cancellation
                _M_TaskState = _Completed;
            }
#if _MSC_VER >= 1800
            _M_TaskCollection._Complete();
#else
            _M_Completed.set();
#endif
            _RunTaskContinuations();
        }
        //
        // This method is invoked when the starts executing. The task returns early if this method returns true.
        //
        bool _TransitionedToStarted()
        {
            scoped_lock _LockHolder(_M_ContinuationsCritSec);
#if _MSC_VER >= 1800
            // Canceled state could only result from antecedent task's canceled state, but that code path will not reach here.
            _ASSERT(!_IsCanceled());
            if (_IsPendingCancel())
#else
            if (_IsCanceled())
#endif
            {
                return false;
            }
            _CONCRT_ASSERT(_IsCreated());
            _M_TaskState = _Started;
            return true;
        }
        void _SetUnwrappedAsyncOp(_AsyncOperationType* _AsyncOp)
        {
            scoped_lock _LockHolder(_M_ContinuationsCritSec);
            // Cancel the async operation if the task itself is canceled, since the thread that canceled the task missed it.
            if (_IsPendingCancel())
            {
                _CONCRT_ASSERT(!_IsCanceled());
                if (_AsyncOp) _AsyncOp->Cancel();
            }
            else
            {
                _M_unwrapped_async_op = _AsyncOp;
            }
        }
#if _MSC_VER >= 1800
        // Return true if the task has reached a terminal state
        bool _IsDone()
        {
            return _IsCompleted() || _IsCanceled();
        }
#endif
        _ReturnType _GetResult()
        {
#if _MSC_VER >= 1800
            return _M_Result.Get();
#else
            return _ResultContext<_ReturnType>::_GetValue(_M_Result, _M_ResultContext, _M_fRuntimeAggregate);
#endif
        }
#if _MSC_VER >= 1800
        _ResultHolder<_ReturnType>                 _M_Result;        // this means that the result type must have a public default ctor.
#else
        _ReturnType                                 _M_Result;        // this means that the result type must have a public default ctor.
#endif
        Microsoft::WRL::ComPtr<_AsyncOperationType> _M_unwrapped_async_op;
#if _MSC_VER < 1800
        _ContextCallback                            _M_ResultContext;
#endif
    };

    template<typename _ResultType>
    struct _Task_completion_event_impl
    {
#if _MSC_VER >= 1800
    private:
        _Task_completion_event_impl(const _Task_completion_event_impl&);
        _Task_completion_event_impl& operator=(const _Task_completion_event_impl&);

    public:
#endif
        typedef std::vector<typename _Task_ptr<_ResultType>::_Type> _TaskList;

        _Task_completion_event_impl() : _M_fHasValue(false), _M_fIsCanceled(false)
        {
        }

        bool _HasUserException()
        {
            return _M_exceptionHolder != nullptr;
        }

        ~_Task_completion_event_impl()
        {
            for (auto _TaskIt = _M_tasks.begin(); _TaskIt != _M_tasks.end(); ++_TaskIt)
            {
                _CONCRT_ASSERT(!_M_fHasValue && !_M_fIsCanceled);
                // Cancel the tasks since the event was never signaled or canceled.
                (*_TaskIt)->_Cancel(true);
            }
        }

        // We need to protect the loop over the array, so concurrent_vector would not have helped
        _TaskList                           _M_tasks;
        critical_section                    _M_taskListCritSec;
#if _MSC_VER >= 1800
        _ResultHolder<_ResultType>         _M_value;
#else
        _ResultType                         _M_value;
#endif
        std::shared_ptr<_ExceptionHolder>   _M_exceptionHolder;
        bool                                _M_fHasValue;
        bool                                _M_fIsCanceled;
    };

    // Utility method for dealing with void functions
    inline std::function<HRESULT(_Unit_type*)> _MakeVoidToUnitFunc(const std::function<HRESULT(void)>& _Func)
    {
        return [=](_Unit_type* retVal) -> HRESULT { HRESULT hr = _Func(); *retVal = _Unit_type(); return hr; };
    }

    template <typename _Type>
    std::function<HRESULT(_Unit_type, _Type*)> _MakeUnitToTFunc(const std::function<HRESULT(_Type*)>& _Func)
    {
        return [=](_Unit_type, _Type* retVal) -> HRESULT { HRESULT hr = _Func(retVal); return hr;  };
    }

    template <typename _Type>
    std::function<HRESULT(_Type, _Unit_type*)> _MakeTToUnitFunc(const std::function<HRESULT(_Type)>& _Func)
    {
        return[=](_Type t, _Unit_type* retVal) -> HRESULT { HRESULT hr = _Func(t); *retVal = _Unit_type(); return hr;  };
    }

    inline std::function<HRESULT(_Unit_type, _Unit_type*)> _MakeUnitToUnitFunc(const std::function<HRESULT(void)>& _Func)
    {
        return [=](_Unit_type, _Unit_type* retVal) -> HRESULT { HRESULT hr = _Func(); *retVal = _Unit_type(); return hr;  };
    }
}


/// <summary>
///     The <c>task_completion_event</c> class allows you to delay the execution of a task until a condition is satisfied,
///     or start a task in response to an external event.
/// </summary>
/// <typeparam name="_ResultType">
///     The result type of this <c>task_completion_event</c> class.
/// </typeparam>
/// <remarks>
///     Use a task created from a task completion event when your scenario requires you to create a task that will complete, and
///     thereby have its continuations scheduled for execution, at some point in the future. The <c>task_completion_event</c> must
///     have the same type as the task you create, and calling the set method on the task completion event with a value of that type
///     will cause the associated task to complete, and provide that value as a result to its continuations.
///     <para>If the task completion event is never signaled, any tasks created from it will be canceled when it is destructed.</para>
///     <para><c>task_completion_event</c> behaves like a smart pointer, and should be passed by value.</para>
/// </remarks>
/// <seealso cref="task Class"/>
/**/
template<typename _ResultType>
class task_completion_event
{
public:
    /// <summary>
    ///     Constructs a <c>task_completion_event</c> object.
    /// </summary>
    /**/
    task_completion_event() : _M_Impl(std::make_shared<details::_Task_completion_event_impl<_ResultType>>())
    {
    }

    /// <summary>
    ///     Sets the task completion event.
    /// </summary>
    /// <param name="_Result">
    ///     The result to set this event with.
    /// </param>
    /// <returns>
    ///     The method returns <c>true</c> if it was successful in setting the event. It returns <c>false</c> if the event is already set.
    /// </returns>
    /// <remarks>
    ///     In the presence of multiple or concurrent calls to <c>set</c>, only the first call will succeed and its result (if any) will be stored in the
    ///     task completion event. The remaining sets are ignored and the method will return false. When you set a task completion event, all the
    ///     tasks created from that event will immediately complete, and its continuations, if any, will be scheduled. Task completion objects that have
    ///     a <typeparamref name="_ResultType"/> other than <c>void</c> will pass the value <paramref value="_Result"/> to their continuations.
    /// </remarks>
    /**/
    bool set(_ResultType _Result) const // 'const' (even though it's not deep) allows to safely pass events by value into lambdas
    {
        // Subsequent sets are ignored. This makes races to set benign: the first setter wins and all others are ignored.
        if (_IsTriggered())
        {
            return false;
        }

        _TaskList _Tasks;
        bool _RunContinuations = false;
        {
            details::scoped_lock _LockHolder(_M_Impl->_M_taskListCritSec);

            if (!_IsTriggered())
            {
#if _MSC_VER >= 1800
                _M_Impl->_M_value.Set(_Result);
#else
                _M_Impl->_M_value = _Result;
#endif
                _M_Impl->_M_fHasValue = true;

                _Tasks.swap(_M_Impl->_M_tasks);
                _RunContinuations = true;
            }
        }

        if (_RunContinuations)
        {
            for (auto _TaskIt = _Tasks.begin(); _TaskIt != _Tasks.end(); ++_TaskIt)
            {
#if _MSC_VER >= 1800
                // If current task was cancelled by a cancellation_token, it would be in cancel pending state.
                if ((*_TaskIt)->_IsPendingCancel())
                    (*_TaskIt)->_Cancel(true);
                else
                {
                    // Tasks created with task_completion_events can be marked as async, (we do this in when_any and when_all
                    // if one of the tasks involved is an async task). Since continuations of async tasks can execute inline, we
                    // need to run continuations after the lock is released.
                    (*_TaskIt)->_FinalizeAndRunContinuations(_M_Impl->_M_value.Get());
                }
#else
                // Tasks created with task_completion_events can be marked as async, (we do this in when_any and when_all
                // if one of the tasks involved is an async task). Since continuations of async tasks can execute inline, we
                // need to run continuations after the lock is released.
                (*_TaskIt)->_FinalizeAndRunContinuations(_M_Impl->_M_value);
#endif
            }
            if (_M_Impl->_HasUserException())
            {
                _M_Impl->_M_exceptionHolder.reset();
            }
            return true;
        }

        return false;
    }
#if _MSC_VER >= 1800

    template<typename _E>
    __declspec(noinline) // Ask for no inlining so that the _ReturnAddress intrinsic gives us the expected result
        bool set_exception(_E _Except) const // 'const' (even though it's not deep) allows to safely pass events by value into lambdas
    {
            // It is important that _CAPTURE_CALLSTACK() evaluate to the instruction after the call instruction for set_exception.
            return _Cancel(std::make_exception_ptr(_Except), _CAPTURE_CALLSTACK());
    }
#endif

    /// <summary>
    ///     Propagates an exception to all tasks associated with this event.
    /// </summary>
    /// <param>
    ///     The exception_ptr that indicates the exception to set this event with.
    /// </param>
    /**/
    __declspec(noinline) // Ask for no inlining so that the _ReturnAddress intrinsic gives us the expected result
        bool set_exception(std::exception_ptr _ExceptionPtr) const // 'const' (even though it's not deep) allows to safely pass events by value into lambdas
    {
            // It is important that _ReturnAddress() evaluate to the instruction after the call instruction for set_exception.
#if _MSC_VER >= 1800
            return _Cancel(_ExceptionPtr, _CAPTURE_CALLSTACK());
#else
            return _Cancel(_ExceptionPtr, _ReturnAddress());
#endif
    }

    /// <summary>
    ///     Internal method to cancel the task_completion_event. Any task created using this event will be marked as canceled if it has
    ///     not already been set.
    /// </summary>
    bool _Cancel() const
    {
        // Cancel with the stored exception if one exists.
        return _CancelInternal();
    }

    /// <summary>
    ///     Internal method to cancel the task_completion_event with the exception provided. Any task created using this event will be canceled
    ///     with the same exception.
    /// </summary>
    template<typename _ExHolderType>
#if _MSC_VER >= 1800
    bool _Cancel(_ExHolderType _ExHolder, const details::_TaskCreationCallstack &_SetExceptionAddressHint = details::_TaskCreationCallstack()) const
#else
    bool _Cancel(_ExHolderType _ExHolder, void* _SetExceptionAddressHint = nullptr) const
#endif
    {
        (void)_SetExceptionAddressHint;
        bool _Canceled;
#if _MSC_VER >= 1800
        if(_StoreException(_ExHolder, _SetExceptionAddressHint))
#else
        if (_StoreException(_ExHolder))
#endif
        {
            _Canceled = _CancelInternal();
            _CONCRT_ASSERT(_Canceled);
        }
        else
        {
            _Canceled = false;
        }
        return _Canceled;
    }

    /// <summary>
    ///     Internal method that stores an exception in the task completion event. This is used internally by when_any.
    ///     Note, this does not cancel the task completion event. A task completion event with a stored exception
    ///     can bet set() successfully. If it is canceled, it will cancel with the stored exception, if one is present.
    /// </summary>
    template<typename _ExHolderType>
#if _MSC_VER >= 1800
    bool _StoreException(_ExHolderType _ExHolder, const details::_TaskCreationCallstack &_SetExceptionAddressHint = details::_TaskCreationCallstack()) const
#else
    bool _StoreException(_ExHolderType _ExHolder, void* _SetExceptionAddressHint = nullptr) const
#endif
    {
        details::scoped_lock _LockHolder(_M_Impl->_M_taskListCritSec);
        if (!_IsTriggered() && !_M_Impl->_HasUserException())
        {
            // Create the exception holder only if we have ensured there we will be successful in setting it onto the
            // task completion event. Failing to do so will result in an unobserved task exception.
            _M_Impl->_M_exceptionHolder = _ToExceptionHolder(_ExHolder, _SetExceptionAddressHint);
            return true;
        }
        return false;
    }

    /// <summary>
    ///     Tests whether current event has been either Set, or Canceled.
    /// </summary>
    bool _IsTriggered() const
    {
        return _M_Impl->_M_fHasValue || _M_Impl->_M_fIsCanceled;
    }

private:

#if _MSC_VER >= 1800
    static std::shared_ptr<details::_ExceptionHolder> _ToExceptionHolder(const std::shared_ptr<details::_ExceptionHolder>& _ExHolder, const details::_TaskCreationCallstack&)
#else
    static std::shared_ptr<details::_ExceptionHolder> _ToExceptionHolder(const std::shared_ptr<details::_ExceptionHolder>& _ExHolder, void*)
#endif
    {
        return _ExHolder;
    }

#if _MSC_VER >= 1800
    static std::shared_ptr<details::_ExceptionHolder> _ToExceptionHolder(std::exception_ptr _ExceptionPtr, const details::_TaskCreationCallstack &_SetExceptionAddressHint)
#else
    static std::shared_ptr<details::_ExceptionHolder> _ToExceptionHolder(std::exception_ptr _ExceptionPtr, void* _SetExceptionAddressHint)
#endif
    {
        return std::make_shared<details::_ExceptionHolder>(_ExceptionPtr, _SetExceptionAddressHint);
    }

    template <typename T> friend class task; // task can register itself with the event by calling the private _RegisterTask
    template <typename T> friend class task_completion_event;

    typedef typename details::_Task_completion_event_impl<_ResultType>::_TaskList _TaskList;

    /// <summary>
    ///    Cancels the task_completion_event.
    /// </summary>
    bool _CancelInternal() const
    {
        // Cancellation of task completion events is an internal only utility. Our usage is such that _CancelInternal
        // will never be invoked if the task completion event has been set.
        _CONCRT_ASSERT(!_M_Impl->_M_fHasValue);
        if (_M_Impl->_M_fIsCanceled)
        {
            return false;
        }

        _TaskList _Tasks;
        bool _Cancel = false;
        {
            details::scoped_lock _LockHolder(_M_Impl->_M_taskListCritSec);
            _CONCRT_ASSERT(!_M_Impl->_M_fHasValue);
            if (!_M_Impl->_M_fIsCanceled)
            {
                _M_Impl->_M_fIsCanceled = true;
                _Tasks.swap(_M_Impl->_M_tasks);
                _Cancel = true;
            }
        }

        bool _UserException = _M_Impl->_HasUserException();

        if (_Cancel)
        {
            for (auto _TaskIt = _Tasks.begin(); _TaskIt != _Tasks.end(); ++_TaskIt)
            {
                // Need to call this after the lock is released. See comments in set().
                if (_UserException)
                {
                    (*_TaskIt)->_CancelWithExceptionHolder(_M_Impl->_M_exceptionHolder, true);
                }
                else
                {
                    (*_TaskIt)->_Cancel(true);
                }
            }
        }
        return _Cancel;
    }

    /// <summary>
    ///     Register a task with this event. This function is called when a task is constructed using
    ///     a task_completion_event.
    /// </summary>
    void _RegisterTask(const typename details::_Task_ptr<_ResultType>::_Type & _TaskParam)
    {
        details::scoped_lock _LockHolder(_M_Impl->_M_taskListCritSec);
#if _MSC_VER < 1800
        _TaskParam->_SetScheduledEvent();
#endif
        //If an exception was already set on this event, then cancel the task with the stored exception.
        if (_M_Impl->_HasUserException())
        {
            _TaskParam->_CancelWithExceptionHolder(_M_Impl->_M_exceptionHolder, true);
        }
        else if (_M_Impl->_M_fHasValue)
        {
#if _MSC_VER >= 1800
            _TaskParam->_FinalizeAndRunContinuations(_M_Impl->_M_value.Get());
#else
            _TaskParam->_FinalizeAndRunContinuations(_M_Impl->_M_value);
#endif
        }
        else
        {
            _M_Impl->_M_tasks.push_back(_TaskParam);
        }
    }

    std::shared_ptr<details::_Task_completion_event_impl<_ResultType>> _M_Impl;
};

/// <summary>
///     The <c>task_completion_event</c> class allows you to delay the execution of a task until a condition is satisfied,
///     or start a task in response to an external event.
/// </summary>
/// <remarks>
///     Use a task created from a task completion event when your scenario requires you to create a task that will complete, and
///     thereby have its continuations scheduled for execution, at some point in the future. The <c>task_completion_event</c> must
///     have the same type as the task you create, and calling the set method on the task completion event with a value of that type
///     will cause the associated task to complete, and provide that value as a result to its continuations.
///     <para>If the task completion event is never signaled, any tasks created from it will be canceled when it is destructed.</para>
///     <para><c>task_completion_event</c> behaves like a smart pointer, and should be passed by value.</para>
/// </remarks>
/// <seealso cref="task Class"/>
/**/
template<>
class task_completion_event<void>
{
public:
    /// <summary>
    ///     Sets the task completion event.
    /// </summary>
    /// <returns>
    ///     The method returns <c>true</c> if it was successful in setting the event. It returns <c>false</c> if the event is already set.
    /// </returns>
    /// <remarks>
    ///     In the presence of multiple or concurrent calls to <c>set</c>, only the first call will succeed and its result (if any) will be stored in the
    ///     task completion event. The remaining sets are ignored and the method will return false. When you set a task completion event, all the
    ///     tasks created from that event will immediately complete, and its continuations, if any, will be scheduled. Task completion objects that have
    ///     a <typeparamref name="_ResultType"/> other than <c>void</c> will pass the value <paramref value="_Result"/> to their continuations.
    /// </remarks>
    /**/
    bool set() const // 'const' (even though it's not deep) allows to safely pass events by value into lambdas
    {
        return _M_unitEvent.set(details::_Unit_type());
    }
#if _MSC_VER >= 1800

    template<typename _E>
    __declspec(noinline) // Ask for no inlining so that the _ReturnAddress intrinsic gives us the expected result
        bool set_exception(_E _Except) const // 'const' (even though it's not deep) allows to safely pass events by value into lambdas
    {
            return _M_unitEvent._Cancel(std::make_exception_ptr(_Except), _CAPTURE_CALLSTACK());
    }
#endif

    /// <summary>
    ///     Propagates an exception to all tasks associated with this event.
    /// </summary>
    /// <param>
    ///     The exception_ptr that indicates the exception to set this event with.
    /// </param>
    /**/
    __declspec(noinline) // Ask for no inlining so that the _ReturnAddress intrinsic gives us the expected result
        bool set_exception(std::exception_ptr _ExceptionPtr) const // 'const' (even though it's not deep) allows to safely pass events by value into lambdas
    {
        // It is important that _ReturnAddress() evaluate to the instruction after the call instruction for set_exception.
#if _MSC_VER >= 1800
            return _M_unitEvent._Cancel(_ExceptionPtr, _CAPTURE_CALLSTACK());
#else
            return _M_unitEvent._Cancel(_ExceptionPtr, _ReturnAddress());
#endif
    }

    /// <summary>
    ///     Cancel the task_completion_event. Any task created using this event will be marked as canceled if it has
    ///     not already been set.
    /// </summary>
    void _Cancel() const // 'const' (even though it's not deep) allows to safely pass events by value into lambdas
    {
        _M_unitEvent._Cancel();
    }

    /// <summary>
    ///     Cancel the task_completion_event with the exception holder provided. Any task created using this event will be canceled
    ///     with the same exception.
    /// </summary>
    void _Cancel(const std::shared_ptr<details::_ExceptionHolder>& _ExHolder) const
    {
        _M_unitEvent._Cancel(_ExHolder);
    }

    /// <summary>
    ///     Method that stores an exception in the task completion event. This is used internally by when_any.
    ///     Note, this does not cancel the task completion event. A task completion event with a stored exception
    ///     can bet set() successfully. If it is canceled, it will cancel with the stored exception, if one is present.
    /// </summary>
    bool _StoreException(const std::shared_ptr<details::_ExceptionHolder>& _ExHolder) const
    {
        return _M_unitEvent._StoreException(_ExHolder);
    }

    /// <summary>
    ///     Test whether current event has been either Set, or Canceled.
    /// </summary>
    bool _IsTriggered() const
    {
        return _M_unitEvent._IsTriggered();
    }

private:
    template <typename T> friend class task; // task can register itself with the event by calling the private _RegisterTask

    /// <summary>
    ///     Register a task with this event. This function is called when a task is constructed using
    ///     a task_completion_event.
    /// </summary>
    void _RegisterTask(details::_Task_ptr<details::_Unit_type>::_Type _TaskParam)
    {
        _M_unitEvent._RegisterTask(_TaskParam);
    }

    // The void event contains an event a dummy type so common code can be used for events with void and non-void results.
    task_completion_event<details::_Unit_type> _M_unitEvent;
};
namespace details
{
    //
    // Compile-time validation helpers
    //

    // Task constructor validation: issue helpful diagnostics for common user errors. Do not attempt full validation here.
    //
    // Anything callable is fine
    template<typename _ReturnType, typename _Ty>
    auto _IsValidTaskCtor(_Ty _Param, int, int, int, int, int, int, int) -> typename decltype(_Param(), std::true_type());

    // Anything callable with a task return value is fine
    template<typename _ReturnType, typename _Ty>
    auto _IsValidTaskCtor(_Ty _Param, int, int, int, int, int, int, ...) -> typename decltype(_Param(stdx::declval<task<_ReturnType>*>()), std::true_type());

    // Anything callable with a return value is fine
    template<typename _ReturnType, typename _Ty>
    auto _IsValidTaskCtor(_Ty _Param, int, int, int, int, int, ...) -> typename decltype(_Param(stdx::declval<_ReturnType*>()), std::true_type());

    // Anything that has GetResults is fine: this covers AsyncAction*
    template<typename _ReturnType, typename _Ty>
    auto _IsValidTaskCtor(_Ty _Param, int, int, int, int, ...) -> typename decltype(_Param->GetResults(), std::true_type());

    // Anything that has GetResults(TResult_abi*) is fine: this covers AsyncOperation*
    template<typename _ReturnType, typename _Ty>
    auto _IsValidTaskCtor(_Ty _Param, int, int, int, ...) -> typename decltype(_Param->GetResults(stdx::declval<decltype(_GetUnwrappedType(stdx::declval<_Ty>()))*>()), std::true_type());

    // Allow parameters with set: this covers task_completion_event
    template<typename _ReturnType, typename _Ty>
    auto _IsValidTaskCtor(_Ty _Param, int, int, ...) -> typename decltype(_Param.set(stdx::declval<_ReturnType>()), std::true_type());

    template<typename _ReturnType, typename _Ty>
    auto _IsValidTaskCtor(_Ty _Param, int, ...) -> typename decltype(_Param.set(), std::true_type());

    // All else is invalid
    template<typename _ReturnType, typename _Ty>
    std::false_type _IsValidTaskCtor(_Ty _Param, ...);

    template<typename _ReturnType, typename _Ty>
    void _ValidateTaskConstructorArgs(_Ty _Param)
    {
        (void)_Param;
        static_assert(std::is_same<decltype(details::_IsValidTaskCtor<_ReturnType>(_Param, 0, 0, 0, 0, 0, 0, 0)), std::true_type>::value,
            "incorrect argument for task constructor; can be a callable object, an asynchronous operation, or a task_completion_event"
            );
        static_assert(!(std::is_same<_Ty, _ReturnType>::value && details::_IsIAsyncInfo<_Ty>::_Value),
            "incorrect template argument for task; consider using the return type of the async operation");
    }
    // Helpers for create_async validation
    //
    // A parameter lambda taking no arguments is valid
    template<typename _ReturnType, typename _Ty>
    static auto _IsValidCreateAsync(_Ty _Param, int, int, int, int, int, int, int, int) -> typename decltype(_Param(), std::true_type());

    // A parameter lambda taking a result argument is valid
    template<typename _ReturnType, typename _Ty>
    static auto _IsValidCreateAsync(_Ty _Param, int, int, int, int, int, int, int, ...) -> typename decltype(_Param(stdx::declval<_ReturnType*>()), std::true_type());

    // A parameter lambda taking an cancellation_token argument is valid
    template<typename _ReturnType, typename _Ty>
    static auto _IsValidCreateAsync(_Ty _Param, int, int, int, int, int, int, ...) -> typename decltype(_Param(Concurrency::cancellation_token::none()), std::true_type());

    // A parameter lambda taking an cancellation_token argument and a result argument is valid
    template<typename _ReturnType, typename _Ty>
    static auto _IsValidCreateAsync(_Ty _Param, int, int, int, int, int, ...) -> typename decltype(_Param(Concurrency::cancellation_token::none(), stdx::declval<_ReturnType*>()), std::true_type());

    // A parameter lambda taking a progress report argument is valid
    template<typename _ReturnType, typename _Ty>
    static auto _IsValidCreateAsync(_Ty _Param, int, int, int, int, ...) -> typename decltype(_Param(details::_ProgressReporterCtorArgType()), std::true_type());

    // A parameter lambda taking a progress report argument and a result argument is valid
    template<typename _ReturnType, typename _Ty>
    static auto _IsValidCreateAsync(_Ty _Param, int, int, int, ...) -> typename decltype(_Param(details::_ProgressReporterCtorArgType(), stdx::declval<_ReturnType*>()), std::true_type());

    // A parameter lambda taking a progress report and a cancellation_token argument is valid
    template<typename _ReturnType, typename _Ty>
    static auto _IsValidCreateAsync(_Ty _Param, int, int, ...) -> typename decltype(_Param(details::_ProgressReporterCtorArgType(), Concurrency::cancellation_token::none()), std::true_type());

    // A parameter lambda taking a progress report and a cancellation_token argument and a result argument is valid
    template<typename _ReturnType, typename _Ty>
    static auto _IsValidCreateAsync(_Ty _Param, int, ...) -> typename decltype(_Param(details::_ProgressReporterCtorArgType(), Concurrency::cancellation_token::none(), stdx::declval<_ReturnType*>()), std::true_type());

    // All else is invalid
    template<typename _ReturnType, typename _Ty>
    static std::false_type _IsValidCreateAsync(_Ty _Param, ...);
}

/// <summary>
///     The Parallel Patterns Library (PPL) <c>task</c> class. A <c>task</c> object represents work that can be executed asynchronously,
///     and concurrently with other tasks and parallel work produced by parallel algorithms in the Concurrency Runtime. It produces
///     a result of type <typeparamref name="_ResultType"/> on successful completion. Tasks of type <c>task&lt;void&gt;</c> produce no result.
///     A task can be waited upon and canceled independently of other tasks. It can also be composed with other tasks using
///     continuations(<c>then</c>), and join(<c>when_all</c>) and choice(<c>when_any</c>) patterns.
/// </summary>
/// <typeparam name="_ReturnType">
///     The result type of this task.
/// </typeparam>
/// <remarks>
///     For more information, see <see cref="Task Parallelism (Concurrency Runtime)"/>.
/// </remarks>
/**/
template<typename _ReturnType>
class task
{
public:
    /// <summary>
    ///     The type of the result an object of this class produces.
    /// </summary>
    /**/
    typedef _ReturnType result_type;

    /// <summary>
    ///     Constructs a <c>task</c> object.
    /// </summary>
    /// <remarks>
    ///     The default constructor for a <c>task</c> is only present in order to allow tasks to be used within containers.
    ///     A default constructed task cannot be used until you assign a valid task to it. Methods such as <c>get</c>, <c>wait</c> or <c>then</c>
    ///     will throw an <see cref="invalid_argument Class">invalid_argument</see> exception when called on a default constructed task.
    ///     <para>A task that is created from a <c>task_completion_event</c> will complete (and have its continuations scheduled) when the task
    ///     completion event is set.</para>
    ///     <para>The version of the constructor that takes a cancellation token creates a task that can be canceled using the
    ///     <c>cancellation_token_source</c> the token was obtained from. Tasks created without a cancellation token are not cancelable.</para>
    ///     <para>Tasks created from a <c>Windows::Foundation::IAsyncInfo</c> interface or a lambda that returns an <c>IAsyncInfo</c> interface
    ///     reach their terminal state when the enclosed Windows Runtime asynchronous operation or action completes. Similarly, tasks created
    ///     from a lamda that returns a <c>task&lt;result_type&gt;</c> reach their terminal state when the inner task reaches its terminal state,
    ///     and not when the lamda returns.</para>
    ///     <para><c>task</c> behaves like a smart pointer and is safe to pass around by value. It can be accessed by multiple threads
    ///     without the need for locks.</para>
    ///     <para>The constructor overloads that take a Windows::Foundation::IAsyncInfo interface or a lambda returning such an interface, are only available
    ///     to Windows Store apps.</para>
    ///     <para>For more information, see <see cref="Task Parallelism (Concurrency Runtime)"/>.</para>
    /// </remarks>
    /**/
    task() : _M_Impl(nullptr)
    {
        // The default constructor should create a task with a nullptr impl. This is a signal that the
        // task is not usable and should throw if any wait(), get() or then() APIs are used.
    }

    /// <summary>
    ///     Constructs a <c>task</c> object.
    /// </summary>
    /// <typeparam name="_Ty">
    ///     The type of the parameter from which the task is to be constructed.
    /// </typeparam>
    /// <param name="_Param">
    ///     The parameter from which the task is to be constructed. This could be a lambda, a function object, a <c>task_completion_event&lt;result_type&gt;</c>
    ///     object, or a Windows::Foundation::IAsyncInfo if you are using tasks in your Windows Store app. The lambda or function
    ///     object should be a type equivalent to <c>std::function&lt;X(void)&gt;</c>, where X can be a variable of type <c>result_type</c>,
    ///     <c>task&lt;result_type&gt;</c>, or a Windows::Foundation::IAsyncInfo in Windows Store apps.
    /// </param>
    /// <param name="_Token">
    ///     The cancellation token to associate with this task. A task created without a cancellation token cannot be canceled. It implicitly receives
    ///     the token <c>cancellation_token::none()</c>.
    /// </param>
    /// <remarks>
    ///     The default constructor for a <c>task</c> is only present in order to allow tasks to be used within containers.
    ///     A default constructed task cannot be used until you assign a valid task to it. Methods such as <c>get</c>, <c>wait</c> or <c>then</c>
    ///     will throw an <see cref="invalid_argument Class">invalid_argument</see> exception when called on a default constructed task.
    ///     <para>A task that is created from a <c>task_completion_event</c> will complete (and have its continuations scheduled) when the task
    ///     completion event is set.</para>
    ///     <para>The version of the constructor that takes a cancellation token creates a task that can be canceled using the
    ///     <c>cancellation_token_source</c> the token was obtained from. Tasks created without a cancellation token are not cancelable.</para>
    ///     <para>Tasks created from a <c>Windows::Foundation::IAsyncInfo</c> interface or a lambda that returns an <c>IAsyncInfo</c> interface
    ///     reach their terminal state when the enclosed Windows Runtime asynchronous operation or action completes. Similarly, tasks created
    ///     from a lamda that returns a <c>task&lt;result_type&gt;</c> reach their terminal state when the inner task reaches its terminal state,
    ///     and not when the lamda returns.</para>
    ///     <para><c>task</c> behaves like a smart pointer and is safe to pass around by value. It can be accessed by multiple threads
    ///     without the need for locks.</para>
    ///     <para>The constructor overloads that take a Windows::Foundation::IAsyncInfo interface or a lambda returning such an interface, are only available
    ///     to Windows Store apps.</para>
    ///     <para>For more information, see <see cref="Task Parallelism (Concurrency Runtime)"/>.</para>
    /// </remarks>
    /**/
    template<typename _Ty>
    __declspec(noinline) // Ask for no inlining so that the _ReturnAddress intrinsic gives us the expected result
        explicit task(_Ty _Param)
    {
#if _MSC_VER >= 1800
            task_options _TaskOptions;
#endif
            details::_ValidateTaskConstructorArgs<_ReturnType, _Ty>(_Param);

#if _MSC_VER >= 1800
            _CreateImpl(_TaskOptions.get_cancellation_token()._GetImplValue(), _TaskOptions.get_scheduler());
#else
            _CreateImpl(Concurrency::cancellation_token::none()._GetImplValue());
#endif
            // Do not move the next line out of this function. It is important that _ReturnAddress() evaluate to the the call site of the task constructor.
#if _MSC_VER >= 1800
            _SetTaskCreationCallstack(_CAPTURE_CALLSTACK());
#else
            _SetTaskCreationAddressHint(_ReturnAddress());
#endif
            _TaskInitMaybeFunctor(_Param, details::_IsCallable<_ReturnType>(_Param, 0, 0, 0));
        }

    /// <summary>
    ///     Constructs a <c>task</c> object.
    /// </summary>
    /// <typeparam name="_Ty">
    ///     The type of the parameter from which the task is to be constructed.
    /// </typeparam>
    /// <param name="_Param">
    ///     The parameter from which the task is to be constructed. This could be a lambda, a function object, a <c>task_completion_event&lt;result_type&gt;</c>
    ///     object, or a Windows::Foundation::IAsyncInfo if you are using tasks in your Windows Store app. The lambda or function
    ///     object should be a type equivalent to <c>std::function&lt;X(void)&gt;</c>, where X can be a variable of type <c>result_type</c>,
    ///     <c>task&lt;result_type&gt;</c>, or a Windows::Foundation::IAsyncInfo in Windows Store apps.
    /// </param>
    /// <param name="_Token">
    ///     The cancellation token to associate with this task. A task created without a cancellation token cannot be canceled. It implicitly receives
    ///     the token <c>cancellation_token::none()</c>.
    /// </param>
    /// <remarks>
    ///     The default constructor for a <c>task</c> is only present in order to allow tasks to be used within containers.
    ///     A default constructed task cannot be used until you assign a valid task to it. Methods such as <c>get</c>, <c>wait</c> or <c>then</c>
    ///     will throw an <see cref="invalid_argument Class">invalid_argument</see> exception when called on a default constructed task.
    ///     <para>A task that is created from a <c>task_completion_event</c> will complete (and have its continuations scheduled) when the task
    ///     completion event is set.</para>
    ///     <para>The version of the constructor that takes a cancellation token creates a task that can be canceled using the
    ///     <c>cancellation_token_source</c> the token was obtained from. Tasks created without a cancellation token are not cancelable.</para>
    ///     <para>Tasks created from a <c>Windows::Foundation::IAsyncInfo</c> interface or a lambda that returns an <c>IAsyncInfo</c> interface
    ///     reach their terminal state when the enclosed Windows Runtime asynchronous operation or action completes. Similarly, tasks created
    ///     from a lamda that returns a <c>task&lt;result_type&gt;</c> reach their terminal state when the inner task reaches its terminal state,
    ///     and not when the lamda returns.</para>
    ///     <para><c>task</c> behaves like a smart pointer and is safe to pass around by value. It can be accessed by multiple threads
    ///     without the need for locks.</para>
    ///     <para>The constructor overloads that take a Windows::Foundation::IAsyncInfo interface or a lambda returning such an interface, are only available
    ///     to Windows Store apps.</para>
    ///     <para>For more information, see <see cref="Task Parallelism (Concurrency Runtime)"/>.</para>
    /// </remarks>
    /**/
    template<typename _Ty>
    __declspec(noinline) // Ask for no inlining so that the _ReturnAddress intrinsic gives us the expected result
#if _MSC_VER >= 1800
        explicit task(_Ty _Param, const task_options &_TaskOptions)
#else
        explicit task(_Ty _Param, Concurrency::cancellation_token _Token)
#endif
    {
            details::_ValidateTaskConstructorArgs<_ReturnType, _Ty>(_Param);

#if _MSC_VER >= 1800
            _CreateImpl(_TaskOptions.get_cancellation_token()._GetImplValue(), _TaskOptions.get_scheduler());
#else
            _CreateImpl(_Token._GetImplValue());
#endif
            // Do not move the next line out of this function. It is important that _ReturnAddress() evaluate to the the call site of the task constructor.
#if _MSC_VER >= 1800
            _SetTaskCreationCallstack(details::_get_internal_task_options(_TaskOptions)._M_hasPresetCreationCallstack ? details::_get_internal_task_options(_TaskOptions)._M_presetCreationCallstack : _CAPTURE_CALLSTACK());
#else
            _SetTaskCreationAddressHint(_ReturnAddress());
#endif
            _TaskInitMaybeFunctor(_Param, details::_IsCallable<_ReturnType>(_Param, 0, 0, 0));
        }

    /// <summary>
    ///     Constructs a <c>task</c> object.
    /// </summary>
    /// <param name="_Other">
    ///     The source <c>task</c> object.
    /// </param>
    /// <remarks>
    ///     The default constructor for a <c>task</c> is only present in order to allow tasks to be used within containers.
    ///     A default constructed task cannot be used until you assign a valid task to it. Methods such as <c>get</c>, <c>wait</c> or <c>then</c>
    ///     will throw an <see cref="invalid_argument Class">invalid_argument</see> exception when called on a default constructed task.
    ///     <para>A task that is created from a <c>task_completion_event</c> will complete (and have its continuations scheduled) when the task
    ///     completion event is set.</para>
    ///     <para>The version of the constructor that takes a cancellation token creates a task that can be canceled using the
    ///     <c>cancellation_token_source</c> the token was obtained from. Tasks created without a cancellation token are not cancelable.</para>
    ///     <para>Tasks created from a <c>Windows::Foundation::IAsyncInfo</c> interface or a lambda that returns an <c>IAsyncInfo</c> interface
    ///     reach their terminal state when the enclosed Windows Runtime asynchronous operation or action completes. Similarly, tasks created
    ///     from a lamda that returns a <c>task&lt;result_type&gt;</c> reach their terminal state when the inner task reaches its terminal state,
    ///     and not when the lamda returns.</para>
    ///     <para><c>task</c> behaves like a smart pointer and is safe to pass around by value. It can be accessed by multiple threads
    ///     without the need for locks.</para>
    ///     <para>The constructor overloads that take a Windows::Foundation::IAsyncInfo interface or a lambda returning such an interface, are only available
    ///     to Windows Store apps.</para>
    ///     <para>For more information, see <see cref="Task Parallelism (Concurrency Runtime)"/>.</para>
    /// </remarks>
    /**/
    task(const task& _Other) : _M_Impl(_Other._M_Impl) {}

    /// <summary>
    ///     Constructs a <c>task</c> object.
    /// </summary>
    /// <param name="_Other">
    ///     The source <c>task</c> object.
    /// </param>
    /// <remarks>
    ///     The default constructor for a <c>task</c> is only present in order to allow tasks to be used within containers.
    ///     A default constructed task cannot be used until you assign a valid task to it. Methods such as <c>get</c>, <c>wait</c> or <c>then</c>
    ///     will throw an <see cref="invalid_argument Class">invalid_argument</see> exception when called on a default constructed task.
    ///     <para>A task that is created from a <c>task_completion_event</c> will complete (and have its continuations scheduled) when the task
    ///     completion event is set.</para>
    ///     <para>The version of the constructor that takes a cancellation token creates a task that can be canceled using the
    ///     <c>cancellation_token_source</c> the token was obtained from. Tasks created without a cancellation token are not cancelable.</para>
    ///     <para>Tasks created from a <c>Windows::Foundation::IAsyncInfo</c> interface or a lambda that returns an <c>IAsyncInfo</c> interface
    ///     reach their terminal state when the enclosed Windows Runtime asynchronous operation or action completes. Similarly, tasks created
    ///     from a lamda that returns a <c>task&lt;result_type&gt;</c> reach their terminal state when the inner task reaches its terminal state,
    ///     and not when the lamda returns.</para>
    ///     <para><c>task</c> behaves like a smart pointer and is safe to pass around by value. It can be accessed by multiple threads
    ///     without the need for locks.</para>
    ///     <para>The constructor overloads that take a Windows::Foundation::IAsyncInfo interface or a lambda returning such an interface, are only available
    ///     to Windows Store apps.</para>
    ///     <para>For more information, see <see cref="Task Parallelism (Concurrency Runtime)"/>.</para>
    /// </remarks>
    /**/
    task(task&& _Other) : _M_Impl(std::move(_Other._M_Impl)) {}

    /// <summary>
    ///     Replaces the contents of one <c>task</c> object with another.
    /// </summary>
    /// <param name="_Other">
    ///     The source <c>task</c> object.
    /// </param>
    /// <remarks>
    ///     As <c>task</c> behaves like a smart pointer, after a copy assignment, this <c>task</c> objects represents the same
    ///     actual task as <paramref name="_Other"/> does.
    /// </remarks>
    /**/
    task& operator=(const task& _Other)
    {
        if (this != &_Other)
        {
            _M_Impl = _Other._M_Impl;
        }
        return *this;
    }

    /// <summary>
    ///     Replaces the contents of one <c>task</c> object with another.
    /// </summary>
    /// <param name="_Other">
    ///     The source <c>task</c> object.
    /// </param>
    /// <remarks>
    ///     As <c>task</c> behaves like a smart pointer, after a copy assignment, this <c>task</c> objects represents the same
    ///     actual task as <paramref name="_Other"/> does.
    /// </remarks>
    /**/
    task& operator=(task&& _Other)
    {
        if (this != &_Other)
        {
            _M_Impl = std::move(_Other._M_Impl);
        }
        return *this;
    }

    /// <summary>
    ///     Adds a continuation task to this task.
    /// </summary>
    /// <typeparam name="_Function">
    ///     The type of the function object that will be invoked by this task.
    /// </typeparam>
    /// <param name="_Func">
    ///     The continuation function to execute when this task completes. This continuation function must take as input
    ///     a variable of either <c>result_type</c> or <c>task&lt;result_type&gt;</c>, where <c>result_type</c> is the type
    ///     of the result this task produces.
    /// </param>
    /// <returns>
    ///     The newly created continuation task. The result type of the returned task is determined by what <paramref name="_Func"/> returns.
    /// </returns>
    /// <remarks>
    ///     The overloads of <c>then</c> that take a lambda or functor that returns a Windows::Foundation::IAsyncInfo interface, are only available
    ///     to Windows Store apps.
    ///     <para>For more information on how to use task continuations to compose asynchronous work, see <see cref="Task Parallelism (Concurrency Runtime)"/>.</para>
    /// </remarks>
    /**/
    template<typename _Function>
    __declspec(noinline) // Ask for no inlining so that the _ReturnAddress intrinsic gives us the expected result
        auto then(const _Function& _Func) const -> typename details::_ContinuationTypeTraits<_Function, _ReturnType>::_TaskOfType
    {
#if _MSC_VER >= 1800
            task_options _TaskOptions;
            details::_get_internal_task_options(_TaskOptions)._set_creation_callstack(_CAPTURE_CALLSTACK());
            return _ThenImpl<_ReturnType, _Function>(_Func, _TaskOptions);
#else
            auto _ContinuationTask = _ThenImpl<_ReturnType, _Function>(_Func, nullptr, task_continuation_context::use_default());
            // Do not move the next line out of this function. It is important that _ReturnAddress() evaluate to the the call site of then.
            _ContinuationTask._SetTaskCreationAddressHint(_ReturnAddress());
            return _ContinuationTask;
#endif
        }

    /// <summary>
    ///     Adds a continuation task to this task.
    /// </summary>
    /// <typeparam name="_Function">
    ///     The type of the function object that will be invoked by this task.
    /// </typeparam>
    /// <param name="_Func">
    ///     The continuation function to execute when this task completes. This continuation function must take as input
    ///     a variable of either <c>result_type</c> or <c>task&lt;result_type&gt;</c>, where <c>result_type</c> is the type
    ///     of the result this task produces.
    /// </param>
    /// <param name="_CancellationToken">
    ///     The cancellation token to associate with the continuation task. A continuation task that is created without a cancellation token will inherit
    ///     the token of its antecedent task.
    /// </param>
    /// <returns>
    ///     The newly created continuation task. The result type of the returned task is determined by what <paramref name="_Func"/> returns.
    /// </returns>
    /// <remarks>
    ///     The overloads of <c>then</c> that take a lambda or functor that returns a Windows::Foundation::IAsyncInfo interface, are only available
    ///     to Windows Store apps.
    ///     <para>For more information on how to use task continuations to compose asynchronous work, see <see cref="Task Parallelism (Concurrency Runtime)"/>.</para>
    /// </remarks>
    /**/
    template<typename _Function>
    __declspec(noinline) // Ask for no inlining so that the _ReturnAddress intrinsic gives us the expected result
#if _MSC_VER >= 1800
        auto then(const _Function& _Func, task_options _TaskOptions) const -> typename details::_ContinuationTypeTraits<_Function, _ReturnType>::_TaskOfType
#else
        auto then(const _Function& _Func, Concurrency::cancellation_token _CancellationToken) const -> typename details::_ContinuationTypeTraits<_Function, _ReturnType>::_TaskOfType
#endif
    {
#if _MSC_VER >= 1800
            details::_get_internal_task_options(_TaskOptions)._set_creation_callstack(_CAPTURE_CALLSTACK());
            return _ThenImpl<_ReturnType, _Function>(_Func, _TaskOptions);
#else
        auto _ContinuationTask = _ThenImpl<_ReturnType, _Function>(_Func, _CancellationToken._GetImplValue(), task_continuation_context::use_default());
        // Do not move the next line out of this function. It is important that _ReturnAddress() evaluate to the the call site of then.
        _ContinuationTask._SetTaskCreationAddressHint(_ReturnAddress());
        return _ContinuationTask;
#endif
    }
#if _MSC_VER < 1800
    /// <summary>
    ///     Adds a continuation task to this task.
    /// </summary>
    /// <typeparam name="_Function">
    ///     The type of the function object that will be invoked by this task.
    /// </typeparam>
    /// <param name="_Func">
    ///     The continuation function to execute when this task completes. This continuation function must take as input
    ///     a variable of either <c>result_type</c> or <c>task&lt;result_type&gt;</c>, where <c>result_type</c> is the type
    ///     of the result this task produces.
    /// </param>
    /// <param name="_ContinuationContext">
    ///     A variable that specifies where the continuation should execute. This variable is only useful when used in a
    ///     Windows Store app. For more information, see <see cref="task_continuation_context Class">task_continuation_context</see>
    /// </param>
    /// <returns>
    ///     The newly created continuation task. The result type of the returned task is determined by what <paramref name="_Func"/> returns.
    /// </returns>
    /// <remarks>
    ///     The overloads of <c>then</c> that take a lambda or functor that returns a Windows::Foundation::IAsyncInfo interface, are only available
    ///     to Windows Store apps.
    ///     <para>For more information on how to use task continuations to compose asynchronous work, see <see cref="Task Parallelism (Concurrency Runtime)"/>.</para>
    /// </remarks>
    /**/
    template<typename _Function>
    __declspec(noinline) // Ask for no inlining so that the _ReturnAddress intrinsic gives us the expected result
        auto then(const _Function& _Func, task_continuation_context _ContinuationContext) const -> typename details::_ContinuationTypeTraits<_Function, _ReturnType>::_TaskOfType
    {
        auto _ContinuationTask = _ThenImpl<_ReturnType, _Function>(_Func, nullptr, _ContinuationContext);
        // Do not move the next line out of this function. It is important that _ReturnAddress() evaluate to the the call site of then.
        _ContinuationTask._SetTaskCreationAddressHint(_ReturnAddress());
        return _ContinuationTask;
    }
#endif
    /// <summary>
    ///     Adds a continuation task to this task.
    /// </summary>
    /// <typeparam name="_Function">
    ///     The type of the function object that will be invoked by this task.
    /// </typeparam>
    /// <param name="_Func">
    ///     The continuation function to execute when this task completes. This continuation function must take as input
    ///     a variable of either <c>result_type</c> or <c>task&lt;result_type&gt;</c>, where <c>result_type</c> is the type
    ///     of the result this task produces.
    /// </param>
    /// <param name="_CancellationToken">
    ///     The cancellation token to associate with the continuation task. A continuation task that is created without a cancellation token will inherit
    ///     the token of its antecedent task.
    /// </param>
    /// <param name="_ContinuationContext">
    ///     A variable that specifies where the continuation should execute. This variable is only useful when used in a
    ///     Windows Store app. For more information, see <see cref="task_continuation_context Class">task_continuation_context</see>
    /// </param>
    /// <returns>
    ///     The newly created continuation task. The result type of the returned task is determined by what <paramref name="_Func"/> returns.
    /// </returns>
    /// <remarks>
    ///     The overloads of <c>then</c> that take a lambda or functor that returns a Windows::Foundation::IAsyncInfo interface, are only available
    ///     to Windows Store apps.
    ///     <para>For more information on how to use task continuations to compose asynchronous work, see <see cref="Task Parallelism (Concurrency Runtime)"/>.</para>
    /// </remarks>
    /**/
    template<typename _Function>
    __declspec(noinline) // Ask for no inlining so that the _ReturnAddress intrinsic gives us the expected result
        auto then(const _Function& _Func, Concurrency::cancellation_token _CancellationToken, task_continuation_context _ContinuationContext) const -> typename details::_ContinuationTypeTraits<_Function, _ReturnType>::_TaskOfType
    {
#if _MSC_VER >= 1800
            task_options _TaskOptions(_CancellationToken, _ContinuationContext);
            details::_get_internal_task_options(_TaskOptions)._set_creation_callstack(_CAPTURE_CALLSTACK());
            return _ThenImpl<_ReturnType, _Function>(_Func, _TaskOptions);
#else
            auto _ContinuationTask = _ThenImpl<_ReturnType, _Function>(_Func, _CancellationToken._GetImplValue(), _ContinuationContext);
            // Do not move the next line out of this function. It is important that _ReturnAddress() evaluate to the the call site of then.
            _ContinuationTask._SetTaskCreationAddressHint(_ReturnAddress());
            return _ContinuationTask;
#endif
        }

    /// <summary>
    ///     Waits for this task to reach a terminal state. It is possible for <c>wait</c> to execute the task inline, if all of the tasks
    ///     dependencies are satisfied, and it has not already been picked up for execution by a background worker.
    /// </summary>
    /// <returns>
    ///     A <c>task_status</c> value which could be either <c>completed</c> or <c>canceled</c>. If the task encountered an exception
    ///     during execution, or an exception was propagated to it from an antecedent task, <c>wait</c> will throw that exception.
    /// </returns>
    /**/
    task_status wait() const
    {
        if (_M_Impl == nullptr)
        {
            throw Concurrency::invalid_operation("wait() cannot be called on a default constructed task.");
        }

        return _M_Impl->_Wait();
    }

    /// <summary>
    ///     Returns the result this task produced. If the task is not in a terminal state, a call to <c>get</c> will wait for the task to
    ///     finish. This method does not return a value when called on a task with a <c>result_type</c> of <c>void</c>.
    /// </summary>
    /// <returns>
    ///     The result of the task.
    /// </returns>
    /// <remarks>
    ///     If the task is canceled, a call to <c>get</c> will throw a <see cref="task_canceled Class">task_canceled</see> exception. If the task
    ///     encountered an different exception or an exception was propagated to it from an antecedent task, a call to <c>get</c> will throw that exception.
    /// </remarks>
    /**/
    _ReturnType get() const
    {
        if (_M_Impl == nullptr)
        {
            throw Concurrency::invalid_operation("get() cannot be called on a default constructed task.");
        }

        if (_M_Impl->_Wait() == Concurrency::canceled)
        {
            throw Concurrency::task_canceled();
        }

        return _M_Impl->_GetResult();
    }
#if _MSC_VER >= 1800
    /// <summary>
    ///     Determines if the task is completed.
    /// </summary>
    /// <returns>
    ///     True if the task has completed, false otherwise.
    /// </returns>
    /// <remarks>
    ///     The function returns true if the task is completed or canceled (with or without user exception).
    /// </remarks>
    bool is_done() const
    {
        if (!_M_Impl)
        {
            throw Concurrency::invalid_operation("is_done() cannot be called on a default constructed task.");
        }

        return _M_Impl->_IsDone();
    }

    /// <summary>
    ///     Returns the scheduler for this task
    /// </summary>
    /// <returns>
    ///     A pointer to the scheduler
    /// </returns>
    Concurrency::scheduler_ptr scheduler() const
    {
        if (!_M_Impl)
        {
            throw Concurrency::invalid_operation("scheduler() cannot be called on a default constructed task.");
        }

        return _M_Impl->_GetScheduler();
    }
#endif
    /// <summary>
    ///     Determines whether the task unwraps a Windows Runtime <c>IAsyncInfo</c> interface or is descended from such a task.
    /// </summary>
    /// <returns>
    ///     <c>true</c> if the task unwraps an <c>IAsyncInfo</c> interface or is descended from such a task, <c>false</c> otherwise.
    /// </returns>
    /**/
    bool is_apartment_aware() const
    {
        if (_M_Impl == nullptr)
        {
            throw Concurrency::invalid_operation("is_apartment_aware() cannot be called on a default constructed task.");
        }
        return _M_Impl->_IsApartmentAware();
    }

    /// <summary>
    ///     Determines whether two <c>task</c> objects represent the same internal task.
    /// </summary>
    /// <returns>
    ///     <c>true</c> if the objects refer to the same underlying task, and <c>false</c> otherwise.
    /// </returns>
    /**/
    bool operator==(const task<_ReturnType>& _Rhs) const
    {
        return (_M_Impl == _Rhs._M_Impl);
    }

    /// <summary>
    ///     Determines whether two <c>task</c> objects represent different internal tasks.
    /// </summary>
    /// <returns>
    ///     <c>true</c> if the objects refer to different underlying tasks, and <c>false</c> otherwise.
    /// </returns>
    /**/
    bool operator!=(const task<_ReturnType>& _Rhs) const
    {
        return !operator==(_Rhs);
    }

    /// <summary>
    ///     Create an underlying task implementation.
    /// </summary>
#if _MSC_VER >= 1800
    void _CreateImpl(Concurrency::details::_CancellationTokenState * _Ct, Concurrency::scheduler_ptr _Scheduler)
#else
    void _CreateImpl(Concurrency::details::_CancellationTokenState * _Ct)
#endif
    {
        _CONCRT_ASSERT(_Ct != nullptr);
#if _MSC_VER >= 1800
        _M_Impl = details::_Task_ptr<_ReturnType>::_Make(_Ct, _Scheduler);
#else
        _M_Impl = details::_Task_ptr<_ReturnType>::_Make(_Ct);
#endif
        if (_Ct != Concurrency::details::_CancellationTokenState::_None())
        {
#if _MSC_VER >= 1800
            _M_Impl->_RegisterCancellation(_M_Impl);
#else
            _M_Impl->_RegisterCancellation();
#endif
        }
    }

    /// <summary>
    ///     Return the underlying implementation for this task.
    /// </summary>
    const typename details::_Task_ptr<_ReturnType>::_Type & _GetImpl() const
    {
        return _M_Impl;
    }

    /// <summary>
    ///     Set the implementation of the task to be the supplied implementaion.
    /// </summary>
    void _SetImpl(const typename details::_Task_ptr<_ReturnType>::_Type & _Impl)
    {
        _CONCRT_ASSERT(_M_Impl == nullptr);
        _M_Impl = _Impl;
    }

    /// <summary>
    ///     Set the implementation of the task to be the supplied implementaion using a move instead of a copy.
    /// </summary>
    void _SetImpl(typename details::_Task_ptr<_ReturnType>::_Type && _Impl)
    {
        _CONCRT_ASSERT(_M_Impl == nullptr);
        _M_Impl = std::move(_Impl);
    }

    /// <summary>
    ///     Sets a property determining whether the task is apartment aware.
    /// </summary>
    void _SetAsync(bool _Async = true)
    {
        _GetImpl()->_SetAsync(_Async);
    }

    /// <summary>
    ///     Sets a field in the task impl to the return address for calls to the task constructors and the then method.
    /// </summary>
#if _MSC_VER >= 1800
    void _SetTaskCreationCallstack(const details::_TaskCreationCallstack &_callstack)
    {
        _GetImpl()->_SetTaskCreationCallstack(_callstack);
    }
#else
    void _SetTaskCreationAddressHint(void* _Address)
    {
        _GetImpl()->_SetTaskCreationAddressHint(_Address);
    }
#endif
    /// <summary>
    ///     An internal version of then that takes additional flags and always execute the continuation inline by default.
    ///     When _ForceInline is set to false, continuations inlining will be limited to default _DefaultAutoInline.
    ///     This function is Used for runtime internal continuations only.
    /// </summary>
    template<typename _Function>
#if _MSC_VER >= 1800
    auto _Then(const _Function& _Func, Concurrency::details::_CancellationTokenState *_PTokenState,
        details::_TaskInliningMode _InliningMode = Concurrency::details::_ForceInline) const -> typename details::_ContinuationTypeTraits<_Function, _ReturnType>::_TaskOfType
    {
        // inherit from antecedent
        auto _Scheduler = _GetImpl()->_GetScheduler();

        return _ThenImpl<_ReturnType, _Function>(_Func, _PTokenState, task_continuation_context::use_default(), _Scheduler, _CAPTURE_CALLSTACK(), _InliningMode);
    }
#else
    auto _Then(const _Function& _Func, Concurrency::details::_CancellationTokenState *_PTokenState, bool _Aggregating,
        details::_TaskInliningMode _InliningMode = Concurrency::details::_ForceInline) const -> typename details::_ContinuationTypeTraits<_Function, _ReturnType>::_TaskOfType
    {
        return _ThenImpl<_ReturnType, _Function>(_Func, _PTokenState, task_continuation_context::use_default(), _Aggregating, _InliningMode);
    }
#endif

private:
    template <typename T> friend class task;

    // A helper class template that transforms an intial task lambda returns void into a lambda that returns a non-void type (details::_Unit_type is used
    // to substitute for void). This is to minimize the special handling required for 'void'.
    template<typename _RetType>
    class _Init_func_transformer
    {
    public:
        static auto _Perform(std::function<HRESULT(_RetType*)> _Func) -> decltype(_Func)
        {
            return _Func;
        }
    };

    template<>
    class _Init_func_transformer<void>
    {
    public:
        static auto _Perform(std::function<HRESULT(void)> _Func) -> decltype(details::_MakeVoidToUnitFunc(_Func))
        {
            return details::_MakeVoidToUnitFunc(_Func);
        }
    };

    // The task handle type used to construct an 'initial task' - a task with no dependents.
    template <typename _InternalReturnType, typename _Function, typename _TypeSelection>
    struct _InitialTaskHandle :
        details::_PPLTaskHandle<_ReturnType, _InitialTaskHandle<_InternalReturnType, _Function, _TypeSelection>, details::_UnrealizedChore>
    {
        _Function _M_function;
        _InitialTaskHandle(const typename details::_Task_ptr<_ReturnType>::_Type & _TaskImpl, const _Function & _Function) : _M_function(_Function), _PPLTaskHandle(_TaskImpl)
        {
        }
        virtual ~_InitialTaskHandle() {}

#if _MSC_VER >= 1800
        template <typename _Func, typename _RetArg>
        auto _LogWorkItemAndInvokeUserLambda(_Func && _func, _RetArg && _retArg) const -> decltype(_func(std::forward<_RetArg>(_retArg)))
        {
            details::_TaskWorkItemRAIILogger _LogWorkItem(this->_M_pTask->_M_taskEventLogger);
            return _func(std::forward<_RetArg>(_retArg));
        }
#endif

        void _Perform() const
        {
            _Init(_TypeSelection());
        }
#if _MSC_VER >= 1800

        void _SyncCancelAndPropagateException() const
        {
            this->_M_pTask->_Cancel(true);
        }
#endif
        //
        // Overload 0: returns _InternalReturnType
        //
        // This is the most basic task with no unwrapping
        //
        void _Init(details::_TypeSelectorNoAsync) const
        {
            _ReturnType retVal;
#if _MSC_VER >= 1800
            HRESULT hr = _LogWorkItemAndInvokeUserLambda(_Init_func_transformer<_InternalReturnType>::_Perform(_M_function), &retVal);
#else
            HRESULT hr = _Init_func_transformer<_InternalReturnType>::_Perform(_M_function)(&retVal);
#endif
            if (FAILED(hr)) throw std::make_exception_ptr(hr);
            _M_pTask->_FinalizeAndRunContinuations(retVal);
        }

        //
        // Overload 1: returns IAsyncOperation<_InternalReturnType>*
        //                   or
        //             returns task<_InternalReturnType>
        //
        // This is task whose functor returns an async operation or a task which will be unwrapped for continuation
        // Depending on the output type, the right _AsyncInit gets invoked
        //
        void _Init(details::_TypeSelectorAsyncTask) const
        {
            task<_InternalReturnType> retVal;
#if _MSC_VER >= 1800
            HRESULT hr = _LogWorkItemAndInvokeUserLambda(_M_function, &retVal);
#else
            HRESULT hr = _M_function(&retVal);
#endif
            if (FAILED(hr)) throw std::make_exception_ptr(hr);
            details::_Task_impl_base::_AsyncInit<_ReturnType, _InternalReturnType>(_M_pTask, retVal);
        }
        void _Init(details::_TypeSelectorAsyncOperation) const
        {
            _ReturnType retVal;
#if _MSC_VER >= 1800
            HRESULT hr = _LogWorkItemAndInvokeUserLambda(_M_function, &retVal);
#else
            HRESULT hr = _M_function(&retVal);
#endif
            if (FAILED(hr)) throw std::make_exception_ptr(hr);
            details::_Task_impl_base::_AsyncInit<_ReturnType, _InternalReturnType>(_M_pTask,
                Microsoft::WRL::Make<details::_IAsyncOperationToAsyncOperationConverter<_InternalReturnType>>(retVal).Get());
        }

        //
        // Overload 2: returns IAsyncAction*
        //
        // This is task whose functor returns an async action which will be unwrapped for continuation
        //
        void _Init(details::_TypeSelectorAsyncAction) const
        {
            _ReturnType retVal;
#if _MSC_VER >= 1800
            HRESULT hr = _LogWorkItemAndInvokeUserLambda(_M_function, &retVal);
#else
            HRESULT hr = _M_function(&retVal);
#endif
            if (FAILED(hr)) throw std::make_exception_ptr(hr);
            details::_Task_impl_base::_AsyncInit<_ReturnType, _InternalReturnType>(_M_pTask, Microsoft::WRL::Make<details::_IAsyncActionToAsyncOperationConverter>(retVal).Get());
        }

        //
        // Overload 3: returns IAsyncOperationWithProgress<_InternalReturnType, _ProgressType>*
        //
        // This is task whose functor returns an async operation with progress which will be unwrapped for continuation
        //
        void _Init(details::_TypeSelectorAsyncOperationWithProgress) const
        {
            typedef details::_GetProgressType<decltype(_M_function())>::_Value _ProgressType;
            _ReturnType retVal;
#if _MSC_VER >= 1800
            HRESULT hr = _LogWorkItemAndInvokeUserLambda(_M_function, &retVal);
#else
            HRESULT hr = _M_function(&retVal);
#endif
            if (FAILED(hr)) throw std::make_exception_ptr(hr);
            details::_Task_impl_base::_AsyncInit<_ReturnType, _InternalReturnType>(_M_pTask,
                Microsoft::WRL::Make<details::_IAsyncOperationWithProgressToAsyncOperationConverter<_InternalReturnType, _ProgressType>>(retVal).Get());
        }

        //
        // Overload 4: returns IAsyncActionWithProgress<_ProgressType>*
        //
        // This is task whose functor returns an async action with progress which will be unwrapped for continuation
        //
        void _Init(details::_TypeSelectorAsyncActionWithProgress) const
        {
            typedef details::_GetProgressType<decltype(_M_function())>::_Value _ProgressType;
            _ReturnType retVal;
#if _MSC_VER >= 1800
            HRESULT hr = _LogWorkItemAndInvokeUserLambda(_M_function, &retVal);
#else
            HRESULT hr = _M_function(&retVal);
#endif
            if (FAILED(hr)) throw std::make_exception_ptr(hr);
            details::_Task_impl_base::_AsyncInit<_ReturnType, _InternalReturnType>(_M_pTask,
                Microsoft::WRL::Make<details::_IAsyncActionWithProgressToAsyncOperationConverter<_ProgressType>>(retVal).Get());
        }
    };

    /// <summary>
    ///     A helper class template that transforms a continuation lambda that either takes or returns void, or both, into a lambda that takes and returns a
    ///     non-void type (details::_Unit_type is used to substitute for void). This is to minimize the special handling required for 'void'.
    /// </summary>
    template<typename _InpType, typename _OutType>
    class _Continuation_func_transformer
    {
    public:
        static auto _Perform(std::function<HRESULT(_InpType, _OutType*)> _Func) -> decltype(_Func)
        {
            return _Func;
        }
    };

    template<typename _OutType>
    class _Continuation_func_transformer<void, _OutType>
    {
    public:
        static auto _Perform(std::function<HRESULT(_OutType*)> _Func) -> decltype(details::_MakeUnitToTFunc<_OutType>(_Func))
        {
            return details::_MakeUnitToTFunc<_OutType>(_Func);
        }
    };

    template<typename _InType>
    class _Continuation_func_transformer<_InType, void>
    {
    public:
        static auto _Perform(std::function<HRESULT(_InType)> _Func) -> decltype(details::_MakeTToUnitFunc<_InType>(_Func))
        {
            return details::_MakeTToUnitFunc<_InType>(_Func);
        }
    };

    template<>
    class _Continuation_func_transformer<void, void>
    {
    public:
        static auto _Perform(std::function<HRESULT(void)> _Func) -> decltype(details::_MakeUnitToUnitFunc(_Func))
        {
            return details::_MakeUnitToUnitFunc(_Func);
        }
    };
    /// <summary>
    ///     The task handle type used to create a 'continuation task'.
    /// </summary>
    template <typename _InternalReturnType, typename _ContinuationReturnType, typename _Function, typename _IsTaskBased, typename _TypeSelection>
    struct _ContinuationTaskHandle :
        details::_PPLTaskHandle<typename details::_NormalizeVoidToUnitType<_ContinuationReturnType>::_Type,
        _ContinuationTaskHandle<_InternalReturnType, _ContinuationReturnType, _Function, _IsTaskBased, _TypeSelection>, details::_ContinuationTaskHandleBase>
    {
        typedef typename details::_NormalizeVoidToUnitType<_ContinuationReturnType>::_Type _NormalizedContinuationReturnType;

        typename details::_Task_ptr<_ReturnType>::_Type _M_ancestorTaskImpl;
        _Function _M_function;

        _ContinuationTaskHandle(const typename details::_Task_ptr<_ReturnType>::_Type & _AncestorImpl,
            const typename details::_Task_ptr<_NormalizedContinuationReturnType>::_Type & _ContinuationImpl,
            const _Function & _Func, const task_continuation_context & _Context, details::_TaskInliningMode _InliningMode) :
#if _MSC_VER >= 1800
            details::_PPLTaskHandle<typename details::_NormalizeVoidToUnitType<_ContinuationReturnType>::_Type,
            _ContinuationTaskHandle<_InternalReturnType, _ContinuationReturnType, _Function, _IsTaskBased, _TypeSelection>, details::_ContinuationTaskHandleBase>
            ::_PPLTaskHandle(_ContinuationImpl)
            , _M_ancestorTaskImpl(_AncestorImpl)
            , _M_function(_Func)
#else
            _M_ancestorTaskImpl(_AncestorImpl), _PPLTaskHandle(_ContinuationImpl), _M_function(_Func)
#endif
        {
            _M_isTaskBasedContinuation = _IsTaskBased::value;
            _M_continuationContext = _Context;
            _M_continuationContext._Resolve(_AncestorImpl->_IsApartmentAware());
            _M_inliningMode = _InliningMode;
        }

        virtual ~_ContinuationTaskHandle() {}

#if _MSC_VER >= 1800
        template <typename _Func, typename _Arg, typename _RetArg>
        auto _LogWorkItemAndInvokeUserLambda(_Func && _func, _Arg && _value, _RetArg && _retArg) const -> decltype(_func(std::forward<_Arg>(_value), std::forward<_RetArg>(_retArg)))
        {
            details::_TaskWorkItemRAIILogger _LogWorkItem(this->_M_pTask->_M_taskEventLogger);
            return _func(std::forward<_Arg>(_value), std::forward<_RetArg>(_retArg));
        }
#endif

        void _Perform() const
        {
            _Continue(_IsTaskBased(), _TypeSelection());
        }

#if _MSC_VER >= 1800
        void _SyncCancelAndPropagateException() const
        {
            if (_M_ancestorTaskImpl->_HasUserException())
            {
                // If the ancestor encountered an exception, transfer the exception to the continuation
                // This traverses down the tree to propagate the exception.
                this->_M_pTask->_CancelWithExceptionHolder(_M_ancestorTaskImpl->_GetExceptionHolder(), true);
            }
            else
            {
                // If the ancestor was canceled, then your own execution should be canceled.
                // This traverses down the tree to cancel it.
                this->_M_pTask->_Cancel(true);
            }
        }
#endif

        //
        // Overload 0-0: _InternalReturnType -> _TaskType
        //
        // This is a straight task continuation which simply invokes its target with the ancestor's completion argument
        //
        void _Continue(std::false_type, details::_TypeSelectorNoAsync) const
        {
            _NormalizedContinuationReturnType retVal;
#if _MSC_VER >= 1800
            HRESULT hr = _LogWorkItemAndInvokeUserLambda(_Continuation_func_transformer<_InternalReturnType, _ContinuationReturnType>::_Perform(_M_function), _M_ancestorTaskImpl->_GetResult(), &retVal);
#else
            HRESULT hr =_Continuation_func_transformer<_InternalReturnType, _ContinuationReturnType>::_Perform(_M_function)(_M_ancestorTaskImpl->_GetResult(), &retVal);
#endif
            if (FAILED(hr)) throw std::make_exception_ptr(hr);
            _M_pTask->_FinalizeAndRunContinuations(retVal);
        }

        //
        // Overload 0-1: _InternalReturnType -> IAsyncOperation<_TaskType>*
        //               or
        //               _InternalReturnType -> task<_TaskType>
        //
        // This is a straight task continuation which returns an async operation or a task which will be unwrapped for continuation
        // Depending on the output type, the right _AsyncInit gets invoked
        //
        void _Continue(std::false_type, details::_TypeSelectorAsyncTask) const
        {
            typedef typename details::_FunctionTypeTraits<_Function, _InternalReturnType>::_FuncRetType _FuncOutputType;
            _FuncOutputType retVal;
#if _MSC_VER >= 1800
            HRESULT hr = _LogWorkItemAndInvokeUserLambda(_Continuation_func_transformer<_InternalReturnType, _FuncOutputType>::_Perform(_M_function), _M_ancestorTaskImpl->_GetResult(), &retVal);
#else
            HRESULT hr = _Continuation_func_transformer<_InternalReturnType, _FuncOutputType>::_Perform(_M_function)(_M_ancestorTaskImpl->_GetResult(), &retVal);
#endif
            if (FAILED(hr)) throw std::make_exception_ptr(hr);
            details::_Task_impl_base::_AsyncInit<_NormalizedContinuationReturnType, _ContinuationReturnType>(
                _M_pTask,
                retVal
                );
        }
        void _Continue(std::false_type, details::_TypeSelectorAsyncOperation) const
        {
            typedef typename details::_FunctionTypeTraits<_Function, _InternalReturnType>::_FuncRetType _FuncOutputType;
            _FuncOutputType retVal;
#if _MSC_VER >= 1800
            HRESULT hr = _LogWorkItemAndInvokeUserLambda(_Continuation_func_transformer<_InternalReturnType, _FuncOutputType>::_Perform(_M_function), _M_ancestorTaskImpl->_GetResult(), &retVal);
#else
            HRESULT hr = _Continuation_func_transformer<_InternalReturnType, _FuncOutputType>::_Perform(_M_function)(_M_ancestorTaskImpl->_GetResult(), &retVal);
#endif
            if (FAILED(hr)) throw std::make_exception_ptr(hr);
            details::_Task_impl_base::_AsyncInit<_NormalizedContinuationReturnType, _ContinuationReturnType>(
                _M_pTask,
                Microsoft::WRL::Make<details::_IAsyncOperationToAsyncOperationConverter<_ContinuationReturnType>>(retVal).Get());
        }

        //
        // Overload 0-2: _InternalReturnType -> IAsyncAction*
        //
        // This is a straight task continuation which returns an async action which will be unwrapped for continuation
        //
        void _Continue(std::false_type, details::_TypeSelectorAsyncAction) const
        {
            typedef details::_FunctionTypeTraits<_Function, _InternalReturnType>::_FuncRetType _FuncOutputType;
            _FuncOutputType retVal;
#if _MSC_VER >= 1800
            HRESULT hr = _LogWorkItemAndInvokeUserLambda(_Continuation_func_transformer<_InternalReturnType, _FuncOutputType>::_Perform(_M_function), _M_ancestorTaskImpl->_GetResult(), &retVal);
#else
            HRESULT hr = _Continuation_func_transformer<_InternalReturnType, _FuncOutputType>::_Perform(_M_function)(_M_ancestorTaskImpl->_GetResult(), &retVal);
#endif
            if (FAILED(hr)) throw std::make_exception_ptr(hr);
            details::_Task_impl_base::_AsyncInit<_NormalizedContinuationReturnType, _ContinuationReturnType>(
                _M_pTask,
                Microsoft::WRL::Make<details::_IAsyncActionToAsyncOperationConverter>(
                retVal).Get());
        }

        //
        // Overload 0-3: _InternalReturnType -> IAsyncOperationWithProgress<_TaskType, _ProgressType>*
        //
        // This is a straight task continuation which returns an async operation with progress which will be unwrapped for continuation
        //
        void _Continue(std::false_type, details::_TypeSelectorAsyncOperationWithProgress) const
        {
            typedef details::_FunctionTypeTraits<_Function, _InternalReturnType>::_FuncRetType _FuncOutputType;

            _FuncOutputType _OpWithProgress;
#if _MSC_VER >= 1800
            HRESULT hr = _LogWorkItemAndInvokeUserLambda(_Continuation_func_transformer<_InternalReturnType, _FuncOutputType>::_Perform(_M_function), _M_ancestorTaskImpl->_GetResult(), &_OpWithProgress);
#else
            HRESULT hr = _Continuation_func_transformer<_InternalReturnType, _FuncOutputType>::_Perform(_M_function)(_M_ancestorTaskImpl->_GetResult(), &_OpWithProgress);
#endif
            typedef details::_GetProgressType<decltype(_OpWithProgress)>::_Value _ProgressType;

            if (FAILED(hr)) throw std::make_exception_ptr(hr);
            details::_Task_impl_base::_AsyncInit<_NormalizedContinuationReturnType, _ContinuationReturnType>(
                _M_pTask,
                Microsoft::WRL::Make<details::_IAsyncOperationWithProgressToAsyncOperationConverter<_ContinuationReturnType, _ProgressType>>(_OpWithProgress).Get());
        }

        //
        // Overload 0-4: _InternalReturnType -> IAsyncActionWithProgress<_ProgressType>*
        //
        // This is a straight task continuation which returns an async action with progress which will be unwrapped for continuation
        //
        void _Continue(std::false_type, details::_TypeSelectorAsyncActionWithProgress) const
        {
            typedef details::_FunctionTypeTraits<_Function, _InternalReturnType>::_FuncRetType _FuncOutputType;

            _FuncOutputType _OpWithProgress;
#if _MSC_VER >= 1800
            HRESULT hr = _LogWorkItemAndInvokeUserLambda(_Continuation_func_transformer<_InternalReturnType, _FuncOutputType>::_Perform(_M_function), _M_ancestorTaskImpl->_GetResult(), &_OpWithProgress);
#else
            HRESULT hr = _Continuation_func_transformer<_InternalReturnType, _FuncOutputType>::_Perform(_M_function)(_M_ancestorTaskImpl->_GetResult(), &_OpWithProgress);
#endif
            typedef details::_GetProgressType<decltype(_OpWithProgress)>::_Value _ProgressType;

            if (FAILED(hr)) throw std::make_exception_ptr(hr);
            details::_Task_impl_base::_AsyncInit<_NormalizedContinuationReturnType, _ContinuationReturnType>(
                _M_pTask,
                Microsoft::WRL::Make<details::_IAsyncActionWithProgressToAsyncOperationConverter<_ProgressType>>(_OpWithProgress).Get());
        }


        //
        // Overload 1-0: task<_InternalReturnType> -> _TaskType
        //
        // This is an exception handling type of continuation which takes the task rather than the task's result.
        //
        void _Continue(std::true_type, details::_TypeSelectorNoAsync) const
        {
            typedef task<_InternalReturnType> _FuncInputType;
            task<_InternalReturnType> _ResultTask;
            _ResultTask._SetImpl(std::move(_M_ancestorTaskImpl));
            _NormalizedContinuationReturnType retVal;
#if _MSC_VER >= 1800
            HRESULT hr = _LogWorkItemAndInvokeUserLambda(_Continuation_func_transformer<_FuncInputType, _ContinuationReturnType>::_Perform(_M_function), std::move(_ResultTask), &retVal);
#else
            HRESULT hr = _Continuation_func_transformer<_FuncInputType, _ContinuationReturnType>::_Perform(_M_function)(std::move(_ResultTask), &retVal);
#endif
            if (FAILED(hr)) throw std::make_exception_ptr(hr);
            _M_pTask->_FinalizeAndRunContinuations(retVal);
        }

        //
        // Overload 1-1: task<_InternalReturnType> -> IAsyncOperation<_TaskType>^
        //                                            or
        //                                            task<_TaskType>
        //
        // This is an exception handling type of continuation which takes the task rather than
        // the task's result. It also returns an async operation or a task which will be unwrapped
        // for continuation
        //
        void _Continue(std::true_type, details::_TypeSelectorAsyncTask) const
        {
            // The continuation takes a parameter of type task<_Input>, which is the same as the ancestor task.
            task<_InternalReturnType> _ResultTask;
            _ResultTask._SetImpl(std::move(_M_ancestorTaskImpl));
            _ContinuationReturnType retVal;
#if _MSC_VER >= 1800
            HRESULT hr = _LogWorkItemAndInvokeUserLambda(_M_function, std::move(_ResultTask), &retVal);
#else
            HRESULT hr = _M_function(std::move(_ResultTask), &retVal);
#endif
            if (FAILED(hr)) throw std::make_exception_ptr(hr);
            details::_Task_impl_base::_AsyncInit<_NormalizedContinuationReturnType, _ContinuationReturnType>(_M_pTask, retVal);
        }
        void _Continue(std::true_type, details::_TypeSelectorAsyncOperation) const
        {
            // The continuation takes a parameter of type task<_Input>, which is the same as the ancestor task.
            task<_InternalReturnType> _ResultTask;
            _ResultTask._SetImpl(std::move(_M_ancestorTaskImpl));
            _ContinuationReturnType retVal;
#if _MSC_VER >= 1800
            HRESULT hr = _LogWorkItemAndInvokeUserLambda(_M_function, std::move(_ResultTask), &retVal);
#else
            HRESULT hr = _M_function(std::move(_ResultTask), &retVal);
#endif
            if (FAILED(hr)) throw std::make_exception_ptr(hr);
            details::_Task_impl_base::_AsyncInit<_NormalizedContinuationReturnType, _ContinuationReturnType>(_M_pTask,
                Microsoft::WRL::Make<details::_IAsyncOperationToAsyncOperationConverter<_ContinuationReturnType>>(retVal));
        }

        //
        // Overload 1-2: task<_InternalReturnType> -> IAsyncAction*
        //
        // This is an exception handling type of continuation which takes the task rather than
        // the task's result. It also returns an async action which will be unwrapped for continuation
        //
        void _Continue(std::true_type, details::_TypeSelectorAsyncAction) const
        {
            // The continuation takes a parameter of type task<_Input>, which is the same as the ancestor task.
            task<_InternalReturnType> _ResultTask;
            _ResultTask._SetImpl(std::move(_M_ancestorTaskImpl));
            _ContinuationReturnType retVal;
#if _MSC_VER >= 1800
            HRESULT hr = _LogWorkItemAndInvokeUserLambda(_M_function, std::move(_ResultTask), &retVal);
#else
            HRESULT hr = _M_function(std::move(_ResultTask), &retVal);
#endif
            if (FAILED(hr)) throw std::make_exception_ptr(hr);
            details::_Task_impl_base::_AsyncInit<_NormalizedContinuationReturnType, _ContinuationReturnType>(_M_pTask,
                Microsoft::WRL::Make<details::_IAsyncActionToAsyncOperationConverter>(retVal));
        }

        //
        // Overload 1-3: task<_InternalReturnType> -> IAsyncOperationWithProgress<_TaskType, _ProgressType>*
        //
        // This is an exception handling type of continuation which takes the task rather than
        // the task's result. It also returns an async operation with progress which will be unwrapped
        // for continuation
        //
        void _Continue(std::true_type, details::_TypeSelectorAsyncOperationWithProgress) const
        {
            // The continuation takes a parameter of type task<_Input>, which is the same as the ancestor task.
            task<_InternalReturnType> _ResultTask;
            _ResultTask._SetImpl(std::move(_M_ancestorTaskImpl));

            typedef details::_GetProgressType<decltype(_M_function(_ResultTask))>::_Value _ProgressType;
            _ContinuationReturnType retVal;
#if _MSC_VER >= 1800
            HRESULT hr = _LogWorkItemAndInvokeUserLambda(_M_function, std::move(_ResultTask), &retVal);
#else
            HRESULT hr = _M_function(std::move(_ResultTask), &retVal);
#endif
            if (FAILED(hr)) throw std::make_exception_ptr(hr);
            details::_Task_impl_base::_AsyncInit<_NormalizedContinuationReturnType, _ContinuationReturnType>(_M_pTask,
                Microsoft::WRL::Make<details::_IAsyncOperationWithProgressToAsyncOperationConverter<_ContinuationReturnType, _ProgressType>>(retVal));
        }

        //
        // Overload 1-4: task<_InternalReturnType> -> IAsyncActionWithProgress<_ProgressType>*
        //
        // This is an exception handling type of continuation which takes the task rather than
        // the task's result. It also returns an async operation with progress which will be unwrapped
        // for continuation
        //
        void _Continue(std::true_type, details::_TypeSelectorAsyncActionWithProgress) const
        {
            // The continuation takes a parameter of type task<_Input>, which is the same as the ancestor task.
            task<_InternalReturnType> _ResultTask;
            _ResultTask._SetImpl(std::move(_M_ancestorTaskImpl));

            typedef details::_GetProgressType<decltype(_M_function(_ResultTask))>::_Value _ProgressType;
            _ContinuationReturnType retVal;
#if _MSC_VER >= 1800
            HRESULT hr = _LogWorkItemAndInvokeUserLambda(_M_function, std::move(_ResultTask), &retVal);
#else
            HRESULT hr = _M_function(std::move(_ResultTask), &retVal);
#endif
            if (FAILED(hr)) throw std::make_exception_ptr(hr);
            details::_Task_impl_base::_AsyncInit<_NormalizedContinuationReturnType, _ContinuationReturnType>(_M_pTask,
                Microsoft::WRL::Make<details::_IAsyncActionWithProgressToAsyncOperationConverter<_ProgressType>>(retVal));
        }
    };
    /// <summary>
    ///     Initializes a task using a lambda, function pointer or function object.
    /// </summary>
    template<typename _InternalReturnType, typename _Function>
    void _TaskInitWithFunctor(const _Function& _Func)
    {
        typedef details::_InitFunctorTypeTraits<_InternalReturnType, details::_FunctionTypeTraits<_Function, void>::_FuncRetType> _Async_type_traits;

        _M_Impl->_M_fFromAsync = _Async_type_traits::_IsAsyncTask;
        _M_Impl->_M_fUnwrappedTask = _Async_type_traits::_IsUnwrappedTaskOrAsync;
#if _MSC_VER >= 1800
        _M_Impl->_M_taskEventLogger._LogScheduleTask(false);
#endif
        _M_Impl->_ScheduleTask(new _InitialTaskHandle<_InternalReturnType, _Function, typename _Async_type_traits::_AsyncKind>(_GetImpl(), _Func), Concurrency::details::_NoInline);
    }

    /// <summary>
    ///     Initializes a task using a task completion event.
    /// </summary>
    void _TaskInitNoFunctor(task_completion_event<_ReturnType>& _Event)
    {
        _Event._RegisterTask(_M_Impl);
    }

    /// <summary>
    ///     Initializes a task using an asynchronous operation IAsyncOperation<T>*
    /// </summary>
    template<typename _Result, typename _OpType, typename _CompHandlerType, typename _ResultType>
    void _TaskInitAsyncOp(details::_AsyncInfoImpl<_OpType, _CompHandlerType, _ResultType>* _AsyncOp)
    {
        _M_Impl->_M_fFromAsync = true;
#if _MSC_VER < 1800
        _M_Impl->_SetScheduledEvent();
#endif
        // Mark this task as started here since we can set the state in the constructor without acquiring a lock. Once _AsyncInit
        // returns a completion could execute concurrently and the task must be fully initialized before that happens.
        _M_Impl->_M_TaskState = details::_Task_impl_base::_Started;
        // Pass the shared pointer into _AsyncInit for storage in the Async Callback.
        details::_Task_impl_base::_AsyncInit<_ReturnType, _Result>(_M_Impl, _AsyncOp);
    }

    /// <summary>
    ///     Initializes a task using an asynchronous operation IAsyncOperation<T>*
    /// </summary>
    template<typename _Result>
    void _TaskInitNoFunctor(ABI::Windows::Foundation::IAsyncOperation<_Result>* _AsyncOp)
    {
        _TaskInitAsyncOp<_Result>(Microsoft::WRL::Make<details::_IAsyncOperationToAsyncOperationConverter<_Result>>(_AsyncOp).Get());
    }

    /// <summary>
    ///     Initializes a task using an asynchronous operation with progress IAsyncOperationWithProgress<T, P>*
    /// </summary>
    template<typename _Result, typename _Progress>
    void _TaskInitNoFunctor(ABI::Windows::Foundation::IAsyncOperationWithProgress<_Result, _Progress>* _AsyncOp)
    {
        _TaskInitAsyncOp<_Result>(Microsoft::WRL::Make<details::_IAsyncOperationWithProgressToAsyncOperationConverter<_Result, _Progress>>(_AsyncOp).Get());
    }
    /// <summary>
    ///     Initializes a task using a callable object.
    /// </summary>
    template<typename _Function>
    void _TaskInitMaybeFunctor(_Function & _Func, std::true_type)
    {
        _TaskInitWithFunctor<_ReturnType, _Function>(_Func);
    }

    /// <summary>
    ///     Initializes a task using a non-callable object.
    /// </summary>
    template<typename _Ty>
    void _TaskInitMaybeFunctor(_Ty & _Param, std::false_type)
    {
        _TaskInitNoFunctor(_Param);
    }
#if _MSC_VER >= 1800
    template<typename _InternalReturnType, typename _Function>
    auto _ThenImpl(const _Function& _Func, const task_options& _TaskOptions) const -> typename details::_ContinuationTypeTraits<_Function, _InternalReturnType>::_TaskOfType
    {
        if (!_M_Impl)
        {
            throw Concurrency::invalid_operation("then() cannot be called on a default constructed task.");
        }

        Concurrency::details::_CancellationTokenState *_PTokenState = _TaskOptions.has_cancellation_token() ? _TaskOptions.get_cancellation_token()._GetImplValue() : nullptr;
        auto _Scheduler = _TaskOptions.has_scheduler() ? _TaskOptions.get_scheduler() : _GetImpl()->_GetScheduler();
        auto _CreationStack = details::_get_internal_task_options(_TaskOptions)._M_hasPresetCreationCallstack ? details::_get_internal_task_options(_TaskOptions)._M_presetCreationCallstack : details::_TaskCreationCallstack();
        return _ThenImpl<_InternalReturnType, _Function>(_Func, _PTokenState, _TaskOptions.get_continuation_context(), _Scheduler, _CreationStack);
    }
#endif
    /// <summary>
    ///     The one and only implementation of then for void and non-void tasks.
    /// </summary>
    template<typename _InternalReturnType, typename _Function>
#if _MSC_VER >= 1800
    auto _ThenImpl(const _Function& _Func, Concurrency::details::_CancellationTokenState *_PTokenState, const task_continuation_context& _ContinuationContext, Concurrency::scheduler_ptr _Scheduler, details::_TaskCreationCallstack _CreationStack,
        details::_TaskInliningMode _InliningMode = Concurrency::details::_NoInline) const -> typename details::_ContinuationTypeTraits<_Function, _InternalReturnType>::_TaskOfType
#else
    auto _ThenImpl(const _Function& _Func, Concurrency::details::_CancellationTokenState *_PTokenState, const task_continuation_context& _ContinuationContext,
        bool _Aggregating = false, details::_TaskInliningMode _InliningMode = Concurrency::details::_NoInline) const -> typename details::_ContinuationTypeTraits<_Function, _InternalReturnType>::_TaskOfType
#endif
    {
        if (_M_Impl == nullptr)
        {
            throw Concurrency::invalid_operation("then() cannot be called on a default constructed task.");
        }

        typedef details::_FunctionTypeTraits<_Function, _InternalReturnType> _Function_type_traits;
        typedef details::_TaskTypeTraits<typename _Function_type_traits::_FuncRetType> _Async_type_traits;
        typedef typename _Async_type_traits::_TaskRetType _TaskType;

        //
        // A **nullptr** token state indicates that it was not provided by the user. In this case, we inherit the antecedent's token UNLESS this is a
        // an exception handling continuation. In that case, we break the chain with a _None. That continuation is never canceled unless the user
        // explicitly passes the same token.
        //
        if (_PTokenState == nullptr)
        {
#if _MSC_VER >= 1800
            if (_Function_type_traits::_Takes_task::value)
#else
            if (_Function_type_traits::_Takes_task())
#endif
            {
                _PTokenState = Concurrency::details::_CancellationTokenState::_None();
            }
            else
            {
                _PTokenState = _GetImpl()->_M_pTokenState;
            }
        }

        task<_TaskType> _ContinuationTask;
#if _MSC_VER >= 1800
        _ContinuationTask._CreateImpl(_PTokenState, _Scheduler);
#else
        _ContinuationTask._CreateImpl(_PTokenState);
#endif
        _ContinuationTask._GetImpl()->_M_fFromAsync = (_GetImpl()->_M_fFromAsync || _Async_type_traits::_IsAsyncTask);
#if _MSC_VER < 1800
        _ContinuationTask._GetImpl()->_M_fRuntimeAggregate = _Aggregating;
#endif
        _ContinuationTask._GetImpl()->_M_fUnwrappedTask = _Async_type_traits::_IsUnwrappedTaskOrAsync;
#if _MSC_VER >= 1800
        _ContinuationTask._SetTaskCreationCallstack(_CreationStack);
#endif
        _GetImpl()->_ScheduleContinuation(new _ContinuationTaskHandle<_InternalReturnType, _TaskType, _Function, typename _Function_type_traits::_Takes_task, typename _Async_type_traits::_AsyncKind>(
            _GetImpl(), _ContinuationTask._GetImpl(), _Func, _ContinuationContext, _InliningMode));

        return _ContinuationTask;
    }

    // The underlying implementation for this task
    typename details::_Task_ptr<_ReturnType>::_Type _M_Impl;
};

/// <summary>
///     The Parallel Patterns Library (PPL) <c>task</c> class. A <c>task</c> object represents work that can be executed asynchronously,
///     and concurrently with other tasks and parallel work produced by parallel algorithms in the Concurrency Runtime. It produces
///     a result of type <typeparamref name="_ResultType"/> on successful completion. Tasks of type <c>task&lt;void&gt;</c> produce no result.
///     A task can be waited upon and canceled independently of other tasks. It can also be composed with other tasks using
///     continuations(<c>then</c>), and join(<c>when_all</c>) and choice(<c>when_any</c>) patterns.
/// </summary>
/// <remarks>
///     For more information, see <see cref="Task Parallelism (Concurrency Runtime)"/>.
/// </remarks>
/**/
template<>
class task<void>
{
public:
    /// <summary>
    ///     The type of the result an object of this class produces.
    /// </summary>
    /**/
    typedef void result_type;

    /// <summary>
    ///     Constructs a <c>task</c> object.
    /// </summary>
    /// <remarks>
    ///     The default constructor for a <c>task</c> is only present in order to allow tasks to be used within containers.
    ///     A default constructed task cannot be used until you assign a valid task to it. Methods such as <c>get</c>, <c>wait</c> or <c>then</c>
    ///     will throw an <see cref="invalid_argument Class">invalid_argument</see> exception when called on a default constructed task.
    ///     <para>A task that is created from a <c>task_completion_event</c> will complete (and have its continuations scheduled) when the task
    ///     completion event is set.</para>
    ///     <para>The version of the constructor that takes a cancellation token creates a task that can be canceled using the
    ///     <c>cancellation_token_source</c> the token was obtained from. Tasks created without a cancellation token are not cancelable.</para>
    ///     <para>Tasks created from a <c>Windows::Foundation::IAsyncInfo</c> interface or a lambda that returns an <c>IAsyncInfo</c> interface
    ///     reach their terminal state when the enclosed Windows Runtime asynchronous operation or action completes. Similarly, tasks created
    ///     from a lamda that returns a <c>task&lt;result_type&gt;</c> reach their terminal state when the inner task reaches its terminal state,
    ///     and not when the lamda returns.</para>
    ///     <para><c>task</c> behaves like a smart pointer and is safe to pass around by value. It can be accessed by multiple threads
    ///     without the need for locks.</para>
    ///     <para>The constructor overloads that take a Windows::Foundation::IAsyncInfo interface or a lambda returning such an interface, are only available
    ///     to Windows Store apps.</para>
    ///     <para>For more information, see <see cref="Task Parallelism (Concurrency Runtime)"/>.</para>
    /// </remarks>
    /**/
    task() : _M_unitTask()
    {
        // The default constructor should create a task with a nullptr impl. This is a signal that the
        // task is not usable and should throw if any wait(), get() or then() APIs are used.
    }
#if _MSC_VER < 1800
    /// <summary>
    ///     Constructs a <c>task</c> object.
    /// </summary>
    /// <typeparam name="_Ty">
    ///     The type of the parameter from which the task is to be constructed.
    /// </typeparam>
    /// <param name="_Param">
    ///     The parameter from which the task is to be constructed. This could be a lambda, a function object, a <c>task_completion_event&lt;result_type&gt;</c>
    ///     object, or a Windows::Foundation::IAsyncInfo if you are using tasks in your Windows Store app. The lambda or function
    ///     object should be a type equivalent to <c>std::function&lt;X(void)&gt;</c>, where X can be a variable of type <c>result_type</c>,
    ///     <c>task&lt;result_type&gt;</c>, or a Windows::Foundation::IAsyncInfo in Windows Store apps.
    /// </param>
    /// <remarks>
    ///     The default constructor for a <c>task</c> is only present in order to allow tasks to be used within containers.
    ///     A default constructed task cannot be used until you assign a valid task to it. Methods such as <c>get</c>, <c>wait</c> or <c>then</c>
    ///     will throw an <see cref="invalid_argument Class">invalid_argument</see> exception when called on a default constructed task.
    ///     <para>A task that is created from a <c>task_completion_event</c> will complete (and have its continuations scheduled) when the task
    ///     completion event is set.</para>
    ///     <para>The version of the constructor that takes a cancellation token creates a task that can be canceled using the
    ///     <c>cancellation_token_source</c> the token was obtained from. Tasks created without a cancellation token are not cancelable.</para>
    ///     <para>Tasks created from a <c>Windows::Foundation::IAsyncInfo</c> interface or a lambda that returns an <c>IAsyncInfo</c> interface
    ///     reach their terminal state when the enclosed Windows Runtime asynchronous operation or action completes. Similarly, tasks created
    ///     from a lamda that returns a <c>task&lt;result_type&gt;</c> reach their terminal state when the inner task reaches its terminal state,
    ///     and not when the lamda returns.</para>
    ///     <para><c>task</c> behaves like a smart pointer and is safe to pass around by value. It can be accessed by multiple threads
    ///     without the need for locks.</para>
    ///     <para>The constructor overloads that take a Windows::Foundation::IAsyncInfo interface or a lambda returning such an interface, are only available
    ///     to Windows Store apps.</para>
    ///     <para>For more information, see <see cref="Task Parallelism (Concurrency Runtime)"/>.</para>
    /// </remarks>
    /**/
    template<typename _Ty>
    __declspec(noinline) // Ask for no inlining so that the _ReturnAddress intrinsic gives us the expected result
        explicit task(_Ty _Param)
    {
        details::_ValidateTaskConstructorArgs<void, _Ty>(_Param);

        _M_unitTask._CreateImpl(Concurrency::cancellation_token::none()._GetImplValue());
        // Do not move the next line out of this function. It is important that _ReturnAddress() evaluate to the the call site of the task constructor.
        _M_unitTask._SetTaskCreationAddressHint(_ReturnAddress());

        _TaskInitMaybeFunctor(_Param, details::_IsCallable<void>(_Param, 0, 0, 0));
    }
#endif
    /// <summary>
    ///     Constructs a <c>task</c> object.
    /// </summary>
    /// <typeparam name="_Ty">
    ///     The type of the parameter from which the task is to be constructed.
    /// </typeparam>
    /// <param name="_Param">
    ///     The parameter from which the task is to be constructed. This could be a lambda, a function object, a <c>task_completion_event&lt;result_type&gt;</c>
    ///     object, or a Windows::Foundation::IAsyncInfo if you are using tasks in your Windows Store app. The lambda or function
    ///     object should be a type equivalent to <c>std::function&lt;X(void)&gt;</c>, where X can be a variable of type <c>result_type</c>,
    ///     <c>task&lt;result_type&gt;</c>, or a Windows::Foundation::IAsyncInfo in Windows Store apps.
    /// </param>
    /// <param name="_Token">
    ///     The cancellation token to associate with this task. A task created without a cancellation token cannot be canceled. It implicitly receives
    ///     the token <c>cancellation_token::none()</c>.
    /// </param>
    /// <remarks>
    ///     The default constructor for a <c>task</c> is only present in order to allow tasks to be used within containers.
    ///     A default constructed task cannot be used until you assign a valid task to it. Methods such as <c>get</c>, <c>wait</c> or <c>then</c>
    ///     will throw an <see cref="invalid_argument Class">invalid_argument</see> exception when called on a default constructed task.
    ///     <para>A task that is created from a <c>task_completion_event</c> will complete (and have its continuations scheduled) when the task
    ///     completion event is set.</para>
    ///     <para>The version of the constructor that takes a cancellation token creates a task that can be canceled using the
    ///     <c>cancellation_token_source</c> the token was obtained from. Tasks created without a cancellation token are not cancelable.</para>
    ///     <para>Tasks created from a <c>Windows::Foundation::IAsyncInfo</c> interface or a lambda that returns an <c>IAsyncInfo</c> interface
    ///     reach their terminal state when the enclosed Windows Runtime asynchronous operation or action completes. Similarly, tasks created
    ///     from a lamda that returns a <c>task&lt;result_type&gt;</c> reach their terminal state when the inner task reaches its terminal state,
    ///     and not when the lamda returns.</para>
    ///     <para><c>task</c> behaves like a smart pointer and is safe to pass around by value. It can be accessed by multiple threads
    ///     without the need for locks.</para>
    ///     <para>The constructor overloads that take a Windows::Foundation::IAsyncInfo interface or a lambda returning such an interface, are only available
    ///     to Windows Store apps.</para>
    ///     <para>For more information, see <see cref="Task Parallelism (Concurrency Runtime)"/>.</para>
    /// </remarks>
    /**/
    template<typename _Ty>
    __declspec(noinline) // Ask for no inlining so that the _ReturnAddress intrinsic gives us the expected result
#if _MSC_VER >= 1800
        explicit task(_Ty _Param, const task_options& _TaskOptions = task_options())
#else
        explicit task(_Ty _Param, Concurrency::cancellation_token _CancellationToken)
#endif
    {
            details::_ValidateTaskConstructorArgs<void, _Ty>(_Param);
#if _MSC_VER >= 1800
            _M_unitTask._CreateImpl(_TaskOptions.get_cancellation_token()._GetImplValue(), _TaskOptions.get_scheduler());
#else
            _M_unitTask._CreateImpl(_CancellationToken._GetImplValue());
#endif
            // Do not move the next line out of this function. It is important that _ReturnAddress() evaluate to the the call site of the task constructor.
#if _MSC_VER >= 1800
            _M_unitTask._SetTaskCreationCallstack(details::_get_internal_task_options(_TaskOptions)._M_hasPresetCreationCallstack ? details::_get_internal_task_options(_TaskOptions)._M_presetCreationCallstack : _CAPTURE_CALLSTACK());
#else
            _M_unitTask._SetTaskCreationAddressHint(_ReturnAddress());
#endif
            _TaskInitMaybeFunctor(_Param, details::_IsCallable<void>(_Param, 0, 0, 0));
        }

    /// <summary>
    ///     Constructs a <c>task</c> object.
    /// </summary>
    /// <param name="_Other">
    ///     The source <c>task</c> object.
    /// </param>
    /// <remarks>
    ///     The default constructor for a <c>task</c> is only present in order to allow tasks to be used within containers.
    ///     A default constructed task cannot be used until you assign a valid task to it. Methods such as <c>get</c>, <c>wait</c> or <c>then</c>
    ///     will throw an <see cref="invalid_argument Class">invalid_argument</see> exception when called on a default constructed task.
    ///     <para>A task that is created from a <c>task_completion_event</c> will complete (and have its continuations scheduled) when the task
    ///     completion event is set.</para>
    ///     <para>The version of the constructor that takes a cancellation token creates a task that can be canceled using the
    ///     <c>cancellation_token_source</c> the token was obtained from. Tasks created without a cancellation token are not cancelable.</para>
    ///     <para>Tasks created from a <c>Windows::Foundation::IAsyncInfo</c> interface or a lambda that returns an <c>IAsyncInfo</c> interface
    ///     reach their terminal state when the enclosed Windows Runtime asynchronous operation or action completes. Similarly, tasks created
    ///     from a lamda that returns a <c>task&lt;result_type&gt;</c> reach their terminal state when the inner task reaches its terminal state,
    ///     and not when the lamda returns.</para>
    ///     <para><c>task</c> behaves like a smart pointer and is safe to pass around by value. It can be accessed by multiple threads
    ///     without the need for locks.</para>
    ///     <para>The constructor overloads that take a Windows::Foundation::IAsyncInfo interface or a lambda returning such an interface, are only available
    ///     to Windows Store apps.</para>
    ///     <para>For more information, see <see cref="Task Parallelism (Concurrency Runtime)"/>.</para>
    /// </remarks>
    /**/
    task(const task& _Other) : _M_unitTask(_Other._M_unitTask){}

    /// <summary>
    ///     Constructs a <c>task</c> object.
    /// </summary>
    /// <param name="_Other">
    ///     The source <c>task</c> object.
    /// </param>
    /// <remarks>
    ///     The default constructor for a <c>task</c> is only present in order to allow tasks to be used within containers.
    ///     A default constructed task cannot be used until you assign a valid task to it. Methods such as <c>get</c>, <c>wait</c> or <c>then</c>
    ///     will throw an <see cref="invalid_argument Class">invalid_argument</see> exception when called on a default constructed task.
    ///     <para>A task that is created from a <c>task_completion_event</c> will complete (and have its continuations scheduled) when the task
    ///     completion event is set.</para>
    ///     <para>The version of the constructor that takes a cancellation token creates a task that can be canceled using the
    ///     <c>cancellation_token_source</c> the token was obtained from. Tasks created without a cancellation token are not cancelable.</para>
    ///     <para>Tasks created from a <c>Windows::Foundation::IAsyncInfo</c> interface or a lambda that returns an <c>IAsyncInfo</c> interface
    ///     reach their terminal state when the enclosed Windows Runtime asynchronous operation or action completes. Similarly, tasks created
    ///     from a lamda that returns a <c>task&lt;result_type&gt;</c> reach their terminal state when the inner task reaches its terminal state,
    ///     and not when the lamda returns.</para>
    ///     <para><c>task</c> behaves like a smart pointer and is safe to pass around by value. It can be accessed by multiple threads
    ///     without the need for locks.</para>
    ///     <para>The constructor overloads that take a Windows::Foundation::IAsyncInfo interface or a lambda returning such an interface, are only available
    ///     to Windows Store apps.</para>
    ///     <para>For more information, see <see cref="Task Parallelism (Concurrency Runtime)"/>.</para>
    /// </remarks>
    /**/
    task(task&& _Other) : _M_unitTask(std::move(_Other._M_unitTask)) {}

    /// <summary>
    ///     Replaces the contents of one <c>task</c> object with another.
    /// </summary>
    /// <param name="_Other">
    ///     The source <c>task</c> object.
    /// </param>
    /// <remarks>
    ///     As <c>task</c> behaves like a smart pointer, after a copy assignment, this <c>task</c> objects represents the same
    ///     actual task as <paramref name="_Other"/> does.
    /// </remarks>
    /**/
    task& operator=(const task& _Other)
    {
        if (this != &_Other)
        {
            _M_unitTask = _Other._M_unitTask;
        }
        return *this;
    }

    /// <summary>
    ///     Replaces the contents of one <c>task</c> object with another.
    /// </summary>
    /// <param name="_Other">
    ///     The source <c>task</c> object.
    /// </param>
    /// <remarks>
    ///     As <c>task</c> behaves like a smart pointer, after a copy assignment, this <c>task</c> objects represents the same
    ///     actual task as <paramref name="_Other"/> does.
    /// </remarks>
    /**/
    task& operator=(task&& _Other)
    {
        if (this != &_Other)
        {
            _M_unitTask = std::move(_Other._M_unitTask);
        }
        return *this;
    }
#if _MSC_VER < 1800
    /// <summary>
    ///     Adds a continuation task to this task.
    /// </summary>
    /// <typeparam name="_Function">
    ///     The type of the function object that will be invoked by this task.
    /// </typeparam>
    /// <param name="_Func">
    ///     The continuation function to execute when this task completes. This continuation function must take as input
    ///     a variable of either <c>result_type</c> or <c>task&lt;result_type&gt;</c>, where <c>result_type</c> is the type
    ///     of the result this task produces.
    /// </param>
    /// <returns>
    ///     The newly created continuation task. The result type of the returned task is determined by what <paramref name="_Func"/> returns.
    /// </returns>
    /// <remarks>
    ///     The overloads of <c>then</c> that take a lambda or functor that returns a Windows::Foundation::IAsyncInfo interface, are only available
    ///     to Windows Store apps.
    ///     <para>For more information on how to use task continuations to compose asynchronous work, see <see cref="Task Parallelism (Concurrency Runtime)"/>.</para>
    /// </remarks>
    /**/
    template<typename _Function>
    __declspec(noinline) // Ask for no inlining so that the _ReturnAddress intrinsic gives us the expected result
        auto then(const _Function& _Func) const -> typename details::_ContinuationTypeTraits<_Function, void>::_TaskOfType
    {
        auto _ContinuationTask = _M_unitTask._ThenImpl<void, _Function>(_Func, nullptr, task_continuation_context::use_default());
        // Do not move the next line out of this function. It is important that _ReturnAddress() evaluate to the the call site of then.
        _ContinuationTask._SetTaskCreationAddressHint(_ReturnAddress());
        return _ContinuationTask;
    }
#endif
    /// <summary>
    ///     Adds a continuation task to this task.
    /// </summary>
    /// <typeparam name="_Function">
    ///     The type of the function object that will be invoked by this task.
    /// </typeparam>
    /// <param name="_Func">
    ///     The continuation function to execute when this task completes. This continuation function must take as input
    ///     a variable of either <c>result_type</c> or <c>task&lt;result_type&gt;</c>, where <c>result_type</c> is the type
    ///     of the result this task produces.
    /// </param>
    /// <param name="_CancellationToken">
    ///     The cancellation token to associate with the continuation task. A continuation task that is created without a cancellation token will inherit
    ///     the token of its antecedent task.
    /// </param>
    /// <returns>
    ///     The newly created continuation task. The result type of the returned task is determined by what <paramref name="_Func"/> returns.
    /// </returns>
    /// <remarks>
    ///     The overloads of <c>then</c> that take a lambda or functor that returns a Windows::Foundation::IAsyncInfo interface, are only available
    ///     to Windows Store apps.
    ///     <para>For more information on how to use task continuations to compose asynchronous work, see <see cref="Task Parallelism (Concurrency Runtime)"/>.</para>
    /// </remarks>
    /**/
    template<typename _Function>
    __declspec(noinline) // Ask for no inlining so that the _ReturnAddress intrinsic gives us the expected result
#if _MSC_VER >= 1800
    auto then(const _Function& _Func, task_options _TaskOptions = task_options()) const -> typename details::_ContinuationTypeTraits<_Function, void>::_TaskOfType
    {
        details::_get_internal_task_options(_TaskOptions)._set_creation_callstack(_CAPTURE_CALLSTACK());
        return _M_unitTask._ThenImpl<void, _Function>(_Func, _TaskOptions);
    }
#else
    auto then(const _Function& _Func, Concurrency::cancellation_token _CancellationToken) const -> typename details::_ContinuationTypeTraits<_Function, void>::_TaskOfType
    {
        auto _ContinuationTask = _M_unitTask._ThenImpl<void, _Function>(_Func, _CancellationToken._GetImplValue(), task_continuation_context::use_default());
        // Do not move the next line out of this function. It is important that _ReturnAddress() evaluate to the the call site of then.
        _ContinuationTask._SetTaskCreationAddressHint(_ReturnAddress());
        return _ContinuationTask;
    }
    /// <summary>
    ///     Adds a continuation task to this task.
    /// </summary>
    /// <typeparam name="_Function">
    ///     The type of the function object that will be invoked by this task.
    /// </typeparam>
    /// <param name="_Func">
    ///     The continuation function to execute when this task completes. This continuation function must take as input
    ///     a variable of either <c>result_type</c> or <c>task&lt;result_type&gt;</c>, where <c>result_type</c> is the type
    ///     of the result this task produces.
    /// </param>
    /// <param name="_ContinuationContext">
    ///     A variable that specifies where the continuation should execute. This variable is only useful when used in a
    ///     Windows Store app. For more information, see <see cref="task_continuation_context Class">task_continuation_context</see>
    /// </param>
    /// <returns>
    ///     The newly created continuation task. The result type of the returned task is determined by what <paramref name="_Func"/> returns.
    /// </returns>
    /// <remarks>
    ///     The overloads of <c>then</c> that take a lambda or functor that returns a Windows::Foundation::IAsyncInfo interface, are only available
    ///     to Windows Store apps.
    ///     <para>For more information on how to use task continuations to compose asynchronous work, see <see cref="Task Parallelism (Concurrency Runtime)"/>.</para>
    /// </remarks>
    /**/
    template<typename _Function>
    __declspec(noinline) // Ask for no inlining so that the _ReturnAddress intrinsic gives us the expected result
        auto then(const _Function& _Func, task_continuation_context _ContinuationContext) const -> typename details::_ContinuationTypeTraits<_Function, void>::_TaskOfType
    {
        auto _ContinuationTask = _M_unitTask._ThenImpl<void, _Function>(_Func, nullptr, _ContinuationContext);
        // Do not move the next line out of this function. It is important that _ReturnAddress() evaluate to the the call site of then.
        _ContinuationTask._SetTaskCreationAddressHint(_ReturnAddress());
        return _ContinuationTask;

    }
#endif
    /// <summary>
    ///     Adds a continuation task to this task.
    /// </summary>
    /// <typeparam name="_Function">
    ///     The type of the function object that will be invoked by this task.
    /// </typeparam>
    /// <param name="_Func">
    ///     The continuation function to execute when this task completes. This continuation function must take as input
    ///     a variable of either <c>result_type</c> or <c>task&lt;result_type&gt;</c>, where <c>result_type</c> is the type
    ///     of the result this task produces.
    /// </param>
    /// <param name="_CancellationToken">
    ///     The cancellation token to associate with the continuation task. A continuation task that is created without a cancellation token will inherit
    ///     the token of its antecedent task.
    /// </param>
    /// <param name="_ContinuationContext">
    ///     A variable that specifies where the continuation should execute. This variable is only useful when used in a
    ///     Windows Store app. For more information, see <see cref="task_continuation_context Class">task_continuation_context</see>
    /// </param>
    /// <returns>
    ///     The newly created continuation task. The result type of the returned task is determined by what <paramref name="_Func"/> returns.
    /// </returns>
    /// <remarks>
    ///     The overloads of <c>then</c> that take a lambda or functor that returns a Windows::Foundation::IAsyncInfo interface, are only available
    ///     to Windows Store apps.
    ///     <para>For more information on how to use task continuations to compose asynchronous work, see <see cref="Task Parallelism (Concurrency Runtime)"/>.</para>
    /// </remarks>
    /**/
    template<typename _Function>
    __declspec(noinline) // Ask for no inlining so that the _ReturnAddress intrinsic gives us the expected result
#if _MSC_VER >= 1800
    auto then(const _Function& _Func, Concurrency::cancellation_token _CancellationToken, task_continuation_context _ContinuationContext) const -> typename details::_ContinuationTypeTraits<_Function, void>::_TaskOfType
    {
        task_options _TaskOptions(_CancellationToken, _ContinuationContext);
        details::_get_internal_task_options(_TaskOptions)._set_creation_callstack(_CAPTURE_CALLSTACK());
        return _M_unitTask._ThenImpl<void, _Function>(_Func, _TaskOptions);
    }
#else
    auto then(const _Function& _Func, Concurrency::cancellation_token _CancellationToken, task_continuation_context _ContinuationContext) const -> typename details::_ContinuationTypeTraits<_Function, void>::_TaskOfType
    {
        auto _ContinuationTask = _M_unitTask._ThenImpl<void, _Function>(_Func, _CancellationToken._GetImplValue(), _ContinuationContext);
        // Do not move the next line out of this function. It is important that _ReturnAddress() evaluate to the the call site of then.
        _ContinuationTask._SetTaskCreationAddressHint(_ReturnAddress());
        return _ContinuationTask;
    }
#endif

    /// <summary>
    ///     Waits for this task to reach a terminal state. It is possible for <c>wait</c> to execute the task inline, if all of the tasks
    ///     dependencies are satisfied, and it has not already been picked up for execution by a background worker.
    /// </summary>
    /// <returns>
    ///     A <c>task_status</c> value which could be either <c>completed</c> or <c>canceled</c>. If the task encountered an exception
    ///     during execution, or an exception was propagated to it from an antecedent task, <c>wait</c> will throw that exception.
    /// </returns>
    /**/
    task_status wait() const
    {
        return _M_unitTask.wait();
    }

    /// <summary>
    ///     Returns the result this task produced. If the task is not in a terminal state, a call to <c>get</c> will wait for the task to
    ///     finish. This method does not return a value when called on a task with a <c>result_type</c> of <c>void</c>.
    /// </summary>
    /// <remarks>
    ///     If the task is canceled, a call to <c>get</c> will throw a <see cref="task_canceled Class">task_canceled</see> exception. If the task
    ///     encountered an different exception or an exception was propagated to it from an antecedent task, a call to <c>get</c> will throw that exception.
    /// </remarks>
    /**/
    void get() const
    {
        _M_unitTask.get();
    }
#if _MSC_VER >= 1800

    /// <summary>
    ///     Determines if the task is completed.
    /// </summary>
    /// <returns>
    ///     True if the task has completed, false otherwise.
    /// </returns>
    /// <remarks>
    ///     The function returns true if the task is completed or canceled (with or without user exception).
    /// </remarks>
    bool is_done() const
    {
        return _M_unitTask.is_done();
    }

    /// <summary>
    ///     Returns the scheduler for this task
    /// </summary>
    /// <returns>
    ///     A pointer to the scheduler
    /// </returns>
    Concurrency::scheduler_ptr scheduler() const
    {
        return _M_unitTask.scheduler();
    }
#endif
    /// <summary>
    ///     Determines whether the task unwraps a Windows Runtime <c>IAsyncInfo</c> interface or is descended from such a task.
    /// </summary>
    /// <returns>
    ///     <c>true</c> if the task unwraps an <c>IAsyncInfo</c> interface or is descended from such a task, <c>false</c> otherwise.
    /// </returns>
    /**/
    bool is_apartment_aware() const
    {
        return _M_unitTask.is_apartment_aware();
    }

    /// <summary>
    ///     Determines whether two <c>task</c> objects represent the same internal task.
    /// </summary>
    /// <returns>
    ///     <c>true</c> if the objects refer to the same underlying task, and <c>false</c> otherwise.
    /// </returns>
    /**/
    bool operator==(const task<void>& _Rhs) const
    {
        return (_M_unitTask == _Rhs._M_unitTask);
    }

    /// <summary>
    ///     Determines whether two <c>task</c> objects represent different internal tasks.
    /// </summary>
    /// <returns>
    ///     <c>true</c> if the objects refer to different underlying tasks, and <c>false</c> otherwise.
    /// </returns>
    /**/
    bool operator!=(const task<void>& _Rhs) const
    {
        return !operator==(_Rhs);
    }

    /// <summary>
    ///     Create an underlying task implementation.
    /// </summary>
#if _MSC_VER >= 1800
    void _CreateImpl(Concurrency::details::_CancellationTokenState * _Ct, Concurrency::scheduler_ptr _Scheduler)
    {
        _M_unitTask._CreateImpl(_Ct, _Scheduler);
    }
#else
    void _CreateImpl(Concurrency::details::_CancellationTokenState * _Ct)
    {
        _M_unitTask._CreateImpl(_Ct);
    }
#endif

    /// <summary>
    ///     Return the underlying implementation for this task.
    /// </summary>
    const details::_Task_ptr<details::_Unit_type>::_Type & _GetImpl() const
    {
        return _M_unitTask._M_Impl;
    }

    /// <summary>
    ///     Set the implementation of the task to be the supplied implementaion.
    /// </summary>
    void _SetImpl(const details::_Task_ptr<details::_Unit_type>::_Type & _Impl)
    {
        _M_unitTask._SetImpl(_Impl);
    }

    /// <summary>
    ///     Set the implementation of the task to be the supplied implementaion using a move instead of a copy.
    /// </summary>
    void _SetImpl(details::_Task_ptr<details::_Unit_type>::_Type && _Impl)
    {
        _M_unitTask._SetImpl(std::move(_Impl));
    }

    /// <summary>
    ///     Sets a property determining whether the task is apartment aware.
    /// </summary>
    void _SetAsync(bool _Async = true)
    {
        _M_unitTask._SetAsync(_Async);
    }

    /// <summary>
    ///     Sets a field in the task impl to the return address for calls to the task constructors and the then method.
    /// </summary>
#if _MSC_VER >= 1800
    void _SetTaskCreationCallstack(const details::_TaskCreationCallstack &_callstack)
    {
        _M_unitTask._SetTaskCreationCallstack(_callstack);
    }
#else
    void _SetTaskCreationAddressHint(void* _Address)
    {
        _M_unitTask._SetTaskCreationAddressHint(_Address);
    }
#endif

    /// <summary>
    ///     An internal version of then that takes additional flags and executes the continuation inline. Used for runtime internal continuations only.
    /// </summary>
    template<typename _Function>
#if _MSC_VER >= 1800
    auto _Then(const _Function& _Func, Concurrency::details::_CancellationTokenState *_PTokenState,
        details::_TaskInliningMode _InliningMode = Concurrency::details::_ForceInline) const -> typename details::_ContinuationTypeTraits<_Function, void>::_TaskOfType
    {
        // inherit from antecedent
        auto _Scheduler = _GetImpl()->_GetScheduler();

        return _M_unitTask._ThenImpl<void, _Function>(_Func, _PTokenState, task_continuation_context::use_default(), _Scheduler, _CAPTURE_CALLSTACK(), _InliningMode);
    }
#else
    auto _Then(const _Function& _Func, Concurrency::details::_CancellationTokenState *_PTokenState,
        bool _Aggregating, details::_TaskInliningMode _InliningMode = Concurrency::details::_ForceInline) const -> typename details::_ContinuationTypeTraits<_Function, void>::_TaskOfType
    {
        return _M_unitTask._ThenImpl<void, _Function>(_Func, _PTokenState, task_continuation_context::use_default(), _Aggregating, _InliningMode);
    }
#endif

private:
    template <typename T> friend class task;
    template <typename T> friend class task_completion_event;

    /// <summary>
    ///     Initializes a task using a task completion event.
    /// </summary>
    void _TaskInitNoFunctor(task_completion_event<void>& _Event)
    {
        _M_unitTask._TaskInitNoFunctor(_Event._M_unitEvent);
    }
    /// <summary>
    ///     Initializes a task using an asynchronous action IAsyncAction*
    /// </summary>
    void _TaskInitNoFunctor(ABI::Windows::Foundation::IAsyncAction* _AsyncAction)
    {
        _M_unitTask._TaskInitAsyncOp<details::_Unit_type>(Microsoft::WRL::Make<details::_IAsyncActionToAsyncOperationConverter>(_AsyncAction).Get());
    }

    /// <summary>
    ///     Initializes a task using an asynchronous action with progress IAsyncActionWithProgress<_P>*
    /// </summary>
    template<typename _P>
    void _TaskInitNoFunctor(ABI::Windows::Foundation::IAsyncActionWithProgress<_P>* _AsyncActionWithProgress)
    {
        _M_unitTask._TaskInitAsyncOp<details::_Unit_type>(Microsoft::WRL::Make<details::_IAsyncActionWithProgressToAsyncOperationConverter<_P>>(_AsyncActionWithProgress).Get());
    }
    /// <summary>
    ///     Initializes a task using a callable object.
    /// </summary>
    template<typename _Function>
    void _TaskInitMaybeFunctor(_Function & _Func, std::true_type)
    {
        _M_unitTask._TaskInitWithFunctor<void, _Function>(_Func);
    }

    /// <summary>
    ///     Initializes a task using a non-callable object.
    /// </summary>
    template<typename _T>
    void _TaskInitMaybeFunctor(_T & _Param, std::false_type)
    {
        _TaskInitNoFunctor(_Param);
    }

    // The void task contains a task of a dummy type so common code can be used for tasks with void and non-void results.
    task<details::_Unit_type> _M_unitTask;
};

namespace details
{

    /// <summary>
    ///   The following type traits are used for the create_task function.
    /// </summary>

    // Unwrap task<T>
    template<typename _Ty>
    _Ty _GetUnwrappedType(task<_Ty>);

    // Unwrap all supported types
    template<typename _Ty>
    auto _GetUnwrappedReturnType(_Ty _Arg, int) -> decltype(_GetUnwrappedType(_Arg));
    // fallback
    template<typename _Ty>
    _Ty _GetUnwrappedReturnType(_Ty, ...);

    /// <summary>
    ///   <c>_GetTaskType</c> functions will retrieve task type <c>T</c> in <c>task[T](Arg)</c>,
    ///   for given constructor argument <c>Arg</c> and its property "callable".
    ///   It will automatically unwrap argument to get the final return type if necessary.
    /// </summary>

    // Non-Callable
    template<typename _Ty>
    _Ty _GetTaskType(task_completion_event<_Ty>, std::false_type);

    // Non-Callable
    template<typename _Ty>
    auto _GetTaskType(_Ty _NonFunc, std::false_type) -> decltype(_GetUnwrappedType(_NonFunc));

    // Callable
    template<typename _Ty>
    auto _GetTaskType(_Ty _Func, std::true_type) -> decltype(_GetUnwrappedReturnType(stdx::declval<_FunctionTypeTraits<_Ty, void>::_FuncRetType>(), 0));

    // Special callable returns void
    void _GetTaskType(std::function<HRESULT()>, std::true_type);
    struct _BadArgType{};

    template<typename _ReturnType, typename _Ty>
    auto _FilterValidTaskType(_Ty _Param, int) -> decltype(_GetTaskType(_Param, _IsCallable<_ReturnType>(_Param, 0, 0, 0)));

    template<typename _ReturnType, typename _Ty>
    _BadArgType _FilterValidTaskType(_Ty _Param, ...);

    template<typename _ReturnType, typename _Ty>
    struct _TaskTypeFromParam
    {
        typedef decltype(_FilterValidTaskType<_ReturnType>(stdx::declval<_Ty>(), 0)) _Type;
    };
}


/// <summary>
///     Creates a PPL <see cref="task Class">task</c> object. <c>create_task</c> can be used anywhere you would have used a task constructor.
///     It is provided mainly for convenience, because it allows use of the <c>auto</c> keyword while creating tasks.
/// </summary>
/// <typeparam name="_Ty">
///     The type of the parameter from which the task is to be constructed.
/// </typeparam>
/// <param name="_Param">
///     The parameter from which the task is to be constructed. This could be a lambda or function object, a <c>task_completion_event</c>
///     object, a different <c>task</c> object, or a Windows::Foundation::IAsyncInfo interface if you are using tasks in your Windows Store app.
/// </param>
/// <returns>
///     A new task of type <c>T</c>, that is inferred from <paramref name="_Param"/>.
/// </returns>
/// <remarks>
///     The first overload behaves like a task constructor that takes a single parameter.
///     <para>The second overload associates the cancellation token provided with the newly created task. If you use this overload you are not
///     allowed to pass in a different <c>task</c> object as the first parameter.</para>
///     <para>The type of the returned task is inferred from the first parameter to the function. If <paramref name="_Param"/> is a <c>task_completion_event&lt;T&gt;</c>,
///     a <c>task&lt;T&gt;</c>, or a functor that returns either type <c>T</c> or <c>task&lt;T&gt;</c>, the type of the created task is <c>task&lt;T&gt;</c>.
///     <para>In a Windows Store app, if <paramref name="_Param"/> is of type Windows::Foundation::IAsyncOperation&ltT&gt^ or
///     Windows::Foundation::IAsyncOperationWithProgress&ltT,P&gt^, or a functor that returns either of those types, the created task will be of type <c>task&lt;T&gt;</c>.
///     If <paramref name="_Param"/> is of type Windows::Foundation::IAsyncAction^ or Windows::Foundation::IAsyncActionWithProgress&lt;P&gt;^, or a functor
///     that returns either of those types, the created task will have type <c>task&lt;void&gt;</c>.</para>
/// </remarks>
/// <seealso cref="task Class"/>
/// <seealso cref="Task Parallelism (Concurrency Runtime)"/>
/**/
template<typename _ReturnType, typename _Ty>
__declspec(noinline)
#if _MSC_VER >= 1800
auto create_task(_Ty _Param, task_options _TaskOptions = task_options()) -> task<typename details::_TaskTypeFromParam<_ReturnType, _Ty>::_Type>
#else
auto create_task(_Ty _Param) -> task<typename details::_TaskTypeFromParam<_ReturnType, _Ty>::_Type>
#endif
{
    static_assert(!std::is_same<typename details::_TaskTypeFromParam<_ReturnType, _Ty>::_Type, details::_BadArgType>::value,
        "incorrect argument for create_task; can be a callable object, an asynchronous operation, or a task_completion_event"
        );
#if _MSC_VER >= 1800
    details::_get_internal_task_options(_TaskOptions)._set_creation_callstack(_CAPTURE_CALLSTACK());
    task<typename details::_TaskTypeFromParam<_ReturnType, _Ty>::_Type> _CreatedTask(_Param, _TaskOptions);
#else
    task<typename details::_TaskTypeFromParam<_ReturnType, _Ty>::_Type> _CreatedTask(_Param);
    // Ideally we would like to forceinline create_task, but __forceinline does nothing on debug builds. Therefore, we ask for no inlining
    // and overwrite the creation address hint set by the task constructor. DO NOT REMOVE this next line from create_task. It is
    // essential that _ReturnAddress() evaluate to the instruction right after the call to create_task in client code.
    _CreatedTask._SetTaskCreationAddressHint(_ReturnAddress());
#endif
    return _CreatedTask;
}

/// <summary>
///     Creates a PPL <see cref="task Class">task</c> object. <c>create_task</c> can be used anywhere you would have used a task constructor.
///     It is provided mainly for convenience, because it allows use of the <c>auto</c> keyword while creating tasks.
/// </summary>
/// <typeparam name="_Ty">
///     The type of the parameter from which the task is to be constructed.
/// </typeparam>
/// <param name="_Param">
///     The parameter from which the task is to be constructed. This could be a lambda or function object, a <c>task_completion_event</c>
///     object, a different <c>task</c> object, or a Windows::Foundation::IAsyncInfo interface if you are using tasks in your Windows Store app.
/// </param>
/// <param name="_Token">
///     The cancellation token to associate with the task. When the source for this token is canceled, cancellation will be requested on the task.
/// </param>
/// <returns>
///     A new task of type <c>T</c>, that is inferred from <paramref name="_Param"/>.
/// </returns>
/// <remarks>
///     The first overload behaves like a task constructor that takes a single parameter.
///     <para>The second overload associates the cancellation token provided with the newly created task. If you use this overload you are not
///     allowed to pass in a different <c>task</c> object as the first parameter.</para>
///     <para>The type of the returned task is inferred from the first parameter to the function. If <paramref name="_Param"/> is a <c>task_completion_event&lt;T&gt;</c>,
///     a <c>task&lt;T&gt;</c>, or a functor that returns either type <c>T</c> or <c>task&lt;T&gt;</c>, the type of the created task is <c>task&lt;T&gt;</c>.
///     <para>In a Windows Store app, if <paramref name="_Param"/> is of type Windows::Foundation::IAsyncOperation&ltT&gt^ or
///     Windows::Foundation::IAsyncOperationWithProgress&ltT,P&gt^, or a functor that returns either of those types, the created task will be of type <c>task&lt;T&gt;</c>.
///     If <paramref name="_Param"/> is of type Windows::Foundation::IAsyncAction^ or Windows::Foundation::IAsyncActionWithProgress&lt;P&gt;^, or a functor
///     that returns either of those types, the created task will have type <c>task&lt;void&gt;</c>.</para>
/// </remarks>
/// <seealso cref="task Class"/>
/// <seealso cref="Task Parallelism (Concurrency Runtime)"/>
/**/
#if _MSC_VER >= 1800
template<typename _ReturnType>
__declspec(noinline)
task<_ReturnType> create_task(const task<_ReturnType>& _Task)
{
    task<_ReturnType> _CreatedTask(_Task);
    return _CreatedTask;
}
#else
template<typename _ReturnType, typename _Ty>
__declspec(noinline)
auto create_task(_Ty _Param, Concurrency::cancellation_token _Token) -> task<typename details::_TaskTypeFromParam<_ReturnType, _Ty>::_Type>
{
    static_assert(!std::is_same<typename details::_TaskTypeFromParam<_ReturnType, _Ty>::_Type, details::_BadArgType>::value,
        "incorrect argument for create_task; can be a callable object, an asynchronous operation, or a task_completion_event"
        );
    task<typename details::_TaskTypeFromParam<_ReturnType, _Ty>::_Type> _CreatedTask(_Param, _Token);
    // Ideally we would like to forceinline create_task, but __forceinline does nothing on debug builds. Therefore, we ask for no inlining
    // and overwrite the creation address hint set by the task constructor. DO NOT REMOVE this next line from create_task. It is
    // essential that _ReturnAddress() evaluate to the instruction right after the call to create_task in client code.
    _CreatedTask._SetTaskCreationAddressHint(_ReturnAddress());
    return _CreatedTask;
}
#endif

namespace details
{
    template<typename _T>
    task<typename ABI::Windows::Foundation::Internal::GetAbiType<decltype(_UnwrapAsyncOperationSelector(stdx::declval<ABI::Windows::Foundation::IAsyncOperation<_T>*>()))>::type> _To_task_helper(ABI::Windows::Foundation::IAsyncOperation<_T>* op)
    {
        return task<_T>(op);
    }

    template<typename _T, typename _Progress>
    task<typename ABI::Windows::Foundation::Internal::GetAbiType<decltype(_UnwrapAsyncOperationWithProgressSelector(stdx::declval<ABI::Windows::Foundation::IAsyncOperationWithProgress<_T, _Progress>*>()))>::type> _To_task_helper(ABI::Windows::Foundation::IAsyncOperationWithProgress<_T, _Progress>* op)
    {
        return task<_T>(op);
    }

    inline task<void> _To_task_helper(ABI::Windows::Foundation::IAsyncAction* op)
    {
        return task<void>(op);
    }

    template<typename _Progress>
    task<void> _To_task_helper(ABI::Windows::Foundation::IAsyncActionWithProgress<_Progress>* op)
    {
        return task<void>(op);
    }

    template<typename _ProgressType>
    class _ProgressDispatcherBase
    {
    public:

        virtual ~_ProgressDispatcherBase()
        {
        }

        virtual void _Report(const _ProgressType& _Val) = 0;
    };

    template<typename _ProgressType, typename _ClassPtrType>
    class _ProgressDispatcher : public _ProgressDispatcherBase<_ProgressType>
    {
    public:

        virtual ~_ProgressDispatcher()
        {
        }

        _ProgressDispatcher(_ClassPtrType _Ptr) : _M_ptr(_Ptr)
        {
        }

        virtual void _Report(const _ProgressType& _Val)
        {
            _M_ptr->_FireProgress(_Val);
        }

    private:

        _ClassPtrType _M_ptr;
    };
} // namespace details


/// <summary>
///     The progress reporter class allows reporting progress notifications of a specific type. Each progress_reporter object is bound
///     to a particular asynchronous action or operation.
/// </summary>
/// <typeparam name="_ProgressType">
///     The payload type of each progress notification reported through the progress reporter.
/// </typeparam>
/// <remarks>
///     This type is only available to Windows Store apps.
/// </remarks>
/// <seealso cref="create_async Function"/>
/**/
template<typename _ProgressType>
class progress_reporter
{
    typedef std::shared_ptr<details::_ProgressDispatcherBase<_ProgressType>> _PtrType;

public:

    /// <summary>
    ///     Sends a progress report to the asynchronous action or operation to which this progress reporter is bound.
    /// </summary>
    /// <param name="_Val">
    ///     The payload to report through a progress notification.
    /// </param>
    /**/
    void report(const _ProgressType& _Val) const
    {
        _M_dispatcher->_Report(_Val);
    }

    template<typename _ClassPtrType>
    static progress_reporter _CreateReporter(_ClassPtrType _Ptr)
    {
        progress_reporter _Reporter;
        details::_ProgressDispatcherBase<_ProgressType> *_PDispatcher = new details::_ProgressDispatcher<_ProgressType, _ClassPtrType>(_Ptr);
        _Reporter._M_dispatcher = _PtrType(_PDispatcher);
        return _Reporter;
    }
    progress_reporter() {}

private:
    progress_reporter(details::_ProgressReporterCtorArgType);

    _PtrType _M_dispatcher;
};

namespace details
{
    //
    // maps internal definitions for AsyncStatus and defines states that are not client visible
    //
    enum _AsyncStatusInternal
    {
        _AsyncCreated = -1,  // externally invisible
        // client visible states (must match AsyncStatus exactly)
        _AsyncStarted = ABI::Windows::Foundation::AsyncStatus::Started, // 0
        _AsyncCompleted = ABI::Windows::Foundation::AsyncStatus::Completed, // 1
        _AsyncCanceled = ABI::Windows::Foundation::AsyncStatus::Canceled, // 2
        _AsyncError = ABI::Windows::Foundation::AsyncStatus::Error, // 3
        // non-client visible internal states
        _AsyncCancelPending,
        _AsyncClosed,
        _AsyncUndefined
    };

    //
    // designates whether the "GetResults" method returns a single result (after complete fires) or multiple results
    // (which are progressively consumable between Start state and before Close is called)
    //
    enum _AsyncResultType
    {
        SingleResult = 0x0001,
        MultipleResults = 0x0002
    };

    template<typename _T>
    struct _ProgressTypeTraits
    {
        static const bool _TakesProgress = false;
        typedef void _ProgressType;
    };

    template<typename _T>
    struct _ProgressTypeTraits<progress_reporter<_T>>
    {
        static const bool _TakesProgress = true;
        typedef typename _T _ProgressType;
    };

    template<typename _T, bool bTakesToken = std::is_same<_T, Concurrency::cancellation_token>::value, bool bTakesProgress = _ProgressTypeTraits<_T>::_TakesProgress>
    struct _TokenTypeTraits
    {
        static const bool _TakesToken = false;
        typedef typename _T _ReturnType;
    };

    template<typename _T>
    struct _TokenTypeTraits<_T, false, true>
    {
        static const bool _TakesToken = false;
        typedef void _ReturnType;
    };

    template<typename _T>
    struct _TokenTypeTraits<_T, true, false>
    {
        static const bool _TakesToken = true;
        typedef void _ReturnType;
    };

    template<typename _T, size_t count = _FunctorTypeTraits<_T>::_ArgumentCount>
    struct _CAFunctorOptions
    {
        static const bool _TakesProgress = false;
        static const bool _TakesToken = false;
        typedef void _ProgressType;
        typedef void _ReturnType;
    };

    template<typename _T>
    struct _CAFunctorOptions<_T, 1>
    {
    private:

        typedef typename _FunctorTypeTraits<_T>::_Argument1Type _Argument1Type;

    public:

        static const bool _TakesProgress = _ProgressTypeTraits<_Argument1Type>::_TakesProgress;
        static const bool _TakesToken = _TokenTypeTraits<_Argument1Type>::_TakesToken;
        typedef typename _ProgressTypeTraits<_Argument1Type>::_ProgressType _ProgressType;
        typedef typename _TokenTypeTraits<_Argument1Type>::_ReturnType _ReturnType;
    };

    template<typename _T>
    struct _CAFunctorOptions<_T, 2>
    {
    private:

        typedef typename _FunctorTypeTraits<_T>::_Argument1Type _Argument1Type;
        typedef typename _FunctorTypeTraits<_T>::_Argument2Type _Argument2Type;

    public:

        static const bool _TakesProgress = _ProgressTypeTraits<_Argument1Type>::_TakesProgress;
        static const bool _TakesToken = !_TakesProgress ? true : _TokenTypeTraits<_Argument2Type>::_TakesToken;
        typedef typename _ProgressTypeTraits<_Argument1Type>::_ProgressType _ProgressType;
        typedef typename _TokenTypeTraits<_Argument2Type>::_ReturnType _ReturnType;
    };

    template<typename _T>
    struct _CAFunctorOptions<_T, 3>
    {
    private:

        typedef typename _FunctorTypeTraits<_T>::_Argument1Type _Argument1Type;

    public:

        static const bool _TakesProgress = true;
        static const bool _TakesToken = true;
        typedef typename _ProgressTypeTraits<_Argument1Type>::_ProgressType _ProgressType;
        typedef typename _FunctorTypeTraits<_T>::_Argument3Type _ReturnType;
    };

    class _Zip
    {
    };

    // ***************************************************************************
    // Async Operation Task Generators
    //

    //
    // Functor returns an IAsyncInfo - result needs to be wrapped in a task:
    //
    template<typename _AsyncSelector, typename _ReturnType>
    struct _SelectorTaskGenerator
    {
#if _MSC_VER >= 1800
        template<typename _Function>
        static task<_ReturnType> _GenerateTask_0(const _Function& _Func, Concurrency::cancellation_token_source _Cts, _ReturnType* _pRet, const _TaskCreationCallstack & _callstack)
        {
            task_options _taskOptinos(_Cts.get_token());
            details::_get_internal_task_options(_taskOptinos)._set_creation_callstack(_callstack);
            return task<_ReturnType>(_Func(_pRet), _taskOptinos);
        }

        template<typename _Function>
        static task<_ReturnType> _GenerateTask_1C(const _Function& _Func, Concurrency::cancellation_token_source _Cts, _ReturnType* _pRet, const _TaskCreationCallstack & _callstack)
        {
            task_options _taskOptinos(_Cts.get_token());
            details::_get_internal_task_options(_taskOptinos)._set_creation_callstack(_callstack);
            return task<_ReturnType>(_Func(_Cts.get_token(), _pRet), _taskOptinos);
        }

        template<typename _Function, typename _ProgressObject>
        static task<_ReturnType> _GenerateTask_1P(const _Function& _Func, const _ProgressObject& _Progress, Concurrency::cancellation_token_source _Cts, _ReturnType* _pRet, const _TaskCreationCallstack & _callstack)
        {
            task_options _taskOptinos(_Cts.get_token());
            details::_get_internal_task_options(_taskOptinos)._set_creation_callstack(_callstack);
            return task<_ReturnType>(_Func(_Progress, _pRet), _taskOptinos);
        }

        template<typename _Function, typename _ProgressObject>
        static task<_ReturnType> _GenerateTask_2PC(const _Function& _Func, const _ProgressObject& _Progress, Concurrency::cancellation_token_source _Cts, _ReturnType* _pRet, const _TaskCreationCallstack & _callstack)
        {
            task_options _taskOptinos(_Cts.get_token());
            details::_get_internal_task_options(_taskOptinos)._set_creation_callstack(_callstack);
            return task<_ReturnType>(_Func(_Progress, _Cts.get_token(), _pRet), _taskOptinos);
        }
#else
        template<typename _Function>
        static task<_ReturnType> _GenerateTask_0(const _Function& _Func, Concurrency::cancellation_token_source _Cts, _ReturnType* _pRet)
        {
            return task<_ReturnType>(_Func(_pRet), _Cts.get_token());
        }

        template<typename _Function>
        static task<_ReturnType> _GenerateTask_1C(const _Function& _Func, Concurrency::cancellation_token_source _Cts, _ReturnType* _pRet)
        {
            return task<_ReturnType>(_Func(_Cts.get_token(), _pRet), _Cts.get_token());
        }

        template<typename _Function, typename _ProgressObject>
        static task<_ReturnType> _GenerateTask_1P(const _Function& _Func, const _ProgressObject& _Progress, Concurrency::cancellation_token_source _Cts, _ReturnType* _pRet)
        {
            return task<_ReturnType>(_Func(_Progress, _pRet), _Cts.get_token());
        }

        template<typename _Function, typename _ProgressObject>
        static task<_ReturnType> _GenerateTask_2PC(const _Function& _Func, const _ProgressObject& _Progress, Concurrency::cancellation_token_source _Cts, _ReturnType* _pRet)
        {
            return task<_ReturnType>(_Func(_Progress, _Cts.get_token(), _pRet), _Cts.get_token());
        }
#endif
    };

    template<typename _AsyncSelector>
    struct _SelectorTaskGenerator<_AsyncSelector, void>
    {
#if _MSC_VER >= 1800
        template<typename _Function>
        static task<void> _GenerateTask_0(const _Function& _Func, Concurrency::cancellation_token_source _Cts, const _TaskCreationCallstack & _callstack)
        {
            task_options _taskOptinos(_Cts.get_token());
            details::_get_internal_task_options(_taskOptinos)._set_creation_callstack(_callstack);
            return task<void>(_Func(), _taskOptinos);
        }

        template<typename _Function>
        static task<void> _GenerateTask_1C(const _Function& _Func, Concurrency::cancellation_token_source _Cts, const _TaskCreationCallstack & _callstack)
        {
            task_options _taskOptinos(_Cts.get_token());
            details::_get_internal_task_options(_taskOptinos)._set_creation_callstack(_callstack);
            return task<void>(_Func(_Cts.get_token()), _taskOptinos);
        }

        template<typename _Function, typename _ProgressObject>
        static task<void> _GenerateTask_1P(const _Function& _Func, const _ProgressObject& _Progress, Concurrency::cancellation_token_source _Cts, const _TaskCreationCallstack & _callstack)
        {
            task_options _taskOptinos(_Cts.get_token());
            details::_get_internal_task_options(_taskOptinos)._set_creation_callstack(_callstack);
            return task<void>(_Func(_Progress), _taskOptinos);
        }

        template<typename _Function, typename _ProgressObject>
        static task<void> _GenerateTask_2PC(const _Function& _Func, const _ProgressObject& _Progress, Concurrency::cancellation_token_source _Cts, const _TaskCreationCallstack & _callstack)
        {
            task_options _taskOptinos(_Cts.get_token());
            details::_get_internal_task_options(_taskOptinos)._set_creation_callstack(_callstack);
            return task<void>(_Func(_Progress, _Cts.get_token()), _taskOptinos);
        }
#else
        template<typename _Function>
        static task<void> _GenerateTask_0(const _Function& _Func, Concurrency::cancellation_token_source _Cts)
        {
            return task<void>(_Func(), _Cts.get_token());
        }

        template<typename _Function>
        static task<void> _GenerateTask_1C(const _Function& _Func, Concurrency::cancellation_token_source _Cts)
        {
            return task<void>(_Func(_Cts.get_token()), _Cts.get_token());
        }

        template<typename _Function, typename _ProgressObject>
        static task<void> _GenerateTask_1P(const _Function& _Func, const _ProgressObject& _Progress, Concurrency::cancellation_token_source _Cts)
        {
            return task<void>(_Func(_Progress), _Cts.get_token());
        }

        template<typename _Function, typename _ProgressObject>
        static task<void> _GenerateTask_2PC(const _Function& _Func, const _ProgressObject& _Progress, Concurrency::cancellation_token_source _Cts)
        {
            return task<void>(_Func(_Progress, _Cts.get_token()), _Cts.get_token());
        }
#endif
    };

#if _MSC_VER < 1800
    // For create_async lambdas that return a (non-task) result, we oversubscriber the current task for the duration of the
    // lambda.
    struct _Task_generator_oversubscriber
    {
        _Task_generator_oversubscriber()
        {
            Concurrency::details::_Context::_Oversubscribe(true);
        }

        ~_Task_generator_oversubscriber()
        {
            Concurrency::details::_Context::_Oversubscribe(false);
        }
    };
#endif

    //
    // Functor returns a result - it needs to be wrapped in a task:
    //
    template<typename _ReturnType>
    struct _SelectorTaskGenerator<details::_TypeSelectorNoAsync, _ReturnType>
    {
#if _MSC_VER >= 1800

#pragma warning(push)
#pragma warning(disable: 4702)
        template<typename _Function>
        static task<_ReturnType> _GenerateTask_0(const _Function& _Func, Concurrency::cancellation_token_source _Cts, _ReturnType* _pRet, const _TaskCreationCallstack & _callstack)
        {
            task_options _taskOptinos(_Cts.get_token());
            details::_get_internal_task_options(_taskOptinos)._set_creation_callstack(_callstack);
            return task<_ReturnType>([=](_ReturnType* retVal) -> HRESULT {
                Concurrency::details::_Task_generator_oversubscriber_t _Oversubscriber;
                (_Oversubscriber);
                HRESULT hr = _Func(_pRet);
                retVal = _pRet;
                return hr;
            }, _taskOptinos);
        }
#pragma warning(pop)

        template<typename _Function>
        static task<_ReturnType> _GenerateTask_1C(const _Function& _Func, Concurrency::cancellation_token_source _Cts, _ReturnType* _pRet, const _TaskCreationCallstack & _callstack)
        {
            task_options _taskOptinos(_Cts.get_token());
            details::_get_internal_task_options(_taskOptinos)._set_creation_callstack(_callstack);
            return task<_ReturnType>([=](_ReturnType* retVal) -> HRESULT {
                Concurrency::details::_Task_generator_oversubscriber_t _Oversubscriber;
                (_Oversubscriber);
                HRESULT hr = _Func(_Cts.get_token(), _pRet);
                retVal = _pRet;
                return hr;
            }, _taskOptinos);
        }

        template<typename _Function, typename _ProgressObject>
        static task<_ReturnType> _GenerateTask_1P(const _Function& _Func, const _ProgressObject& _Progress, Concurrency::cancellation_token_source _Cts, _ReturnType* _pRet, const _TaskCreationCallstack & _callstack)
        {
            task_options _taskOptinos(_Cts.get_token());
            details::_get_internal_task_options(_taskOptinos)._set_creation_callstack(_callstack);
            return task<_ReturnType>([=](_ReturnType* retVal) -> HRESULT {
                Concurrency::details::_Task_generator_oversubscriber_t _Oversubscriber;
                (_Oversubscriber);
                HRESULT hr = _Func(_Progress, _pRet);
                retVal = _pRet;
                return hr;
            }, _taskOptinos);
        }

        template<typename _Function, typename _ProgressObject>
        static task<_ReturnType> _GenerateTask_2PC(const _Function& _Func, const _ProgressObject& _Progress, Concurrency::cancellation_token_source _Cts, _ReturnType* _pRet, const _TaskCreationCallstack & _callstack)
        {
            task_options _taskOptinos(_Cts.get_token());
            details::_get_internal_task_options(_taskOptinos)._set_creation_callstack(_callstack);
            return task<_ReturnType>([=](_ReturnType* retVal) -> HRESULT {
                Concurrency::details::_Task_generator_oversubscriber_t _Oversubscriber;
                (_Oversubscriber);
                HRESULT hr = _Func(_Progress, _Cts.get_token(), _pRet);
                retVal = _pRet;
                return hr;
            }, _taskOptinos);
        }
#else
        template<typename _Function>
        static task<_ReturnType> _GenerateTask_0(const _Function& _Func, Concurrency::cancellation_token_source _Cts, _ReturnType* _pRet)
        {
            return task<_ReturnType>([=](_ReturnType* retVal) -> HRESULT {
                _Task_generator_oversubscriber _Oversubscriber;
                HRESULT hr = _Func(_pRet);
                retVal = _pRet;
                return hr;
            }, _Cts.get_token());
        }

        template<typename _Function>
        static task<_ReturnType> _GenerateTask_1C(const _Function& _Func, Concurrency::cancellation_token_source _Cts, _ReturnType* _pRet)
        {
            return task<_ReturnType>([=](_ReturnType* retVal) -> HRESULT {
                _Task_generator_oversubscriber _Oversubscriber;
                HRESULT hr = _Func(_Cts.get_token(), _pRet);
                retVal = _pRet;
                return hr;
            }, _Cts.get_token());
        }

        template<typename _Function, typename _ProgressObject>
        static task<_ReturnType> _GenerateTask_1P(const _Function& _Func, const _ProgressObject& _Progress, Concurrency::cancellation_token_source _Cts, _ReturnType* _pRet)
        {
            return task<_ReturnType>([=](_ReturnType* retVal) -> HRESULT {
                _Task_generator_oversubscriber _Oversubscriber;
                HRESULT hr = _Func(_Progress, _pRet);
                retVal = _pRet;
                return hr;
            }, _Cts.get_token());
        }

        template<typename _Function, typename _ProgressObject>
        static task<_ReturnType> _GenerateTask_2PC(const _Function& _Func, const _ProgressObject& _Progress, Concurrency::cancellation_token_source _Cts, _ReturnType* _pRet)
        {
            return task<_ReturnType>([=](_ReturnType* retVal) -> HRESULT {
                _Task_generator_oversubscriber _Oversubscriber;
                HRESULT hr = _Func(_Progress, _Cts.get_token(), _pRet);
                retVal = _pRet;
                return hr;
            }, _Cts.get_token());
        }
#endif
    };

    template<>
    struct _SelectorTaskGenerator<details::_TypeSelectorNoAsync, void>
    {
#if _MSC_VER >= 1800
        template<typename _Function>
        static task<void> _GenerateTask_0(const _Function& _Func, Concurrency::cancellation_token_source _Cts, const _TaskCreationCallstack & _callstack)
        {
            task_options _taskOptinos(_Cts.get_token());
            details::_get_internal_task_options(_taskOptinos)._set_creation_callstack(_callstack);
            return task<void>([=]() -> HRESULT {
                Concurrency::details::_Task_generator_oversubscriber_t _Oversubscriber;
                (_Oversubscriber);
                return _Func();
            }, _taskOptinos);
        }

        template<typename _Function>
        static task<void> _GenerateTask_1C(const _Function& _Func, Concurrency::cancellation_token_source _Cts, const _TaskCreationCallstack & _callstack)
        {
            task_options _taskOptinos(_Cts.get_token());
            details::_get_internal_task_options(_taskOptinos)._set_creation_callstack(_callstack);
            return task<void>([=]() -> HRESULT {
                Concurrency::details::_Task_generator_oversubscriber_t _Oversubscriber;
                (_Oversubscriber);
                return _Func(_Cts.get_token());
            }, _taskOptinos);
        }

        template<typename _Function, typename _ProgressObject>
        static task<void> _GenerateTask_1P(const _Function& _Func, const _ProgressObject& _Progress, Concurrency::cancellation_token_source _Cts, const _TaskCreationCallstack & _callstack)
        {
            task_options _taskOptinos(_Cts.get_token());
            details::_get_internal_task_options(_taskOptinos)._set_creation_callstack(_callstack);
            return task<void>([=]() -> HRESULT {
                Concurrency::details::_Task_generator_oversubscriber_t _Oversubscriber;
                (_Oversubscriber);
                return _Func(_Progress);
            }, _taskOptinos);
        }

        template<typename _Function, typename _ProgressObject>
        static task<void> _GenerateTask_2PC(const _Function& _Func, const _ProgressObject& _Progress, Concurrency::cancellation_token_source _Cts, const _TaskCreationCallstack & _callstack)
        {
            task_options _taskOptinos(_Cts.get_token());
            details::_get_internal_task_options(_taskOptinos)._set_creation_callstack(_callstack);
            return task<void>([=]() -> HRESULT {
                Concurrency::details::_Task_generator_oversubscriber_t _Oversubscriber;
                (_Oversubscriber);
                return _Func(_Progress, _Cts.get_token());
            }, _taskOptinos);
        }
#else
        template<typename _Function>
        static task<void> _GenerateTask_0(const _Function& _Func, Concurrency::cancellation_token_source _Cts)
        {
            return task<void>([=]() -> HRESULT {
                _Task_generator_oversubscriber _Oversubscriber;
                return _Func();
            }, _Cts.get_token());
        }

        template<typename _Function>
        static task<void> _GenerateTask_1C(const _Function& _Func, Concurrency::cancellation_token_source _Cts)
        {
            return task<void>([=]() -> HRESULT {
                _Task_generator_oversubscriber _Oversubscriber;
                return _Func(_Cts.get_token());
            }, _Cts.get_token());
        }

        template<typename _Function, typename _ProgressObject>
        static task<void> _GenerateTask_1P(const _Function& _Func, const _ProgressObject& _Progress, Concurrency::cancellation_token_source _Cts)
        {
            return task<void>([=]() -> HRESULT {
                _Task_generator_oversubscriber _Oversubscriber;
                return _Func(_Progress);
            }, _Cts.get_token());
        }

        template<typename _Function, typename _ProgressObject>
        static task<void> _GenerateTask_2PC(const _Function& _Func, const _ProgressObject& _Progress, Concurrency::cancellation_token_source _Cts)
        {
            return task<void>([=]() -> HRESULT {
                _Task_generator_oversubscriber _Oversubscriber;
                return _Func(_Progress, _Cts.get_token());
            }, _Cts.get_token());
        }
#endif
    };

    //
    // Functor returns a task - the task can directly be returned:
    //
    template<typename _ReturnType>
    struct _SelectorTaskGenerator<details::_TypeSelectorAsyncTask, _ReturnType>
    {
        template<typename _Function>
#if _MSC_VER >= 1800
        static task<_ReturnType> _GenerateTask_0(const _Function& _Func, Concurrency::cancellation_token_source _Cts, _ReturnType* _pRet, const _TaskCreationCallstack & _callstack)
#else
        static task<_ReturnType> _GenerateTask_0(const _Function& _Func, Concurrency::cancellation_token_source _Cts, _ReturnType* _pRet)
#endif
        {
            task<_ReturnType> _task;
            _Func(&_task);
            return _task;
        }

        template<typename _Function>
#if _MSC_VER >= 1800
        static task<_ReturnType> _GenerateTask_1C(const _Function& _Func, Concurrency::cancellation_token_source _Cts, _ReturnType* _pRet, const _TaskCreationCallstack & _callstack)
#else
        static task<_ReturnType> _GenerateTask_1C(const _Function& _Func, Concurrency::cancellation_token_source _Cts, _ReturnType* _pRet)
#endif
        {
            task<_ReturnType> _task;
            _Func(_Cts.get_token(), &_task);
            return _task;
        }

        template<typename _Function, typename _ProgressObject>
#if _MSC_VER >= 1800
        static task<_ReturnType> _GenerateTask_1P(const _Function& _Func, const _ProgressObject& _Progress, Concurrency::cancellation_token_source _Cts, _ReturnType* _pRet, const _TaskCreationCallstack & _callstack)
#else
        static task<_ReturnType> _GenerateTask_1P(const _Function& _Func, const _ProgressObject& _Progress, Concurrency::cancellation_token_source _Cts, _ReturnType* _pRet)
#endif
        {
            task<_ReturnType> _task;
            _Func(_Progress, &_task);
            return _task;
        }

        template<typename _Function, typename _ProgressObject>
#if _MSC_VER >= 1800
        static task<_ReturnType> _GenerateTask_2PC(const _Function& _Func, const _ProgressObject& _Progress, Concurrency::cancellation_token_source _Cts, _ReturnType* _pRet, const _TaskCreationCallstack & _callstack)
#else
        static task<_ReturnType> _GenerateTask_2PC(const _Function& _Func, const _ProgressObject& _Progress, Concurrency::cancellation_token_source _Cts, _ReturnType* _pRet)
#endif
        {
            task<_ReturnType> _task;
            _Func(_Progress, _Cts.get_token(), &_task);
            return _task;
        }
    };

    template<>
    struct _SelectorTaskGenerator<details::_TypeSelectorAsyncTask, void>
    {
        template<typename _Function>
#if _MSC_VER >= 1800
        static task<void> _GenerateTask_0(const _Function& _Func, Concurrency::cancellation_token_source _Cts, const _TaskCreationCallstack & _callstack)
#else
        static task<void> _GenerateTask_0(const _Function& _Func, Concurrency::cancellation_token_source _Cts)
#endif
        {
            task<void> _task;
            _Func(&_task);
            return _task;
        }

        template<typename _Function>
#if _MSC_VER >= 1800
        static task<void> _GenerateTask_1C(const _Function& _Func, Concurrency::cancellation_token_source _Cts, const _TaskCreationCallstack & _callstack)
#else
        static task<void> _GenerateTask_1C(const _Function& _Func, Concurrency::cancellation_token_source _Cts)
#endif
        {
            task<void> _task;
            _Func(_Cts.get_token(), &_task);
            return _task;
        }

        template<typename _Function, typename _ProgressObject>
#if _MSC_VER >= 1800
        static task<void> _GenerateTask_1P(const _Function& _Func, const _ProgressObject& _Progress, Concurrency::cancellation_token_source _Cts, const _TaskCreationCallstack & _callstack)
#else
        static task<void> _GenerateTask_1P(const _Function& _Func, const _ProgressObject& _Progress, Concurrency::cancellation_token_source _Cts)
#endif
        {
            task<void> _task;
            _Func(_Progress, &_task);
            return _task;
        }

        template<typename _Function, typename _ProgressObject>
#if _MSC_VER >= 1800
        static task<void> _GenerateTask_2PC(const _Function& _Func, const _ProgressObject& _Progress, Concurrency::cancellation_token_source _Cts, const _TaskCreationCallstack & _callstack)
#else
        static task<void> _GenerateTask_2PC(const _Function& _Func, const _ProgressObject& _Progress, Concurrency::cancellation_token_source _Cts)
#endif
        {
            task<void> _task;
            _Func(_Progress, _Cts.get_token(), &_task);
            return _task;
        }
    };

    template<typename _Generator, bool _TakesToken, bool TakesProgress>
    struct _TaskGenerator
    {
    };

    template<typename _Generator>
    struct _TaskGenerator<_Generator, false, false>
    {
#if _MSC_VER >= 1800
        template<typename _Function, typename _ClassPtr, typename _ProgressType>
        static auto _GenerateTaskNoRet(const _Function& _Func, _ClassPtr _Ptr, Concurrency::cancellation_token_source _Cts, const _TaskCreationCallstack & _callstack)
            -> decltype(_Generator::_GenerateTask_0(_Func, _Cts, _callstack))
        {
            (void)_Ptr;
            return _Generator::_GenerateTask_0(_Func, _Cts, _callstack);
        }

        template<typename _Function, typename _ClassPtr, typename _ProgressType, typename _ReturnType>
        static auto _GenerateTask(const _Function& _Func, _ClassPtr _Ptr, Concurrency::cancellation_token_source _Cts, _ReturnType* _pRet, const _TaskCreationCallstack & _callstack)
            -> decltype(_Generator::_GenerateTask_0(_Func, _Cts, _pRet, _callstack))
        {
            return _Generator::_GenerateTask_0(_Func, _Cts, _pRet, _callstack);
        }
#else
        template<typename _Function, typename _ClassPtr, typename _ProgressType>
        static auto _GenerateTaskNoRet(const _Function& _Func, _ClassPtr _Ptr, Concurrency::cancellation_token_source _Cts)
            -> decltype(_Generator::_GenerateTask_0(_Func, _Cts))
        {
            (void)_Ptr;
            return _Generator::_GenerateTask_0(_Func, _Cts);
        }

        template<typename _Function, typename _ClassPtr, typename _ProgressType, typename _ReturnType>
        static auto _GenerateTask(const _Function& _Func, _ClassPtr _Ptr, Concurrency::cancellation_token_source _Cts, _ReturnType* _pRet)
            -> decltype(_Generator::_GenerateTask_0(_Func, _Cts, _pRet))
        {
            return _Generator::_GenerateTask_0(_Func, _Cts, _pRet);
        }
#endif
    };

    template<typename _Generator>
    struct _TaskGenerator<_Generator, true, false>
    {
#if _MSC_VER >= 1800
        template<typename _Function, typename _ClassPtr, typename _ProgressType>
        static auto _GenerateTaskNoRet(const _Function& _Func, _ClassPtr _Ptr, Concurrency::cancellation_token_source _Cts, const _TaskCreationCallstack & _callstack)
            -> decltype(_Generator::_GenerateTask_0(_Func, _Cts, _callstack))
        {
            return _Generator::_GenerateTask_1C(_Func, _Cts, _callstack);
        }

        template<typename _Function, typename _ClassPtr, typename _ProgressType, typename _ReturnType>
        static auto _GenerateTask(const _Function& _Func, _ClassPtr _Ptr, Concurrency::cancellation_token_source _Cts, _ReturnType* _pRet, const _TaskCreationCallstack & _callstack)
            -> decltype(_Generator::_GenerateTask_0(_Func, _Cts, _pRet, _callstack))
        {
            return _Generator::_GenerateTask_1C(_Func, _Cts, _pRet, _callstack);
        }
#else
        template<typename _Function, typename _ClassPtr, typename _ProgressType>
        static auto _GenerateTaskNoRet(const _Function& _Func, _ClassPtr _Ptr, Concurrency::cancellation_token_source _Cts)
            -> decltype(_Generator::_GenerateTask_0(_Func, _Cts))
        {
            return _Generator::_GenerateTask_1C(_Func, _Cts);
        }

        template<typename _Function, typename _ClassPtr, typename _ProgressType, typename _ReturnType>
        static auto _GenerateTask(const _Function& _Func, _ClassPtr _Ptr, Concurrency::cancellation_token_source _Cts, _ReturnType* _pRet)
            -> decltype(_Generator::_GenerateTask_0(_Func, _Cts, _pRet))
        {
            return _Generator::_GenerateTask_1C(_Func, _Cts, _pRet);
        }
#endif
    };

    template<typename _Generator>
    struct _TaskGenerator<_Generator, false, true>
    {
#if _MSC_VER >= 1800
        template<typename _Function, typename _ClassPtr, typename _ProgressType>
        static auto _GenerateTaskNoRet(const _Function& _Func, _ClassPtr _Ptr, Concurrency::cancellation_token_source _Cts, const _TaskCreationCallstack & _callstack)
            -> decltype(_Generator::_GenerateTask_0(_Func, _Cts, _callstack))
        {
            return _Generator::_GenerateTask_1P(_Func, progress_reporter<_ProgressType>::_CreateReporter(_Ptr), _Cts, _callstack);
        }

        template<typename _Function, typename _ClassPtr, typename _ProgressType, typename _ReturnType>
        static auto _GenerateTask(const _Function& _Func, _ClassPtr _Ptr, Concurrency::cancellation_token_source _Cts, _ReturnType* _pRet, const _TaskCreationCallstack & _callstack)
            -> decltype(_Generator::_GenerateTask_0(_Func, _Cts, _pRet, _callstack))
        {
            return _Generator::_GenerateTask_1P(_Func, progress_reporter<_ProgressType>::_CreateReporter(_Ptr), _Cts, _pRet, _callstack);
        }
#else
        template<typename _Function, typename _ClassPtr, typename _ProgressType>
        static auto _GenerateTaskNoRet(const _Function& _Func, _ClassPtr _Ptr, Concurrency::cancellation_token_source _Cts)
            -> decltype(_Generator::_GenerateTask_0(_Func, _Cts))
        {
            return _Generator::_GenerateTask_1P(_Func, progress_reporter<_ProgressType>::_CreateReporter(_Ptr), _Cts);
        }

        template<typename _Function, typename _ClassPtr, typename _ProgressType, typename _ReturnType>
        static auto _GenerateTask(const _Function& _Func, _ClassPtr _Ptr, Concurrency::cancellation_token_source _Cts, _ReturnType* _pRet)
            -> decltype(_Generator::_GenerateTask_0(_Func, _Cts, _pRet))
        {
            return _Generator::_GenerateTask_1P(_Func, progress_reporter<_ProgressType>::_CreateReporter(_Ptr), _Cts, _pRet);
        }
#endif
    };

    template<typename _Generator>
    struct _TaskGenerator<_Generator, true, true>
    {
#if _MSC_VER >= 1800
        template<typename _Function, typename _ClassPtr, typename _ProgressType>
        static auto _GenerateTaskNoRet(const _Function& _Func, _ClassPtr _Ptr, Concurrency::cancellation_token_source _Cts, const _TaskCreationCallstack & _callstack)
            -> decltype(_Generator::_GenerateTask_0(_Func, _Cts, _callstack))
        {
            return _Generator::_GenerateTask_2PC(_Func, progress_reporter<_ProgressType>::_CreateReporter(_Ptr), _Cts, _callstack);
        }

        template<typename _Function, typename _ClassPtr, typename _ProgressType, typename _ReturnType>
        static auto _GenerateTask(const _Function& _Func, _ClassPtr _Ptr, Concurrency::cancellation_token_source _Cts, _ReturnType* _pRet, const _TaskCreationCallstack & _callstack)
            -> decltype(_Generator::_GenerateTask_0(_Func, _Cts, _pRet, _callstack))
        {
            return _Generator::_GenerateTask_2PC(_Func, progress_reporter<_ProgressType>::_CreateReporter(_Ptr), _Cts, _pRet, _callstack);
        }
#else
        template<typename _Function, typename _ClassPtr, typename _ProgressType>
        static auto _GenerateTaskNoRet(const _Function& _Func, _ClassPtr _Ptr, Concurrency::cancellation_token_source _Cts)
            -> decltype(_Generator::_GenerateTask_0(_Func, _Cts))
        {
            return _Generator::_GenerateTask_2PC(_Func, progress_reporter<_ProgressType>::_CreateReporter(_Ptr), _Cts);
        }

        template<typename _Function, typename _ClassPtr, typename _ProgressType, typename _ReturnType>
        static auto _GenerateTask(const _Function& _Func, _ClassPtr _Ptr, Concurrency::cancellation_token_source _Cts, _ReturnType* _pRet)
            -> decltype(_Generator::_GenerateTask_0(_Func, _Cts, _pRet))
        {
            return _Generator::_GenerateTask_2PC(_Func, progress_reporter<_ProgressType>::_CreateReporter(_Ptr), _Cts, _pRet);
        }
#endif
    };

    // ***************************************************************************
    // Async Operation Attributes Classes
    //
    // These classes are passed through the hierarchy of async base classes in order to hold multiple attributes of a given async construct in
    // a single container. An attribute class must define:
    //
    // Mandatory:
    // -------------------------
    //
    // _AsyncBaseType           : The Windows Runtime interface which is being implemented.
    // _CompletionDelegateType  : The Windows Runtime completion delegate type for the interface.
    // _ProgressDelegateType    : If _TakesProgress is true, the Windows Runtime progress delegate type for the interface. If it is false, an empty Windows Runtime type.
    // _ReturnType              : The return type of the async construct (void for actions / non-void for operations)
    //
    // _TakesProgress           : An indication as to whether or not
    //
    // _Generate_Task           : A function adapting the user's function into what's necessary to produce the appropriate task
    //
    // Optional:
    // -------------------------
    //

    template<typename _Function, typename _ProgressType, typename _ReturnType, typename _TaskTraits, bool _TakesToken, bool _TakesProgress>
    struct _AsyncAttributes
    {
    };

    template<typename _Function, typename _ProgressType, typename _ReturnType, typename _TaskTraits, bool _TakesToken>
    struct _AsyncAttributes<_Function, _ProgressType, _ReturnType, _TaskTraits, _TakesToken, true>
    {
        typedef typename ABI::Windows::Foundation::IAsyncOperationWithProgress<_ReturnType, _ProgressType> _AsyncBaseType;
        typedef typename ABI::Windows::Foundation::IAsyncOperationProgressHandler<_ReturnType, _ProgressType> _ProgressDelegateType;
        typedef typename ABI::Windows::Foundation::IAsyncOperationWithProgressCompletedHandler<_ReturnType, _ProgressType> _CompletionDelegateType;
        typedef typename _ReturnType _ReturnType;
        typedef typename ABI::Windows::Foundation::Internal::GetAbiType<decltype(_UnwrapAsyncOperationWithProgressSelector(stdx::declval<_AsyncBaseType*>()))>::type _ReturnType_abi;
        typedef typename _ProgressType _ProgressType;
        typedef typename ABI::Windows::Foundation::Internal::GetAbiType<decltype(_UnwrapAsyncOperationWithProgressProgressSelector(stdx::declval<_AsyncBaseType*>()))>::type _ProgressType_abi;
        typedef typename _TaskTraits::_AsyncKind _AsyncKind;
        typedef typename _SelectorTaskGenerator<_AsyncKind, _ReturnType> _SelectorTaskGenerator;
        typedef typename _TaskGenerator<_SelectorTaskGenerator, _TakesToken, true> _TaskGenerator;

        static const bool _TakesProgress = true;
        static const bool _TakesToken = _TakesToken;

        template<typename _Function, typename _ClassPtr>
#if _MSC_VER >= 1800
        static task<typename _TaskTraits::_TaskRetType> _Generate_Task(const _Function& _Func, _ClassPtr _Ptr, Concurrency::cancellation_token_source _Cts, _ReturnType* _pRet, const _TaskCreationCallstack & _callstack)
        {
            return _TaskGenerator::_GenerateTask<_Function, _ClassPtr, _ProgressType_abi, _ReturnType>(_Func, _Ptr, _Cts, _pRet, _callstack);
        }
#else
        static task<typename _TaskTraits::_TaskRetType> _Generate_Task(const _Function& _Func, _ClassPtr _Ptr, Concurrency::cancellation_token_source _Cts, _ReturnType* _pRet)
        {
            return _TaskGenerator::_GenerateTask<_Function, _ClassPtr, _ProgressType_abi, _ReturnType>(_Func, _Ptr, _Cts, _pRet);
        }
#endif
    };

    template<typename _Function, typename _ProgressType, typename _ReturnType, typename _TaskTraits, bool _TakesToken>
    struct _AsyncAttributes<_Function, _ProgressType, _ReturnType, _TaskTraits, _TakesToken, false>
    {
        typedef typename ABI::Windows::Foundation::IAsyncOperation<_ReturnType> _AsyncBaseType;
        typedef _Zip _ProgressDelegateType;
        typedef typename ABI::Windows::Foundation::IAsyncOperationCompletedHandler<_ReturnType> _CompletionDelegateType;
        typedef typename _ReturnType _ReturnType;
        typedef typename ABI::Windows::Foundation::Internal::GetAbiType<decltype(_UnwrapAsyncOperationSelector(stdx::declval<_AsyncBaseType*>()))>::type _ReturnType_abi;
        typedef typename _TaskTraits::_AsyncKind _AsyncKind;
        typedef typename _SelectorTaskGenerator<_AsyncKind, _ReturnType> _SelectorTaskGenerator;
        typedef typename _TaskGenerator<_SelectorTaskGenerator, _TakesToken, false> _TaskGenerator;

        static const bool _TakesProgress = false;
        static const bool _TakesToken = _TakesToken;

        template<typename _Function, typename _ClassPtr>
#if _MSC_VER >= 1800
        static task<typename _TaskTraits::_TaskRetType> _Generate_Task(const _Function& _Func, _ClassPtr _Ptr, Concurrency::cancellation_token_source _Cts, _ReturnType* _pRet, const _TaskCreationCallstack & _callstack)
        {
            return _TaskGenerator::_GenerateTask<_Function, _ClassPtr, _ProgressType, _ReturnType>(_Func, _Ptr, _Cts, _pRet, _callstack);
        }
#else
        static task<typename _TaskTraits::_TaskRetType> _Generate_Task(const _Function& _Func, _ClassPtr _Ptr, Concurrency::cancellation_token_source _Cts, _ReturnType* _pRet)
        {
            return _TaskGenerator::_GenerateTask<_Function, _ClassPtr, _ProgressType, _ReturnType>(_Func, _Ptr, _Cts, _pRet);
        }
#endif
    };

    template<typename _Function, typename _ProgressType, typename _TaskTraits, bool _TakesToken>
    struct _AsyncAttributes<_Function, _ProgressType, void, _TaskTraits, _TakesToken, true>
    {
        typedef typename ABI::Windows::Foundation::IAsyncActionWithProgress<_ProgressType> _AsyncBaseType;
        typedef typename ABI::Windows::Foundation::IAsyncActionProgressHandler<_ProgressType> _ProgressDelegateType;
        typedef typename ABI::Windows::Foundation::IAsyncActionWithProgressCompletedHandler<_ProgressType> _CompletionDelegateType;
        typedef void _ReturnType;
        typedef void _ReturnType_abi;
        typedef typename _ProgressType _ProgressType;
        typedef typename ABI::Windows::Foundation::Internal::GetAbiType<decltype(_UnwrapAsyncActionWithProgressSelector(stdx::declval<_AsyncBaseType*>()))>::type _ProgressType_abi;
        typedef typename _TaskTraits::_AsyncKind _AsyncKind;
        typedef typename _SelectorTaskGenerator<_AsyncKind, _ReturnType> _SelectorTaskGenerator;
        typedef typename _TaskGenerator<_SelectorTaskGenerator, _TakesToken, true> _TaskGenerator;

        static const bool _TakesProgress = true;
        static const bool _TakesToken = _TakesToken;

#if _MSC_VER >= 1800
        template<typename _Function, typename _ClassPtr>
        static task<void> _Generate_Task(const _Function& _Func, _ClassPtr _Ptr, Concurrency::cancellation_token_source _Cts, const _TaskCreationCallstack & _callstack)
        {
            return _TaskGenerator::_GenerateTaskNoRet<_Function, _ClassPtr, _ProgressType_abi>(_Func, _Ptr, _Cts, _callstack);
        }
        template<typename _Function, typename _ClassPtr>
        static task<task<void>> _Generate_Task(const _Function& _Func, _ClassPtr _Ptr, Concurrency::cancellation_token_source _Cts, _ReturnType* _pRet, const _TaskCreationCallstack & _callstack)
        {
            return _TaskGenerator::_GenerateTask<_Function, _ClassPtr, _ProgressType_abi>(_Func, _Ptr, _Cts, _pRet, _callstack);
        }
#else
        template<typename _Function, typename _ClassPtr>
        static task<void> _Generate_Task(const _Function& _Func, _ClassPtr _Ptr, Concurrency::cancellation_token_source _Cts)
        {
            return _TaskGenerator::_GenerateTaskNoRet<_Function, _ClassPtr, _ProgressType_abi>(_Func, _Ptr, _Cts);
        }
        template<typename _Function, typename _ClassPtr>
        static task<task<void>> _Generate_Task(const _Function& _Func, _ClassPtr _Ptr, Concurrency::cancellation_token_source _Cts, _ReturnType* _pRet)
        {
            return _TaskGenerator::_GenerateTask<_Function, _ClassPtr, _ProgressType_abi>(_Func, _Ptr, _Cts, _pRet);
        }
#endif
    };

    template<typename _Function, typename _ProgressType, typename _TaskTraits, bool _TakesToken>
    struct _AsyncAttributes<_Function, _ProgressType, void, _TaskTraits, _TakesToken, false>
    {
        typedef typename ABI::Windows::Foundation::IAsyncAction _AsyncBaseType;
        typedef _Zip _ProgressDelegateType;
        typedef typename ABI::Windows::Foundation::IAsyncActionCompletedHandler _CompletionDelegateType;
        typedef void _ReturnType;
        typedef void _ReturnType_abi;
        typedef typename _TaskTraits::_AsyncKind _AsyncKind;
        typedef typename _SelectorTaskGenerator<_AsyncKind, _ReturnType> _SelectorTaskGenerator;
        typedef typename _TaskGenerator<_SelectorTaskGenerator, _TakesToken, false> _TaskGenerator;

        static const bool _TakesProgress = false;
        static const bool _TakesToken = _TakesToken;

#if _MSC_VER >= 1800
        template<typename _Function, typename _ClassPtr>
        static task<void> _Generate_Task(const _Function& _Func, _ClassPtr _Ptr, Concurrency::cancellation_token_source _Cts, const _TaskCreationCallstack & _callstack)
        {
            return _TaskGenerator::_GenerateTaskNoRet<_Function, _ClassPtr, _ProgressType>(_Func, _Ptr, _Cts, _callstack);
        }
        template<typename _Function, typename _ClassPtr>
        static task<task<void>> _Generate_Task(const _Function& _Func, _ClassPtr _Ptr, Concurrency::cancellation_token_source _Cts, _ReturnType* _pRet, const _TaskCreationCallstack & _callstack)
        {
            return _TaskGenerator::_GenerateTask<_Function, _ClassPtr, _ProgressType>(_Func, _Ptr, _Cts, _pRet, _callstack);
        }
#else
        template<typename _Function, typename _ClassPtr>
        static task<void> _Generate_Task(const _Function& _Func, _ClassPtr _Ptr, Concurrency::cancellation_token_source _Cts)
        {
            return _TaskGenerator::_GenerateTaskNoRet<_Function, _ClassPtr, _ProgressType>(_Func, _Ptr, _Cts);
        }
        template<typename _Function, typename _ClassPtr>
        static task<task<void>> _Generate_Task(const _Function& _Func, _ClassPtr _Ptr, Concurrency::cancellation_token_source _Cts, _ReturnType* _pRet)
        {
            return _TaskGenerator::_GenerateTask<_Function, _ClassPtr, _ProgressType>(_Func, _Ptr, _Cts, _pRet);
        }
#endif
    };

    template<typename _Function>
    struct _AsyncLambdaTypeTraits
    {
        typedef typename _Unhat<typename _CAFunctorOptions<_Function>::_ReturnType>::_Value _ReturnType;
        typedef typename _FunctorTypeTraits<_Function>::_Argument1Type _Argument1Type;
        typedef typename _CAFunctorOptions<_Function>::_ProgressType _ProgressType;

        static const bool _TakesProgress = _CAFunctorOptions<_Function>::_TakesProgress;
        static const bool _TakesToken = _CAFunctorOptions<_Function>::_TakesToken;

        typedef typename _TaskTypeTraits<_ReturnType> _TaskTraits;
        typedef typename _AsyncAttributes<_Function, _ProgressType, typename _TaskTraits::_TaskRetType, _TaskTraits, _TakesToken, _TakesProgress> _AsyncAttributes;
    };
    // ***************************************************************************
    // AsyncInfo (and completion) Layer:
    //
#ifndef RUNTIMECLASS_Concurrency_winrt_details__AsyncInfoBase_DEFINED
#define RUNTIMECLASS_Concurrency_winrt_details__AsyncInfoBase_DEFINED
    extern const __declspec(selectany) WCHAR RuntimeClass_Concurrency_winrt_details__AsyncInfoBase[] = L"Concurrency_winrt.details._AsyncInfoBase";
#endif

    //
    // Internal base class implementation for async operations (based on internal Windows representation for ABI level async operations)
    //
    template < typename _Attributes, _AsyncResultType resultType = SingleResult >
    class _AsyncInfoBase abstract : public Microsoft::WRL::RuntimeClass<
        Microsoft::WRL::RuntimeClassFlags< Microsoft::WRL::RuntimeClassType::WinRt>, Microsoft::WRL::Implements<typename _Attributes::_AsyncBaseType, ABI::Windows::Foundation::IAsyncInfo>>
    {
        InspectableClass(RuntimeClass_Concurrency_winrt_details__AsyncInfoBase, BaseTrust)
    public:
        _AsyncInfoBase() :
            _M_currentStatus(_AsyncStatusInternal::_AsyncCreated),
            _M_errorCode(S_OK),
            _M_completeDelegate(nullptr),
            _M_CompleteDelegateAssigned(0),
            _M_CallbackMade(0)
        {
#if _MSC_VER < 1800
            _M_id = Concurrency::details::_GetNextAsyncId();
#else
            _M_id = Concurrency::details::platform::GetNextAsyncId();
#endif
        }
    public:
        virtual STDMETHODIMP GetResults(typename _Attributes::_ReturnType_abi* results)
        {
            (void)results;
            return E_UNEXPECTED;
        }

        virtual STDMETHODIMP get_Id(unsigned int* id)
        {
            HRESULT hr = _CheckValidStateForAsyncInfoCall();
            if (FAILED(hr)) return hr;
            if (!id) return E_POINTER;
            *id = _M_id;
            return S_OK;
        }

        virtual STDMETHODIMP put_Id(unsigned int id)
        {
            HRESULT hr = _CheckValidStateForAsyncInfoCall();
            if (FAILED(hr)) return hr;

            if (id == 0)
            {
                return E_INVALIDARG;
            }
            else if (_M_currentStatus != _AsyncStatusInternal::_AsyncCreated)
            {
                return E_ILLEGAL_METHOD_CALL;
            }

            _M_id = id;
            return S_OK;
        }
        virtual STDMETHODIMP get_Status(ABI::Windows::Foundation::AsyncStatus* status)
        {
            HRESULT hr = _CheckValidStateForAsyncInfoCall();
            if (FAILED(hr)) return hr;
            if (!status) return E_POINTER;

            _AsyncStatusInternal _Current = _M_currentStatus;
            //
            // Map our internal cancel pending to cancelled. This way "pending cancelled" looks to the outside as "cancelled" but
            // can still transition to "completed" if the operation completes without acknowledging the cancellation request
            //
            switch (_Current)
            {
            case _AsyncCancelPending:
                _Current = _AsyncCanceled;
                break;
            case _AsyncCreated:
                _Current = _AsyncStarted;
                break;
            default:
                break;
            }

            *status = static_cast<ABI::Windows::Foundation::AsyncStatus>(_Current);
            return S_OK;
        }

        virtual STDMETHODIMP get_ErrorCode(HRESULT* errorCode)
        {
            HRESULT hr = _CheckValidStateForAsyncInfoCall();
            if (FAILED(hr)) return hr;
            if (!hr) return hr;
            *errorCode = _M_errorCode;
            return S_OK;
        }

        virtual STDMETHODIMP get_Progress(typename _Attributes::_ProgressDelegateType** _ProgressHandler)
        {
            return _GetOnProgress(_ProgressHandler);
        }

        virtual STDMETHODIMP put_Progress(typename _Attributes::_ProgressDelegateType* _ProgressHandler)
        {
            return _PutOnProgress(_ProgressHandler);
        }

        virtual STDMETHODIMP Cancel()
        {
            if (_TransitionToState(_AsyncCancelPending))
            {
                _OnCancel();
            }
            return S_OK;
        }

        virtual STDMETHODIMP Close()
        {
            if (_TransitionToState(_AsyncClosed))
            {
                _OnClose();
            }
            else
            {
                if (_M_currentStatus != _AsyncClosed) // Closed => Closed transition is just ignored
                {
                    return E_ILLEGAL_STATE_CHANGE;
                }
            }
            return S_OK;
        }

        virtual STDMETHODIMP get_Completed(typename _Attributes::_CompletionDelegateType** _CompleteHandler)
        {
            _CheckValidStateForDelegateCall();
            if (!_CompleteHandler) return E_POINTER;
            *_CompleteHandler = _M_completeDelegate.Get();
            return S_OK;
        }

        virtual STDMETHODIMP put_Completed(typename _Attributes::_CompletionDelegateType* _CompleteHandler)
        {
            _CheckValidStateForDelegateCall();
            // this delegate property is "write once"
            if (InterlockedIncrement(&_M_CompleteDelegateAssigned) == 1)
            {
                _M_completeDelegateContext = _ContextCallback::_CaptureCurrent();
                _M_completeDelegate = _CompleteHandler;
                // Guarantee that the write of _M_completeDelegate is ordered with respect to the read of state below
                // as perceived from _FireCompletion on another thread.
                MemoryBarrier();
                if (_IsTerminalState())
                {
                    _FireCompletion();
                }
            }
            else
            {
                return E_ILLEGAL_DELEGATE_ASSIGNMENT;
            }
            return S_OK;
        }

    protected:
        // _Start - this is not externally visible since async operations "hot start" before returning to the caller
        STDMETHODIMP _Start()
        {
            if (_TransitionToState(_AsyncStarted))
            {
                _OnStart();
            }
            else
            {
                return E_ILLEGAL_STATE_CHANGE;
            }
            return S_OK;
        }

        HRESULT _FireCompletion()
        {
            HRESULT hr = S_OK;
            _TryTransitionToCompleted();

            // we guarantee that completion can only ever be fired once
            if (_M_completeDelegate != nullptr && InterlockedIncrement(&_M_CallbackMade) == 1)
            {
                hr = _M_completeDelegateContext._CallInContext([=]() -> HRESULT {
                    ABI::Windows::Foundation::AsyncStatus status;
                    HRESULT hr;
                    if (SUCCEEDED(hr = this->get_Status(&status)))
                        _M_completeDelegate->Invoke((_Attributes::_AsyncBaseType*)this, status);
                    _M_completeDelegate = nullptr;
                    return hr;
                });
            }
            return hr;
        }

        virtual STDMETHODIMP _GetOnProgress(typename _Attributes::_ProgressDelegateType** _ProgressHandler)
        {
            (void)_ProgressHandler;
            return E_UNEXPECTED;
        }

        virtual STDMETHODIMP _PutOnProgress(typename _Attributes::_ProgressDelegateType* _ProgressHandler)
        {
            (void)_ProgressHandler;
            return E_UNEXPECTED;
        }


        bool _TryTransitionToCompleted()
        {
            return _TransitionToState(_AsyncStatusInternal::_AsyncCompleted);
        }

        bool _TryTransitionToCancelled()
        {
            return _TransitionToState(_AsyncStatusInternal::_AsyncCanceled);
        }

        bool _TryTransitionToError(const HRESULT error)
        {
            _InterlockedCompareExchange(reinterpret_cast<volatile LONG*>(&_M_errorCode), error, S_OK);
            return _TransitionToState(_AsyncStatusInternal::_AsyncError);
        }

        // This method checks to see if the delegate properties can be
        // modified in the current state and generates the appropriate
        // error hr in the case of violation.
        inline HRESULT _CheckValidStateForDelegateCall()
        {
            if (_M_currentStatus == _AsyncClosed)
            {
                return E_ILLEGAL_METHOD_CALL;
            }
            return S_OK;
        }

        // This method checks to see if results can be collected in the
        // current state and generates the appropriate error hr in
        // the case of a violation.
        inline HRESULT _CheckValidStateForResultsCall()
        {
            _AsyncStatusInternal _Current = _M_currentStatus;

            if (_Current == _AsyncError)
            {
                return _M_errorCode;
            }
#pragma warning(push)
#pragma warning(disable: 4127) // Conditional expression is constant
            // single result illegal before transition to Completed or Cancelled state
            if (resultType == SingleResult)
#pragma warning(pop)
            {
                if (_Current != _AsyncCompleted)
                {
                    return E_ILLEGAL_METHOD_CALL;
                }
            }
            // multiple results can be called after Start has been called and before/after Completed
            else if (_Current != _AsyncStarted &&
                _Current != _AsyncCancelPending &&
                _Current != _AsyncCanceled &&
                _Current != _AsyncCompleted)
            {
                return E_ILLEGAL_METHOD_CALL;
            }
            return S_OK;
        }

        // This method can be called by derived classes periodically to determine
        // whether the asynchronous operation should continue processing or should
        // be halted.
        inline bool _ContinueAsyncOperation()
        {
            return _M_currentStatus == _AsyncStarted;
        }

        // These two methods are used to allow the async worker implementation do work on
        // state transitions. No real "work" should be done in these methods. In other words
        // they should not block for a long time on UI timescales.
        virtual void _OnStart() = 0;
        virtual void _OnClose() = 0;
        virtual void _OnCancel() = 0;

    private:

        // This method is used to check if calls to the AsyncInfo properties
        // (id, status, errorcode) are legal in the current state. It also
        // generates the appropriate error hr to return in the case of an
        // illegal call.
        inline HRESULT _CheckValidStateForAsyncInfoCall()
        {
            _AsyncStatusInternal _Current = _M_currentStatus;
            if (_Current == _AsyncClosed)
            {
                return E_ILLEGAL_METHOD_CALL;
            }
            else if (_Current == _AsyncCreated)
            {
                return E_ASYNC_OPERATION_NOT_STARTED;
            }
            return S_OK;
        }

        inline bool _TransitionToState(const _AsyncStatusInternal _NewState)
        {
            _AsyncStatusInternal _Current = _M_currentStatus;

            // This enforces the valid state transitions of the asynchronous worker object
            // state machine.
            switch (_NewState)
            {
            case _AsyncStatusInternal::_AsyncStarted:
                if (_Current != _AsyncCreated)
                {
                    return false;
                }
                break;
            case _AsyncStatusInternal::_AsyncCompleted:
                if (_Current != _AsyncStarted && _Current != _AsyncCancelPending)
                {
                    return false;
                }
                break;
            case _AsyncStatusInternal::_AsyncCancelPending:
                if (_Current != _AsyncStarted)
                {
                    return false;
                }
                break;
            case _AsyncStatusInternal::_AsyncCanceled:
                if (_Current != _AsyncStarted && _Current != _AsyncCancelPending)
                {
                    return false;
                }
                break;
            case _AsyncStatusInternal::_AsyncError:
                if (_Current != _AsyncStarted && _Current != _AsyncCancelPending)
                {
                    return false;
                }
                break;
            case _AsyncStatusInternal::_AsyncClosed:
                if (!_IsTerminalState(_Current))
                {
                    return false;
                }
                break;
            default:
                return false;
                break;
            }

            // attempt the transition to the new state
            // Note: if currentStatus_ == _Current, then there was no intervening write
            // by the async work object and the swap succeeded.
            _AsyncStatusInternal _RetState = static_cast<_AsyncStatusInternal>(
                _InterlockedCompareExchange(reinterpret_cast<volatile LONG*>(&_M_currentStatus),
                _NewState,
                static_cast<LONG>(_Current)));

            // ICE returns the former state, if the returned state and the
            // state we captured at the beginning of this method are the same,
            // the swap succeeded.
            return (_RetState == _Current);
        }

        inline bool _IsTerminalState()
        {
            return _IsTerminalState(_M_currentStatus);
        }

        inline bool _IsTerminalState(_AsyncStatusInternal status)
        {
            return (status == _AsyncError ||
                status == _AsyncCanceled ||
                status == _AsyncCompleted ||
                status == _AsyncClosed);
        }

    private:

        _ContextCallback        _M_completeDelegateContext;
        Microsoft::WRL::ComPtr<typename _Attributes::_CompletionDelegateType>  _M_completeDelegate; //ComPtr cannot be volatile as it does not have volatile accessors
        _AsyncStatusInternal volatile                   _M_currentStatus;
        HRESULT volatile                                _M_errorCode;
        unsigned int                                    _M_id;
        long volatile                                   _M_CompleteDelegateAssigned;
        long volatile                                   _M_CallbackMade;
    };

    // ***************************************************************************
    // Progress Layer (optional):
    //

    template< typename _Attributes, bool _HasProgress, _AsyncResultType _ResultType = SingleResult >
    class _AsyncProgressBase abstract : public _AsyncInfoBase<_Attributes, _ResultType>
    {
    };

    template< typename _Attributes, _AsyncResultType _ResultType>
    class _AsyncProgressBase<_Attributes, true, _ResultType> abstract : public _AsyncInfoBase<_Attributes, _ResultType>
    {
    public:

        _AsyncProgressBase() : _AsyncInfoBase<_Attributes, _ResultType>(),
            _M_progressDelegate(nullptr)
        {
        }

        virtual STDMETHODIMP _GetOnProgress(typename _Attributes::_ProgressDelegateType** _ProgressHandler) override
        {
            HRESULT hr = _CheckValidStateForDelegateCall();
            if (FAILED(hr)) return hr;
            *_ProgressHandler = _M_progressDelegate;
            return S_OK;
        }

        virtual STDMETHODIMP _PutOnProgress(typename _Attributes::_ProgressDelegateType* _ProgressHandler) override
        {
            HRESULT hr = _CheckValidStateForDelegateCall();
            if (FAILED(hr)) return hr;
            _M_progressDelegate = _ProgressHandler;
            _M_progressDelegateContext = _ContextCallback::_CaptureCurrent();
            return S_OK;
        }

    public:

        void _FireProgress(const typename _Attributes::_ProgressType_abi& _ProgressValue)
        {
            if (_M_progressDelegate != nullptr)
            {
                _M_progressDelegateContext._CallInContext([=]() -> HRESULT {
                    _M_progressDelegate->Invoke((_Attributes::_AsyncBaseType*)this, _ProgressValue);
                    return S_OK;
                });
            }
        }

    private:

        _ContextCallback _M_progressDelegateContext;
        typename _Attributes::_ProgressDelegateType* _M_progressDelegate;
    };

    template<typename _Attributes, _AsyncResultType _ResultType = SingleResult>
    class _AsyncBaseProgressLayer abstract : public _AsyncProgressBase<_Attributes, _Attributes::_TakesProgress, _ResultType>
    {
    };

    // ***************************************************************************
    // Task Adaptation Layer:
    //

    //
    // _AsyncTaskThunkBase provides a bridge between IAsync<Action/Operation> and task.
    //
    template<typename _Attributes, typename _ReturnType>
    class _AsyncTaskThunkBase abstract : public _AsyncBaseProgressLayer<_Attributes>
    {
    public:

        //AsyncAction*
        virtual STDMETHODIMP GetResults()
        {
            HRESULT hr = _CheckValidStateForResultsCall();
            if (FAILED(hr)) return hr;
            _M_task.get();
            return S_OK;
        }
    public:
        typedef task<_ReturnType> _TaskType;

        _AsyncTaskThunkBase(const _TaskType& _Task)
            : _M_task(_Task)
        {
        }

        _AsyncTaskThunkBase()
        {
        }
#if _MSC_VER < 1800
        void _SetTaskCreationAddressHint(void* _SourceAddressHint)
        {
            if (!(std::is_same<_Attributes::_AsyncKind, _TypeSelectorAsyncTask>::value))
            {
                // Overwrite the creation address with the return address of create_async unless the
                // lambda returned a task. If the create async lambda returns a task, that task is reused and
                // we want to preserve its creation address hint.
                _M_task._SetTaskCreationAddressHint(_SourceAddressHint);
            }
        }
#endif
    protected:
        virtual void _OnStart() override
        {
            _M_task.then([=](_TaskType _Antecedent) -> HRESULT {
                try
                {
                    _Antecedent.get();
                }
                catch (Concurrency::task_canceled&)
                {
                    _TryTransitionToCancelled();
                }
                catch (IRestrictedErrorInfo*& _Ex)
                {
                    HRESULT hr;
                    HRESULT _hr;
                    hr = _Ex->GetErrorDetails(NULL, &_hr, NULL, NULL);
                    if (SUCCEEDED(hr)) hr = _hr;
                    _TryTransitionToError(hr);
                }
                catch (...)
                {
                    _TryTransitionToError(E_FAIL);
                }
                return _FireCompletion();
            });
        }

    protected:
        _TaskType _M_task;
        Concurrency::cancellation_token_source _M_cts;
    };

    template<typename _Attributes, typename _ReturnType, typename _Return>
    class _AsyncTaskReturn abstract : public _AsyncTaskThunkBase<_Attributes, _Return>
    {
    public:
        //AsyncOperation*
        virtual STDMETHODIMP GetResults(_ReturnType* results)
        {
            HRESULT hr = _CheckValidStateForResultsCall();
            if (FAILED(hr)) return hr;
            _M_task.get();
            *results = _M_results;
            return S_OK;
        }
        template <typename _Function>
#if _MSC_VER >= 1800
        void DoCreateTask(_Function _func, const _TaskCreationCallstack & _callstack)
        {
            _M_task = _Attributes::_Generate_Task(_func, this, _M_cts, &_M_results, _callstack);
        }
#else
        void DoCreateTask(_Function _func)
        {
            _M_task = _Attributes::_Generate_Task(_func, this, _M_cts, &_M_results);
        }
#endif
    protected:
        _ReturnType _M_results;
    };

    template<typename _Attributes, typename _ReturnType>
    class _AsyncTaskReturn<_Attributes, _ReturnType, void> abstract : public _AsyncTaskThunkBase<_Attributes, void>
    {
    public:
        template <typename _Function>
#if _MSC_VER >= 1800
        void DoCreateTask(_Function _func, const _TaskCreationCallstack & _callstack)
        {
            _M_task = _Attributes::_Generate_Task(_func, this, _M_cts, _callstack);
        }
#else
        void DoCreateTask(_Function _func)
        {
            _M_task = _Attributes::_Generate_Task(_func, this, _M_cts);
        }
#endif
    };

    template<typename _Attributes>
    class _AsyncTaskReturn<_Attributes, void, task<void>> abstract : public _AsyncTaskThunkBase<_Attributes, task<void>>
    {
    public:
        template <typename _Function>
#if _MSC_VER >= 1800
        void DoCreateTask(_Function _func, const _TaskCreationCallstack & _callstack)
        {
            _M_task = _Attributes::_Generate_Task(_func, this, _M_cts, &_M_results, _callstack);
        }
#else
        void DoCreateTask(_Function _func)
        {
            _M_task = _Attributes::_Generate_Task(_func, this, _M_cts, &_M_results);
        }
#endif
    protected:
        task<void> _M_results;
    };

    template<typename _Attributes>
    class _AsyncTaskThunk : public _AsyncTaskReturn<_Attributes, typename _Attributes::_ReturnType_abi, typename _Attributes::_ReturnType>
    {
    public:

        _AsyncTaskThunk(const _TaskType& _Task) :
            _AsyncTaskThunkBase(_Task)
        {
        }

        _AsyncTaskThunk()
        {
        }

    protected:

        virtual void _OnClose() override
        {
        }

        virtual void _OnCancel() override
        {
            _M_cts.cancel();
        }
    };

    // ***************************************************************************
    // Async Creation Layer:
    //
    template<typename _Function>
    class _AsyncTaskGeneratorThunk : public _AsyncTaskThunk<typename _AsyncLambdaTypeTraits<_Function>::_AsyncAttributes>
    {
    public:

        typedef typename _AsyncLambdaTypeTraits<_Function>::_AsyncAttributes _Attributes;
        typedef typename _AsyncTaskThunk<_Attributes> _Base;
        typedef typename _Attributes::_AsyncBaseType _AsyncBaseType;

#if _MSC_VER >= 1800
        _AsyncTaskGeneratorThunk(const _Function& _Func, const _TaskCreationCallstack &_callstack) : _M_func(_Func), _M_creationCallstack(_callstack)
#else
        _AsyncTaskGeneratorThunk(const _Function& _Func) : _M_func(_Func)
#endif
        {
            // Virtual call here is safe as the class is declared 'sealed'
            _Start();
        }

    protected:

        //
        // The only thing we must do different from the base class is we must spin the hot task on transition from Created->Started. Otherwise,
        // let the base thunk handle everything.
        //

        virtual void _OnStart() override
        {
            //
            // Call the appropriate task generator to actually produce a task of the expected type. This might adapt the user lambda for progress reports,
            // wrap the return result in a task, or allow for direct return of a task depending on the form of the lambda.
            //
#if _MSC_VER >= 1800
            DoCreateTask<_Function>(_M_func, _M_creationCallstack);
#else
            DoCreateTask<_Function>(_M_func);
#endif
            _Base::_OnStart();
        }

        virtual void _OnCancel() override
        {
            _Base::_OnCancel();
        }

    private:
#if _MSC_VER >= 1800
        _TaskCreationCallstack _M_creationCallstack;
#endif
        _Function _M_func;
    };
} // namespace details

/// <summary>
///     Creates a Windows Runtime asynchronous construct based on a user supplied lambda or function object. The return type of <c>create_async</c> is
///     one of either <c>IAsyncAction^</c>, <c>IAsyncActionWithProgress&lt;TProgress&gt;^</c>, <c>IAsyncOperation&lt;TResult&gt;^</c>, or
///     <c>IAsyncOperationWithProgress&lt;TResult, TProgress&gt;^</c> based on the signature of the lambda passed to the method.
/// </summary>
/// <param name="_Func">
///     The lambda or function object from which to create a Windows Runtime asynchronous construct.
/// </param>
/// <returns>
///     An asynchronous construct represented by an IAsyncAction^, IAsyncActionWithProgress&lt;TProgress&gt;^, IAsyncOperation&lt;TResult&gt;^, or an
///     IAsyncOperationWithProgress&lt;TResult, TProgress&gt;^. The interface returned depends on the signature of the lambda passed into the function.
/// </returns>
/// <remarks>
///     The return type of the lambda determines whether the construct is an action or an operation.
///     <para>Lambdas that return void cause the creation of actions. Lambdas that return a result of type <c>TResult</c> cause the creation of
///     operations of TResult.</para>
///     <para>The lambda may also return a <c>task&lt;TResult&gt;</c> which encapsulates the aysnchronous work within itself or is the continuation of
///     a chain of tasks that represent the asynchronous work. In this case, the lambda itself is executed inline, since the tasks are the ones that
///     execute asynchronously, and the return type of the lambda is unwrapped to produce the asynchronous construct returned by <c>create_async</c>.
///     This implies that a lambda that returns a task&lt;void&gt; will cause the creation of actions, and a lambda that returns a task&lt;TResult&gt; will
///     cause the creation of operations of TResult.</para>
///     <para>The lambda may take either zero, one or two arguments. The valid arguments are <c>progress_reporter&lt;TProgress&gt;</c> and
///     <c>cancellation_token</c>, in that order if both are used. A lambda without arguments causes the creation of an asynchronous construct without
///     the capability for progress reporting. A lambda that takes a progress_reporter&lt;TProgress&gt; will cause <c>create_async</c> to return an asynchronous
///     construct which reports progress of type TProgress each time the <c>report</c> method of the progress_reporter object is called. A lambda that
///     takes a cancellation_token may use that token to check for cancellation, or pass it to tasks that it creates so that cancellation of the
///     asynchronous construct causes cancellation of those tasks.</para>
///     <para>If the body of the lambda or function object returns a result (and not a task&lt;TResult&gt;), the lamdba will be executed
///     asynchronously within the process MTA in the context of a task the Runtime implicitly creates for it. The <c>IAsyncInfo::Cancel</c> method will
///     cause cancellation of the implicit task.</para>
///     <para>If the body of the lambda returns a task, the lamba executes inline, and by declaring the lambda to take an argument of type
///     <c>cancellation_token</c> you can trigger cancellation of any tasks you create within the lambda by passing that token in when you create them.
///     You may also use the <c>register_callback</c> method on the token to cause the Runtime to invoke a callback when you call <c>IAsyncInfo::Cancel</c> on
///     the async operation or action produced..</para>
///     <para>This function is only available to Windows Store apps.</para>
/// </remarks>
/// <seealso cref="task Class"/>
/// <seealso cref="progress_reporter Class"/>
/// <seealso cref="cancelation_token Class"/>
/**/
template<typename _ReturnType, typename _Function>
__declspec(noinline) // Ask for no inlining so that the _ReturnAddress intrinsic gives us the expected result
details::_AsyncTaskGeneratorThunk<_Function>* create_async(const _Function& _Func)
{
    static_assert(std::is_same<decltype(details::_IsValidCreateAsync<_ReturnType>(_Func, 0, 0, 0, 0, 0, 0, 0, 0)), std::true_type>::value,
        "argument to create_async must be a callable object taking zero, one, two or three arguments");
#if _MSC_VER >= 1800
    Microsoft::WRL::ComPtr<details::_AsyncTaskGeneratorThunk<_Function>> _AsyncInfo = Microsoft::WRL::Make<details::_AsyncTaskGeneratorThunk<_Function>>(_Func, _CAPTURE_CALLSTACK());
#else
    Microsoft::WRL::ComPtr<details::_AsyncTaskGeneratorThunk<_Function>> _AsyncInfo = Microsoft::WRL::Make<details::_AsyncTaskGeneratorThunk<_Function>>(_Func);
    _AsyncInfo->_SetTaskCreationAddressHint(_ReturnAddress());
#endif
    return _AsyncInfo.Detach();
}

namespace details
{
#if _MSC_VER < 1800
    // Internal API which retrieves the next async id.
    _CRTIMP2 unsigned int __cdecl _GetNextAsyncId();
#endif
    // Helper struct for when_all operators to know when tasks have completed
    template<typename _Type>
    struct _RunAllParam
    {
        _RunAllParam() : _M_completeCount(0), _M_numTasks(0)
        {
        }

        void _Resize(size_t _Len, bool _SkipVector = false)
        {
            _M_numTasks = _Len;
            if (!_SkipVector)
#if _MSC_VER >= 1800
            {
                _M_vector._Result.resize(_Len);
            }
#else
                _M_vector.resize(_Len);
            _M_contexts.resize(_Len);
#endif
        }

        task_completion_event<_Unit_type>       _M_completed;
        atomic_size_t                           _M_completeCount;
#if _MSC_VER >= 1800
        _ResultHolder<std::vector<_Type> >      _M_vector;
        _ResultHolder<_Type>                    _M_mergeVal;
#else
        std::vector<_Type>                      _M_vector;
        std::vector<_ContextCallback>           _M_contexts;
        _Type                                   _M_mergeVal;
#endif
        size_t                                  _M_numTasks;
    };

#if _MSC_VER >= 1800
    template<typename _Type>
    struct _RunAllParam<std::vector<_Type> >
    {
        _RunAllParam() : _M_completeCount(0), _M_numTasks(0)
        {
        }

        void _Resize(size_t _Len, bool _SkipVector = false)
        {
            _M_numTasks = _Len;

            if (!_SkipVector)
            {
                _M_vector.resize(_Len);
            }
        }

        task_completion_event<_Unit_type>       _M_completed;
        std::vector<_ResultHolder<std::vector<_Type> > >  _M_vector;
        atomic_size_t     _M_completeCount;
        size_t                                  _M_numTasks;
    };
#endif

    // Helper struct specialization for void
    template<>
#if _MSC_VER >= 1800
    struct _RunAllParam<_Unit_type>
#else
    struct _RunAllParam<void>
#endif
    {
        _RunAllParam() : _M_completeCount(0), _M_numTasks(0)
        {
        }

        void _Resize(size_t _Len)
        {
            _M_numTasks = _Len;
        }

        task_completion_event<_Unit_type> _M_completed;
        atomic_size_t _M_completeCount;
        size_t _M_numTasks;
    };

    inline void _JoinAllTokens_Add(const Concurrency::cancellation_token_source& _MergedSrc, Concurrency::details::_CancellationTokenState *_PJoinedTokenState)
    {
        if (_PJoinedTokenState != nullptr && _PJoinedTokenState != Concurrency::details::_CancellationTokenState::_None())
        {
            Concurrency::cancellation_token _T = Concurrency::cancellation_token::_FromImpl(_PJoinedTokenState);
            _T.register_callback([=](){
                _MergedSrc.cancel();
            });
        }
    }

    template<typename _ElementType, typename _Function, typename _TaskType>
    void _WhenAllContinuationWrapper(_RunAllParam<_ElementType>* _PParam, _Function _Func, task<_TaskType>& _Task)
    {
        if (_Task._GetImpl()->_IsCompleted())
        {
            _Func();
#if _MSC_VER >= 1800
            if (Concurrency::details::atomic_increment(_PParam->_M_completeCount) == _PParam->_M_numTasks)
#else
            if (_InterlockedIncrementSizeT(&_PParam->_M_completeCount) == _PParam->_M_numTasks)
#endif
            {
                // Inline execute its direct continuation, the _ReturnTask
                _PParam->_M_completed.set(_Unit_type());
                // It's safe to delete it since all usage of _PParam in _ReturnTask has been finished.
                delete _PParam;
            }
        }
        else
        {
            _CONCRT_ASSERT(_Task._GetImpl()->_IsCanceled());
            if (_Task._GetImpl()->_HasUserException())
            {
                // _Cancel will return false if the TCE is already canceled with or without exception
                _PParam->_M_completed._Cancel(_Task._GetImpl()->_GetExceptionHolder());
            }
            else
            {
                _PParam->_M_completed._Cancel();
            }
#if _MSC_VER >= 1800
            if (Concurrency::details::atomic_increment(_PParam->_M_completeCount) == _PParam->_M_numTasks)
#else
            if (_InterlockedIncrementSizeT(&_PParam->_M_completeCount) == _PParam->_M_numTasks)
#endif
            {
                delete _PParam;
            }
        }
    }

    template<typename _ElementType, typename _Iterator>
    struct _WhenAllImpl
    {
#if _MSC_VER >= 1800
        static task<std::vector<_ElementType>> _Perform(const task_options& _TaskOptions, _Iterator _Begin, _Iterator _End)
#else
        static task<std::vector<_ElementType>> _Perform(Concurrency::details::_CancellationTokenState *_PTokenState, _Iterator _Begin, _Iterator _End)
#endif
        {
#if _MSC_VER >= 1800
            Concurrency::details::_CancellationTokenState *_PTokenState = _TaskOptions.has_cancellation_token() ? _TaskOptions.get_cancellation_token()._GetImplValue() : nullptr;
#endif
            auto _PParam = new _RunAllParam<_ElementType>();
            Concurrency::cancellation_token_source _MergedSource;

            // Step1: Create task completion event.
#if _MSC_VER >= 1800
            task_options _Options(_TaskOptions);
            _Options.set_cancellation_token(_MergedSource.get_token());
            task<_Unit_type> _All_tasks_completed(_PParam->_M_completed, _Options);
#else
            task<_Unit_type> _All_tasks_completed(_PParam->_M_completed, _MergedSource.get_token());
#endif
            // The return task must be created before step 3 to enforce inline execution.
            auto _ReturnTask = _All_tasks_completed._Then([=](_Unit_type, std::vector<_ElementType>* retVal) -> HRESULT {
#if _MSC_VER >= 1800
                * retVal = _PParam->_M_vector.Get();
#else
                auto _Result = _PParam->_M_vector; // copy by value

                size_t _Index = 0;
                for (auto _It = _Result.begin(); _It != _Result.end(); ++_It)
                {
                    *_It = _ResultContext<_ElementType>::_GetValue(*_It, _PParam->_M_contexts[_Index++], false);
                }
                *retVal = _Result;
#endif
                return S_OK;
#if _MSC_VER >= 1800
            }, nullptr);
#else
            }, nullptr, true);
#endif
            // Step2: Combine and check tokens, and count elements in range.
            if (_PTokenState)
            {
                details::_JoinAllTokens_Add(_MergedSource, _PTokenState);
                _PParam->_Resize(static_cast<size_t>(std::distance(_Begin, _End)));
            }
            else
            {
                size_t _TaskNum = 0;
                for (auto _PTask = _Begin; _PTask != _End; ++_PTask)
                {
                    _TaskNum++;
                    details::_JoinAllTokens_Add(_MergedSource, _PTask->_GetImpl()->_M_pTokenState);
                }
                _PParam->_Resize(_TaskNum);
            }

            // Step3: Check states of previous tasks.
            if (_Begin == _End)
            {
                _PParam->_M_completed.set(_Unit_type());
                delete _PParam;
            }
            else
            {
                size_t _Index = 0;
                for (auto _PTask = _Begin; _PTask != _End; ++_PTask)
                {
                    if (_PTask->is_apartment_aware())
                    {
                        _ReturnTask._SetAsync();
                    }

                    _PTask->_Then([_PParam, _Index](task<_ElementType> _ResultTask) -> HRESULT {

#if _MSC_VER >= 1800
                        //  Dev10 compiler bug
                        typedef _ElementType _ElementTypeDev10;
                        auto _PParamCopy = _PParam;
                        auto _IndexCopy = _Index;
                        auto _Func = [_PParamCopy, _IndexCopy, &_ResultTask](){
                            _PParamCopy->_M_vector._Result[_IndexCopy] = _ResultTask._GetImpl()->_GetResult();
                        };
#else
                        auto _Func = [_PParam, _Index, &_ResultTask](){
                            _PParam->_M_vector[_Index] = _ResultTask._GetImpl()->_GetResult();
                            _PParam->_M_contexts[_Index] = _ResultContext<_ElementType>::_GetContext(false);
                        };
#endif
                        _WhenAllContinuationWrapper(_PParam, _Func, _ResultTask);
                        return S_OK;
#if _MSC_VER >= 1800
                    }, Concurrency::details::_CancellationTokenState::_None());
#else
                    }, Concurrency::details::_CancellationTokenState::_None(), false);
#endif

                    _Index++;
                }
            }

            return _ReturnTask;
        }
    };

    template<typename _ElementType, typename _Iterator>
    struct _WhenAllImpl<std::vector<_ElementType>, _Iterator>
    {
#if _MSC_VER >= 1800
        static task<std::vector<_ElementType>> _Perform(const task_options& _TaskOptions, _Iterator _Begin, _Iterator _End)
#else
        static task<std::vector<_ElementType>> _Perform(Concurrency::details::_CancellationTokenState *_PTokenState, _Iterator _Begin, _Iterator _End)
#endif
        {
#if _MSC_VER >= 1800
            Concurrency::details::_CancellationTokenState *_PTokenState = _TaskOptions.has_cancellation_token() ? _TaskOptions.get_cancellation_token()._GetImplValue() : nullptr;
#endif
            auto _PParam = new _RunAllParam<std::vector<_ElementType>>();
            Concurrency::cancellation_token_source _MergedSource;

            // Step1: Create task completion event.
#if _MSC_VER >= 1800
            task_options _Options(_TaskOptions);
            _Options.set_cancellation_token(_MergedSource.get_token());
            task<_Unit_type> _All_tasks_completed(_PParam->_M_completed, _Options);
#else
            task<_Unit_type> _All_tasks_completed(_PParam->_M_completed, _MergedSource.get_token());
#endif
            // The return task must be created before step 3 to enforce inline execution.
            auto _ReturnTask = _All_tasks_completed._Then([=](_Unit_type, std::vector<_ElementType>* retVal) -> HRESULT {
                _CONCRT_ASSERT(_PParam->_M_completeCount == _PParam->_M_numTasks);
                std::vector<_ElementType> _Result;
                for (size_t _I = 0; _I < _PParam->_M_numTasks; _I++)
                {
#if _MSC_VER >= 1800
                    const std::vector<_ElementType>& _Vec = _PParam->_M_vector[_I].Get();
#else
                    std::vector<_ElementType>& _Vec = _PParam->_M_vector[_I];

                    for (auto _It = _Vec.begin(); _It != _Vec.end(); ++_It)
                    {
                        *_It = _ResultContext<_ElementType>::_GetValue(*_It, _PParam->_M_contexts[_I], false);
                    }
#endif
                    _Result.insert(_Result.end(), _Vec.begin(), _Vec.end());
                }
                *retVal = _Result;
                return S_OK;
#if _MSC_VER >= 1800
            }, nullptr);
#else
            }, nullptr, true);
#endif

            // Step2: Combine and check tokens, and count elements in range.
            if (_PTokenState)
            {
                details::_JoinAllTokens_Add(_MergedSource, _PTokenState);
                _PParam->_Resize(static_cast<size_t>(std::distance(_Begin, _End)));
            }
            else
            {
                size_t _TaskNum = 0;
                for (auto _PTask = _Begin; _PTask != _End; ++_PTask)
                {
                    _TaskNum++;
                    details::_JoinAllTokens_Add(_MergedSource, _PTask->_GetImpl()->_M_pTokenState);
                }
                _PParam->_Resize(_TaskNum);
            }

            // Step3: Check states of previous tasks.
            if (_Begin == _End)
            {
                _PParam->_M_completed.set(_Unit_type());
                delete _PParam;
            }
            else
            {
                size_t _Index = 0;
                for (auto _PTask = _Begin; _PTask != _End; ++_PTask)
                {
                    if (_PTask->is_apartment_aware())
                    {
                        _ReturnTask._SetAsync();
                    }

                    _PTask->_Then([_PParam, _Index](task<std::vector<_ElementType>> _ResultTask) -> HRESULT {
#if _MSC_VER >= 1800
                        //  Dev10 compiler bug
                        typedef _ElementType _ElementTypeDev10;
                        auto _PParamCopy = _PParam;
                        auto _IndexCopy = _Index;
                        auto _Func = [_PParamCopy, _IndexCopy, &_ResultTask]() {
                            _PParamCopy->_M_vector[_IndexCopy].Set(_ResultTask._GetImpl()->_GetResult());
                        };
#else
                        auto _Func = [_PParam, _Index, &_ResultTask]() {
                            _PParam->_M_vector[_Index] = _ResultTask._GetImpl()->_GetResult();
                            _PParam->_M_contexts[_Index] = _ResultContext<_ElementType>::_GetContext(false);
                        };
#endif
                        _WhenAllContinuationWrapper(_PParam, _Func, _ResultTask);
                        return S_OK;
#if _MSC_VER >= 1800
                    }, Concurrency::details::_CancellationTokenState::_None());
#else
                    }, Concurrency::details::_CancellationTokenState::_None(), false);
#endif

                    _Index++;
                }
            }

            return  _ReturnTask;
        }
    };

    template<typename _Iterator>
    struct _WhenAllImpl<void, _Iterator>
    {
#if _MSC_VER >= 1800
        static task<void> _Perform(const task_options& _TaskOptions, _Iterator _Begin, _Iterator _End)
#else
        static task<void> _Perform(Concurrency::details::_CancellationTokenState *_PTokenState, _Iterator _Begin, _Iterator _End)
#endif
        {
#if _MSC_VER >= 1800
            Concurrency::details::_CancellationTokenState *_PTokenState = _TaskOptions.has_cancellation_token() ? _TaskOptions.get_cancellation_token()._GetImplValue() : nullptr;
#endif
            auto _PParam = new _RunAllParam<_Unit_type>();
            Concurrency::cancellation_token_source _MergedSource;

            // Step1: Create task completion event.
#if _MSC_VER >= 1800
            task_options _Options(_TaskOptions);
            _Options.set_cancellation_token(_MergedSource.get_token());
            task<_Unit_type> _All_tasks_completed(_PParam->_M_completed, _Options);
#else
            task<_Unit_type> _All_tasks_completed(_PParam->_M_completed, _MergedSource.get_token());
#endif
            // The return task must be created before step 3 to enforce inline execution.
            auto _ReturnTask = _All_tasks_completed._Then([=](_Unit_type) -> HRESULT { return S_OK;
#if _MSC_VER >= 1800
            }, nullptr);
#else
            }, nullptr, false);
#endif

            // Step2: Combine and check tokens, and count elements in range.
            if (_PTokenState)
            {
                details::_JoinAllTokens_Add(_MergedSource, _PTokenState);
                _PParam->_Resize(static_cast<size_t>(std::distance(_Begin, _End)));
            }
            else
            {
                size_t _TaskNum = 0;
                for (auto _PTask = _Begin; _PTask != _End; ++_PTask)
                {
                    _TaskNum++;
                    details::_JoinAllTokens_Add(_MergedSource, _PTask->_GetImpl()->_M_pTokenState);
                }
                _PParam->_Resize(_TaskNum);
            }

            // Step3: Check states of previous tasks.
            if (_Begin == _End)
            {
                _PParam->_M_completed.set(_Unit_type());
                delete _PParam;
            }
            else
            {
                for (auto _PTask = _Begin; _PTask != _End; ++_PTask)
                {
                    if (_PTask->is_apartment_aware())
                    {
                        _ReturnTask._SetAsync();
                    }

                    _PTask->_Then([_PParam](task<void> _ResultTask) -> HRESULT {

                        auto _Func = []() -> HRESULT { return S_OK;  };
                        _WhenAllContinuationWrapper(_PParam, _Func, _ResultTask);
                        return S_OK;
#if _MSC_VER >= 1800
                    }, Concurrency::details::_CancellationTokenState::_None());
#else
                    }, Concurrency::details::_CancellationTokenState::_None(), false);
#endif
                }
            }

            return _ReturnTask;
        }
    };

    template<typename _ReturnType>
    task<std::vector<_ReturnType>> _WhenAllVectorAndValue(const task<std::vector<_ReturnType>>& _VectorTask, const task<_ReturnType>& _ValueTask,
        bool _OutputVectorFirst)
    {
        auto _PParam = new _RunAllParam<_ReturnType>();
        Concurrency::cancellation_token_source _MergedSource;

        // Step1: Create task completion event.
        task<_Unit_type> _All_tasks_completed(_PParam->_M_completed, _MergedSource.get_token());
        // The return task must be created before step 3 to enforce inline execution.
        auto _ReturnTask = _All_tasks_completed._Then([=](_Unit_type, std::vector<_ReturnType>* retVal) -> HRESULT {
            _CONCRT_ASSERT(_PParam->_M_completeCount == 2);
#if _MSC_VER >= 1800
            auto _Result = _PParam->_M_vector.Get(); // copy by value
            auto _mergeVal = _PParam->_M_mergeVal.Get();
#else
            auto _Result = _PParam->_M_vector; // copy by value
            for (auto _It = _Result.begin(); _It != _Result.end(); ++_It)
            {
                *_It = _ResultContext<_ReturnType>::_GetValue(*_It, _PParam->_M_contexts[0], false);
            }
#endif

            if (_OutputVectorFirst == true)
            {
#if _MSC_VER >= 1800
                _Result.push_back(_mergeVal);
#else
                _Result.push_back(_ResultContext<_ReturnType>::_GetValue(_PParam->_M_mergeVal, _PParam->_M_contexts[1], false));
#endif
            }
            else
            {
#if _MSC_VER >= 1800
                _Result.insert(_Result.begin(), _mergeVal);
#else
                _Result.insert(_Result.begin(), _ResultContext<_ReturnType>::_GetValue(_PParam->_M_mergeVal, _PParam->_M_contexts[1], false));
#endif
            }
            *retVal = _Result;
            return S_OK;
        }, nullptr, true);

        // Step2: Combine and check tokens.
        _JoinAllTokens_Add(_MergedSource, _VectorTask._GetImpl()->_M_pTokenState);
        _JoinAllTokens_Add(_MergedSource, _ValueTask._GetImpl()->_M_pTokenState);

        // Step3: Check states of previous tasks.
        _PParam->_Resize(2, true);

        if (_VectorTask.is_apartment_aware() || _ValueTask.is_apartment_aware())
        {
            _ReturnTask._SetAsync();
        }
        _VectorTask._Then([_PParam](task<std::vector<_ReturnType>> _ResultTask) -> HRESULT {
#if _MSC_VER >= 1800
            //  Dev10 compiler bug
            typedef _ReturnType _ReturnTypeDev10;
            auto _PParamCopy = _PParam;
            auto _Func = [_PParamCopy, &_ResultTask]() {
                auto _ResultLocal = _ResultTask._GetImpl()->_GetResult();
                _PParamCopy->_M_vector.Set(_ResultLocal);
            };
#else
            auto _Func = [_PParam, &_ResultTask]() {
                _PParam->_M_vector = _ResultTask._GetImpl()->_GetResult();
                _PParam->_M_contexts[0] = _ResultContext<_ReturnType>::_GetContext(false);
            };
#endif

            _WhenAllContinuationWrapper(_PParam, _Func, _ResultTask);
            return S_OK;
#if _MSC_VER >= 1800
        }, _CancellationTokenState::_None());
#else
        }, _CancellationTokenState::_None(), false);
#endif
        _ValueTask._Then([_PParam](task<_ReturnType> _ResultTask) -> HRESULT {
#if _MSC_VER >= 1800
            //  Dev10 compiler bug
            typedef _ReturnType _ReturnTypeDev10;
            auto _PParamCopy = _PParam;
            auto _Func = [_PParamCopy, &_ResultTask]() {
                auto _ResultLocal = _ResultTask._GetImpl()->_GetResult();
                _PParamCopy->_M_mergeVal.Set(_ResultLocal);
            };
#else
            auto _Func = [_PParam, &_ResultTask]() {
                _PParam->_M_mergeVal = _ResultTask._GetImpl()->_GetResult();
                _PParam->_M_contexts[1] = _ResultContext<_ReturnType>::_GetContext(false);
            };
#endif
            _WhenAllContinuationWrapper(_PParam, _Func, _ResultTask);
            return S_OK;
#if _MSC_VER >= 1800
        }, _CancellationTokenState::_None());
#else
        }, _CancellationTokenState::_None(), false);
#endif

        return _ReturnTask;
    }
} // namespace details

#if _MSC_VER < 1800
/// <summary>
///     Creates a task that will complete successfully when all of the tasks supplied as arguments complete successfully.
/// </summary>
/// <typeparam name="_Iterator">
///     The type of the input iterator.
/// </typeparam>
/// <param name="_Begin">
///     The position of the first element in the range of elements to be combined into the resulting task.
/// </param>
/// <param name="_End">
///     The position of the first element beyond the range of elements to be combined into the resulting task.
/// </param>
/// <returns>
///     A task that completes sucessfully when all of the input tasks have completed successfully. If the input tasks are of type <c>T</c>,
///     the output of this function will be a <c>task&lt;std::vector&lt;T&gt;&gt;</c>. If the input tasks are of type <c>void</c> the output
///     task will also be a <c>task&lt;void&gt;</c>.
/// </returns>
/// <remarks>
///     If one of the tasks is canceled or throws an exception, the returned task will complete early, in the canceled state, and the exception,
///     if one is encoutered, will be thrown if you call <c>get()</c> or <c>wait()</c> on that task.
/// </remarks>
/// <seealso cref="Task Parallelism (Concurrency Runtime)"/>
/**/
template <typename _Iterator>
auto when_all(_Iterator _Begin, _Iterator _End)
-> decltype (details::_WhenAllImpl<typename std::iterator_traits<_Iterator>::value_type::result_type, _Iterator>::_Perform(nullptr, _Begin, _End))
{
    typedef typename std::iterator_traits<_Iterator>::value_type::result_type _ElementType;
    return details::_WhenAllImpl<_ElementType, _Iterator>::_Perform(nullptr, _Begin, _End);
}
#endif

/// <summary>
///     Creates a task that will complete successfully when all of the tasks supplied as arguments complete successfully.
/// </summary>
/// <typeparam name="_Iterator">
///     The type of the input iterator.
/// </typeparam>
/// <param name="_Begin">
///     The position of the first element in the range of elements to be combined into the resulting task.
/// </param>
/// <param name="_End">
///     The position of the first element beyond the range of elements to be combined into the resulting task.
/// </param>
/// <param name="_CancellationToken">
///     The cancellation token which controls cancellation of the returned task. If you do not provide a cancellation token, the resulting
///     task will be created with a token that is a combination of all the cancelable tokens (tokens created by methods other than
///     <c>cancellation_token::none()</c>of the tasks supplied.
/// </param>
/// <returns>
///     A task that completes sucessfully when all of the input tasks have completed successfully. If the input tasks are of type <c>T</c>,
///     the output of this function will be a <c>task&lt;std::vector&lt;T&gt;&gt;</c>. If the input tasks are of type <c>void</c> the output
///     task will also be a <c>task&lt;void&gt;</c>.
/// </returns>
/// <remarks>
///     If one of the tasks is canceled or throws an exception, the returned task will complete early, in the canceled state, and the exception,
///     if one is encoutered, will be thrown if you call <c>get()</c> or <c>wait()</c> on that task.
/// </remarks>
/// <seealso cref="Task Parallelism (Concurrency Runtime)"/>
/**/
template <typename _Iterator>
#if _MSC_VER >= 1800
auto when_all(_Iterator _Begin, _Iterator _End, const task_options& _TaskOptions = task_options())
-> decltype (details::_WhenAllImpl<typename std::iterator_traits<_Iterator>::value_type::result_type, _Iterator>::_Perform(_TaskOptions, _Begin, _End))
{
    typedef typename std::iterator_traits<_Iterator>::value_type::result_type _ElementType;
    return details::_WhenAllImpl<_ElementType, _Iterator>::_Perform(_TaskOptions, _Begin, _End);
}
#else
auto when_all(_Iterator _Begin, _Iterator _End, Concurrency::cancellation_token _CancellationToken)
-> decltype (details::_WhenAllImpl<typename std::iterator_traits<_Iterator>::value_type::result_type, _Iterator>::_Perform(_CancellationToken._GetImplValue(), _Begin, _End))
{
    typedef typename std::iterator_traits<_Iterator>::value_type::result_type _ElementType;
    return details::_WhenAllImpl<_ElementType, _Iterator>::_Perform(_CancellationToken._GetImplValue(), _Begin, _End);
}
#endif

/// <summary>
///     Creates a task that will complete succesfully when both of the tasks supplied as arguments complete successfully.
/// </summary>
/// <typeparam name="_ReturnType">
///     The type of the returned task.
/// </typeparam>
/// <param name="_Lhs">
///     The first task to combine into the resulting task.
/// </param>
/// <param name="_Rhs">
///     The second task to combine into the resulting task.
/// </param>
/// <returns>
///     A task that completes successfully when both of the input tasks have completed successfully. If the input tasks are of type <c>T</c>,
///     the output of this function will be a <c>task&lt;std::vector&lt;T&gt;&gt;</c>. If the input tasks are of type <c>void</c> the output
///     task will also be a <c>task&lt;void&gt;</c>.
///     <para> To allow for a construct of the sort taskA &amp;&amp; taskB &amp;&amp; taskC, which are combined in pairs, the &amp;&amp; operator
///     produces a <c>task&lt;std::vector&lt;T&gt;&gt;</c> if either one or both of the tasks are of type <c>task&lt;std::vector&lt;T&gt;&gt;</c>.</para>
/// </returns>
/// <remarks>
///     If one of the tasks is canceled or throws an exception, the returned task will complete early, in the canceled state, and the exception,
///     if one is encoutered, will be thrown if you call <c>get()</c> or <c>wait()</c> on that task.
/// </remarks>
/// <seealso cref="Task Parallelism (Concurrency Runtime)"/>
/**/
template<typename _ReturnType>
task<std::vector<_ReturnType>> operator&&(const task<_ReturnType> & _Lhs, const task<_ReturnType> & _Rhs)
{
    task<_ReturnType> _PTasks[2] = { _Lhs, _Rhs };
    return when_all(_PTasks, _PTasks + 2);
}

/// <summary>
///     Creates a task that will complete succesfully when both of the tasks supplied as arguments complete successfully.
/// </summary>
/// <typeparam name="_ReturnType">
///     The type of the returned task.
/// </typeparam>
/// <param name="_Lhs">
///     The first task to combine into the resulting task.
/// </param>
/// <param name="_Rhs">
///     The second task to combine into the resulting task.
/// </param>
/// <returns>
///     A task that completes successfully when both of the input tasks have completed successfully. If the input tasks are of type <c>T</c>,
///     the output of this function will be a <c>task&lt;std::vector&lt;T&gt;&gt;</c>. If the input tasks are of type <c>void</c> the output
///     task will also be a <c>task&lt;void&gt;</c>.
///     <para> To allow for a construct of the sort taskA &amp;&amp; taskB &amp;&amp; taskC, which are combined in pairs, the &amp;&amp; operator
///     produces a <c>task&lt;std::vector&lt;T&gt;&gt;</c> if either one or both of the tasks are of type <c>task&lt;std::vector&lt;T&gt;&gt;</c>.</para>
/// </returns>
/// <remarks>
///     If one of the tasks is canceled or throws an exception, the returned task will complete early, in the canceled state, and the exception,
///     if one is encoutered, will be thrown if you call <c>get()</c> or <c>wait()</c> on that task.
/// </remarks>
/// <seealso cref="Task Parallelism (Concurrency Runtime)"/>
/**/
template<typename _ReturnType>
task<std::vector<_ReturnType>> operator&&(const task<std::vector<_ReturnType>> & _Lhs, const task<_ReturnType> & _Rhs)
{
    return details::_WhenAllVectorAndValue(_Lhs, _Rhs, true);
}

/// <summary>
///     Creates a task that will complete succesfully when both of the tasks supplied as arguments complete successfully.
/// </summary>
/// <typeparam name="_ReturnType">
///     The type of the returned task.
/// </typeparam>
/// <param name="_Lhs">
///     The first task to combine into the resulting task.
/// </param>
/// <param name="_Rhs">
///     The second task to combine into the resulting task.
/// </param>
/// <returns>
///     A task that completes successfully when both of the input tasks have completed successfully. If the input tasks are of type <c>T</c>,
///     the output of this function will be a <c>task&lt;std::vector&lt;T&gt;&gt;</c>. If the input tasks are of type <c>void</c> the output
///     task will also be a <c>task&lt;void&gt;</c>.
///     <para> To allow for a construct of the sort taskA &amp;&amp; taskB &amp;&amp; taskC, which are combined in pairs, the &amp;&amp; operator
///     produces a <c>task&lt;std::vector&lt;T&gt;&gt;</c> if either one or both of the tasks are of type <c>task&lt;std::vector&lt;T&gt;&gt;</c>.</para>
/// </returns>
/// <remarks>
///     If one of the tasks is canceled or throws an exception, the returned task will complete early, in the canceled state, and the exception,
///     if one is encoutered, will be thrown if you call <c>get()</c> or <c>wait()</c> on that task.
/// </remarks>
/// <seealso cref="Task Parallelism (Concurrency Runtime)"/>
/**/
template<typename _ReturnType>
task<std::vector<_ReturnType>> operator&&(const task<_ReturnType> & _Lhs, const task<std::vector<_ReturnType>> & _Rhs)
{
    return details::_WhenAllVectorAndValue(_Rhs, _Lhs, false);
}

/// <summary>
///     Creates a task that will complete succesfully when both of the tasks supplied as arguments complete successfully.
/// </summary>
/// <typeparam name="_ReturnType">
///     The type of the returned task.
/// </typeparam>
/// <param name="_Lhs">
///     The first task to combine into the resulting task.
/// </param>
/// <param name="_Rhs">
///     The second task to combine into the resulting task.
/// </param>
/// <returns>
///     A task that completes successfully when both of the input tasks have completed successfully. If the input tasks are of type <c>T</c>,
///     the output of this function will be a <c>task&lt;std::vector&lt;T&gt;&gt;</c>. If the input tasks are of type <c>void</c> the output
///     task will also be a <c>task&lt;void&gt;</c>.
///     <para> To allow for a construct of the sort taskA &amp;&amp; taskB &amp;&amp; taskC, which are combined in pairs, the &amp;&amp; operator
///     produces a <c>task&lt;std::vector&lt;T&gt;&gt;</c> if either one or both of the tasks are of type <c>task&lt;std::vector&lt;T&gt;&gt;</c>.</para>
/// </returns>
/// <remarks>
///     If one of the tasks is canceled or throws an exception, the returned task will complete early, in the canceled state, and the exception,
///     if one is encoutered, will be thrown if you call <c>get()</c> or <c>wait()</c> on that task.
/// </remarks>
/// <seealso cref="Task Parallelism (Concurrency Runtime)"/>
/**/
template<typename _ReturnType>
task<std::vector<_ReturnType>> operator&&(const task<std::vector<_ReturnType>> & _Lhs, const task<std::vector<_ReturnType>> & _Rhs)
{
    task<std::vector<_ReturnType>> _PTasks[2] = { _Lhs, _Rhs };
    return when_all(_PTasks, _PTasks + 2);
}

/// <summary>
///     Creates a task that will complete succesfully when both of the tasks supplied as arguments complete successfully.
/// </summary>
/// <typeparam name="_ReturnType">
///     The type of the returned task.
/// </typeparam>
/// <param name="_Lhs">
///     The first task to combine into the resulting task.
/// </param>
/// <param name="_Rhs">
///     The second task to combine into the resulting task.
/// </param>
/// <returns>
///     A task that completes successfully when both of the input tasks have completed successfully. If the input tasks are of type <c>T</c>,
///     the output of this function will be a <c>task&lt;std::vector&lt;T&gt;&gt;</c>. If the input tasks are of type <c>void</c> the output
///     task will also be a <c>task&lt;void&gt;</c>.
///     <para> To allow for a construct of the sort taskA &amp;&amp; taskB &amp;&amp; taskC, which are combined in pairs, the &amp;&amp; operator
///     produces a <c>task&lt;std::vector&lt;T&gt;&gt;</c> if either one or both of the tasks are of type <c>task&lt;std::vector&lt;T&gt;&gt;</c>.</para>
/// </returns>
/// <remarks>
///     If one of the tasks is canceled or throws an exception, the returned task will complete early, in the canceled state, and the exception,
///     if one is encoutered, will be thrown if you call <c>get()</c> or <c>wait()</c> on that task.
/// </remarks>
/// <seealso cref="Task Parallelism (Concurrency Runtime)"/>
/**/
inline task<void> operator&&(const task<void> & _Lhs, const task<void> & _Rhs)
{
    task<void> _PTasks[2] = { _Lhs, _Rhs };
    return when_all(_PTasks, _PTasks + 2);
}

namespace details
{
    // Helper struct for when_any operators to know when tasks have completed
    template <typename _CompletionType>
    struct _RunAnyParam
    {
        _RunAnyParam() : _M_completeCount(0), _M_numTasks(0), _M_exceptionRelatedToken(nullptr), _M_fHasExplicitToken(false)
        {
        }
        ~_RunAnyParam()
        {
            if (Concurrency::details::_CancellationTokenState::_IsValid(_M_exceptionRelatedToken))
                _M_exceptionRelatedToken->_Release();
        }
        task_completion_event<_CompletionType>      _M_Completed;
        Concurrency::cancellation_token_source                   _M_cancellationSource;
        Concurrency::details::_CancellationTokenState*            _M_exceptionRelatedToken;
        atomic_size_t         _M_completeCount;
        size_t                                      _M_numTasks;
        bool                                        _M_fHasExplicitToken;
    };

    template<typename _CompletionType, typename _Function, typename _TaskType>
    void _WhenAnyContinuationWrapper(_RunAnyParam<_CompletionType> * _PParam, const _Function & _Func, task<_TaskType>& _Task)
    {
        bool _IsTokenCancled = !_PParam->_M_fHasExplicitToken && _Task._GetImpl()->_M_pTokenState != Concurrency::details::_CancellationTokenState::_None() && _Task._GetImpl()->_M_pTokenState->_IsCanceled();
        if (_Task._GetImpl()->_IsCompleted() && !_IsTokenCancled)
        {
            _Func();
#if _MSC_VER >= 1800
            if (Concurrency::details::atomic_increment(_PParam->_M_completeCount) == _PParam->_M_numTasks)
#else
            if (_InterlockedIncrementSizeT(&_PParam->_M_completeCount) == _PParam->_M_numTasks)
#endif
            {
                delete _PParam;
            }
        }
        else
        {
            _CONCRT_ASSERT(_Task._GetImpl()->_IsCanceled() || _IsTokenCancled);
            if (_Task._GetImpl()->_HasUserException() && !_IsTokenCancled)
            {
                if (_PParam->_M_Completed._StoreException(_Task._GetImpl()->_GetExceptionHolder()))
                {
                    // This can only enter once.
                    _PParam->_M_exceptionRelatedToken = _Task._GetImpl()->_M_pTokenState;
                    _CONCRT_ASSERT(_PParam->_M_exceptionRelatedToken);
                    // Deref token will be done in the _PParam destructor.
                    if (_PParam->_M_exceptionRelatedToken != Concurrency::details::_CancellationTokenState::_None())
                    {
                        _PParam->_M_exceptionRelatedToken->_Reference();
                    }
                }
            }

#if _MSC_VER >= 1800
            if (Concurrency::details::atomic_increment(_PParam->_M_completeCount) == _PParam->_M_numTasks)
#else
            if (_InterlockedIncrementSizeT(&_PParam->_M_completeCount) == _PParam->_M_numTasks)
#endif
            {
                // If no one has be completed so far, we need to make some final cancellation decision.
                if (!_PParam->_M_Completed._IsTriggered())
                {
                    // If we already explicit token, we can skip the token join part.
                    if (!_PParam->_M_fHasExplicitToken)
                    {
                        if (_PParam->_M_exceptionRelatedToken)
                        {
                            details::_JoinAllTokens_Add(_PParam->_M_cancellationSource, _PParam->_M_exceptionRelatedToken);
                        }
                        else
                        {
                            // If haven't captured any exception token yet, there was no exception for all those tasks,
                            // so just pick a random token (current one) for normal cancellation.
                            details::_JoinAllTokens_Add(_PParam->_M_cancellationSource, _Task._GetImpl()->_M_pTokenState);
                        }
                    }
                    // Do exception cancellation or normal cancellation based on whether it has stored exception.
                    _PParam->_M_Completed._Cancel();
                }
                delete _PParam;
            }
        }
    }

    template<typename _ElementType, typename _Iterator>
    struct _WhenAnyImpl
    {
#if _MSC_VER >= 1800
        static task<std::pair<_ElementType, size_t>> _Perform(const task_options& _TaskOptions, _Iterator _Begin, _Iterator _End)
#else
        static task<std::pair<_ElementType, size_t>> _Perform(Concurrency::details::_CancellationTokenState *_PTokenState, _Iterator _Begin, _Iterator _End)
#endif
        {
            if (_Begin == _End)
            {
                throw Concurrency::invalid_operation("when_any(begin, end) cannot be called on an empty container.");
            }
#if _MSC_VER >= 1800
            Concurrency::details::_CancellationTokenState *_PTokenState = _TaskOptions.has_cancellation_token() ? _TaskOptions.get_cancellation_token()._GetImplValue() : nullptr;
#endif
            auto _PParam = new _RunAnyParam<std::pair<std::pair<_ElementType, size_t>, Concurrency::details::_CancellationTokenState *>>();

            if (_PTokenState)
            {
                details::_JoinAllTokens_Add(_PParam->_M_cancellationSource, _PTokenState);
                _PParam->_M_fHasExplicitToken = true;
            }
#if _MSC_VER >= 1800
            task_options _Options(_TaskOptions);
            _Options.set_cancellation_token(_PParam->_M_cancellationSource.get_token());
            task<std::pair<std::pair<_ElementType, size_t>, Concurrency::details::_CancellationTokenState *>> _Any_tasks_completed(_PParam->_M_Completed, _Options);
#else
            task<std::pair<std::pair<_ElementType, size_t>, Concurrency::details::_CancellationTokenState *>> _Any_tasks_completed(_PParam->_M_Completed, _PParam->_M_cancellationSource.get_token());
            _Any_tasks_completed._GetImpl()->_M_fRuntimeAggregate = true;
#endif
            // Keep a copy ref to the token source
            auto _CancellationSource = _PParam->_M_cancellationSource;

            _PParam->_M_numTasks = static_cast<size_t>(std::distance(_Begin, _End));
            size_t index = 0;
            for (auto _PTask = _Begin; _PTask != _End; ++_PTask)
            {
                if (_PTask->is_apartment_aware())
                {
                    _Any_tasks_completed._SetAsync();
                }

                _PTask->_Then([_PParam, index](task<_ElementType> _ResultTask) -> HRESULT {
#if _MSC_VER >= 1800
                    auto _PParamCopy = _PParam; // Dev10
                    auto _IndexCopy = index; // Dev10
                    auto _Func = [&_ResultTask, _PParamCopy, _IndexCopy]() {
                        _PParamCopy->_M_Completed.set(std::make_pair(std::make_pair(_ResultTask._GetImpl()->_GetResult(), _IndexCopy), _ResultTask._GetImpl()->_M_pTokenState));
                    };
#else
                    auto _Func = [&_ResultTask, _PParam, index]() {
                        _PParam->_M_Completed.set(std::make_pair(std::make_pair(_ResultTask._GetImpl()->_GetResult(), index), _ResultTask._GetImpl()->_M_pTokenState));
                    };
#endif
                    _WhenAnyContinuationWrapper(_PParam, _Func, _ResultTask);
                    return S_OK;
#if _MSC_VER >= 1800
                }, Concurrency::details::_CancellationTokenState::_None());
#else
                }, Concurrency::details::_CancellationTokenState::_None(), false);
#endif
                index++;
            }

            // All _Any_tasks_completed._SetAsync() must be finished before this return continuation task being created.
            return _Any_tasks_completed._Then([=](std::pair<std::pair<_ElementType, size_t>, Concurrency::details::_CancellationTokenState *> _Result, std::pair<_ElementType, size_t>* retVal) -> HRESULT {
                _CONCRT_ASSERT(_Result.second);
                if (!_PTokenState)
                {
                    details::_JoinAllTokens_Add(_CancellationSource, _Result.second);
                }
                *retVal = _Result.first;
                return S_OK;
#if _MSC_VER >= 1800
            }, nullptr);
#else
            }, nullptr, true);
#endif
        }
    };

    template<typename _Iterator>
    struct _WhenAnyImpl<void, _Iterator>
    {
#if _MSC_VER >= 1800
        static task<size_t> _Perform(const task_options& _TaskOptions, _Iterator _Begin, _Iterator _End)
#else
        static task<size_t> _Perform(Concurrency::details::_CancellationTokenState *_PTokenState, _Iterator _Begin, _Iterator _End)
#endif
        {
            if (_Begin == _End)
            {
                throw Concurrency::invalid_operation("when_any(begin, end) cannot be called on an empty container.");
            }
#if _MSC_VER >= 1800
            Concurrency::details::_CancellationTokenState *_PTokenState = _TaskOptions.has_cancellation_token() ? _TaskOptions.get_cancellation_token()._GetImplValue() : nullptr;
#endif
            auto _PParam = new _RunAnyParam<std::pair<size_t, Concurrency::details::_CancellationTokenState *>>();

            if (_PTokenState)
            {
                details::_JoinAllTokens_Add(_PParam->_M_cancellationSource, _PTokenState);
                _PParam->_M_fHasExplicitToken = true;
            }

#if _MSC_VER >= 1800
            task_options _Options(_TaskOptions);
            _Options.set_cancellation_token(_PParam->_M_cancellationSource.get_token());
            task<std::pair<size_t, _CancellationTokenState *>> _Any_tasks_completed(_PParam->_M_Completed, _Options);
#else
            task<std::pair<size_t, Concurrency::details::_CancellationTokenState *>> _Any_tasks_completed(_PParam->_M_Completed, _PParam->_M_cancellationSource.get_token());
#endif
            // Keep a copy ref to the token source
            auto _CancellationSource = _PParam->_M_cancellationSource;

            _PParam->_M_numTasks = static_cast<size_t>(std::distance(_Begin, _End));
            size_t index = 0;
            for (auto _PTask = _Begin; _PTask != _End; ++_PTask)
            {
                if (_PTask->is_apartment_aware())
                {
                    _Any_tasks_completed._SetAsync();
                }

                _PTask->_Then([_PParam, index](task<void> _ResultTask) -> HRESULT {
#if _MSC_VER >= 1800
                    auto _PParamCopy = _PParam; // Dev10
                    auto _IndexCopy = index; // Dev10
                    auto _Func = [&_ResultTask, _PParamCopy, _IndexCopy]() {
                        _PParamCopy->_M_Completed.set(std::make_pair(_IndexCopy, _ResultTask._GetImpl()->_M_pTokenState));
                    };
#else
                    auto _Func = [&_ResultTask, _PParam, index]() {
                        _PParam->_M_Completed.set(std::make_pair(index, _ResultTask._GetImpl()->_M_pTokenState));
                    };
#endif
                    _WhenAnyContinuationWrapper(_PParam, _Func, _ResultTask);
                    return S_OK;
#if _MSC_VER >= 1800
                }, Concurrency::details::_CancellationTokenState::_None());
#else
                }, Concurrency::details::_CancellationTokenState::_None(), false);
#endif

                index++;
            }

            // All _Any_tasks_completed._SetAsync() must be finished before this return continuation task being created.
            return _Any_tasks_completed._Then([=](std::pair<size_t, Concurrency::details::_CancellationTokenState *> _Result, size_t* retVal) -> HRESULT {
                _CONCRT_ASSERT(_Result.second);
                if (!_PTokenState)
                {
                    details::_JoinAllTokens_Add(_CancellationSource, _Result.second);
                }
                *retVal = _Result.first;
                return S_OK;
#if _MSC_VER >= 1800
            }, nullptr);
#else
            }, nullptr, false);
#endif
        }
    };
} // namespace details

/// <summary>
///     Creates a task that will complete successfully when any of the tasks supplied as arguments completes successfully.
/// </summary>
/// <typeparam name="_Iterator">
///     The type of the input iterator.
/// </typeparam>
/// <param name="_Begin">
///     The position of the first element in the range of elements to be combined into the resulting task.
/// </param>
/// <param name="_End">
///     The position of the first element beyond the range of elements to be combined into the resulting task.
/// </param>
/// <returns>
///     A task that completes successfully when any one of the input tasks has completed successfully. If the input tasks are of type <c>T</c>,
///     the output of this function will be a <c>task&lt;std::pair&lt;T, size_t&gt;&gt;></c>, where the first element of the pair is the result
///     of the completing task, and the second element is the index of the task that finished. If the input tasks are of type <c>void</c>
///     the output is a <c>task&lt;size_t&gt;</c>, where the result is the index of the completing task.
/// </returns>
/// <seealso cref="Task Parallelism (Concurrency Runtime)"/>
/**/
template<typename _Iterator>
#if _MSC_VER >= 1800
auto when_any(_Iterator _Begin, _Iterator _End, const task_options& _TaskOptions = task_options())
-> decltype (details::_WhenAnyImpl<typename std::iterator_traits<_Iterator>::value_type::result_type, _Iterator>::_Perform(_TaskOptions, _Begin, _End))
{
    typedef typename std::iterator_traits<_Iterator>::value_type::result_type _ElementType;
    return details::_WhenAnyImpl<_ElementType, _Iterator>::_Perform(_TaskOptions, _Begin, _End);
}
#else
auto when_any(_Iterator _Begin, _Iterator _End)
-> decltype (details::_WhenAnyImpl<typename std::iterator_traits<_Iterator>::value_type::result_type, _Iterator>::_Perform(nullptr, _Begin, _End))
{
    typedef typename std::iterator_traits<_Iterator>::value_type::result_type _ElementType;
    return details::_WhenAnyImpl<_ElementType, _Iterator>::_Perform(nullptr, _Begin, _End);
}
#endif

/// <summary>
///     Creates a task that will complete successfully when any of the tasks supplied as arguments completes successfully.
/// </summary>
/// <typeparam name="_Iterator">
///     The type of the input iterator.
/// </typeparam>
/// <param name="_Begin">
///     The position of the first element in the range of elements to be combined into the resulting task.
/// </param>
/// <param name="_End">
///     The position of the first element beyond the range of elements to be combined into the resulting task.
/// </param>
/// <param name="_CancellationToken">
///     The cancellation token which controls cancellation of the returned task. If you do not provide a cancellation token, the resulting
///     task will receive the cancellation token of the task that causes it to complete.
/// </param>
/// <returns>
///     A task that completes successfully when any one of the input tasks has completed successfully. If the input tasks are of type <c>T</c>,
///     the output of this function will be a <c>task&lt;std::pair&lt;T, size_t&gt;&gt;></c>, where the first element of the pair is the result
///     of the completing task, and the second element is the index of the task that finished. If the input tasks are of type <c>void</c>
///     the output is a <c>task&lt;size_t&gt;</c>, where the result is the index of the completing task.
/// </returns>
/// <seealso cref="Task Parallelism (Concurrency Runtime)"/>
/**/
template<typename _Iterator>
auto when_any(_Iterator _Begin, _Iterator _End, Concurrency::cancellation_token _CancellationToken)
-> decltype (details::_WhenAnyImpl<typename std::iterator_traits<_Iterator>::value_type::result_type, _Iterator>::_Perform(_CancellationToken._GetImplValue(), _Begin, _End))
{
    typedef typename std::iterator_traits<_Iterator>::value_type::result_type _ElementType;
    return details::_WhenAnyImpl<_ElementType, _Iterator>::_Perform(_CancellationToken._GetImplValue(), _Begin, _End);
}

/// <summary>
///     Creates a task that will complete successfully when either of the tasks supplied as arguments completes successfully.
/// </summary>
/// <typeparam name="_ReturnType">
///     The type of the returned task.
/// </typeparam>
/// <param name="_Lhs">
///     The first task to combine into the resulting task.
/// </param>
/// <param name="_Rhs">
///     The second task to combine into the resulting task.
/// </param>
/// <returns>
///     A task that completes sucessfully when either of the input tasks has completed successfully. If the input tasks are of type <c>T</c>,
///     the output of this function will be a <c>task&lt;std::vector&lt;T&gt;</c>. If the input tasks are of type <c>void</c> the output task
///     will also be a <c>task&lt;void&gt;</c>.
///     <para> To allow for a construct of the sort taskA || taskB &amp;&amp; taskC, which are combined in pairs, with &amp;&amp; taking precedence
///     over ||, the operator|| produces a <c>task&lt;std::vector&lt;T&gt;&gt;</c> if one of the tasks is of type <c>task&lt;std::vector&lt;T&gt;&gt;</c>
///     and the other one is of type <c>task&lt;T&gt;.</para>
/// </returns>
/// <remarks>
///     If both of the tasks are canceled or throw exceptions, the returned task will complete in the canceled state, and one of the exceptions,
///     if any are encountered, will be thrown when you call <c>get()</c> or <c>wait()</c> on that task.
/// </remarks>
/// <seealso cref="Task Parallelism (Concurrency Runtime)"/>
/**/
template<typename _ReturnType>
task<_ReturnType> operator||(const task<_ReturnType> & _Lhs, const task<_ReturnType> & _Rhs)
{
#if _MSC_VER >= 1800
    auto _PParam = new details::_RunAnyParam<std::pair<_ReturnType, size_t>>();

    task<std::pair<_ReturnType, size_t>> _Any_tasks_completed(_PParam->_M_Completed, _PParam->_M_cancellationSource.get_token());
    // Chain the return continuation task here to ensure it will get inline execution when _M_Completed.set is called,
    // So that _PParam can be used before it getting deleted.
    auto _ReturnTask = _Any_tasks_completed._Then([=](std::pair<_ReturnType, size_t> _Ret, _ReturnType* retVal) -> HRESULT {
        _CONCRT_ASSERT(_Ret.second);
        details::_JoinAllTokens_Add(_PParam->_M_cancellationSource, reinterpret_cast<Concurrency::details::_CancellationTokenState *>(_Ret.second));
        *retVal = _Ret.first;
        return S_OK;
    }, nullptr);
#else
    auto _PParam = new details::_RunAnyParam<std::pair<_ReturnType, Concurrency::details::_CancellationTokenState *>>();

    task<std::pair<_ReturnType, Concurrency::details::_CancellationTokenState *>> _Any_tasks_completed(_PParam->_M_Completed, _PParam->_M_cancellationSource.get_token());
    // Chain the return continuation task here to ensure it will get inline execution when _M_Completed.set is called,
    // So that _PParam can be used before it getting deleted.
    auto _ReturnTask = _Any_tasks_completed._Then([=](std::pair<_ReturnType, Concurrency::details::_CancellationTokenState *> _Ret, _ReturnType* retVal) -> HRESULT {
        _CONCRT_ASSERT(_Ret.second);
        details::_JoinAllTokens_Add(_PParam->_M_cancellationSource, _Ret.second);
        *retVal = _Ret.first;
        return S_OK;
    }, nullptr, false);
#endif
    if (_Lhs.is_apartment_aware() || _Rhs.is_apartment_aware())
    {
        _ReturnTask._SetAsync();
    }

    _PParam->_M_numTasks = 2;
    auto _Continuation = [_PParam](task<_ReturnType> _ResultTask) -> HRESULT {
#if _MSC_VER >= 1800
        //  Dev10 compiler bug
        auto _PParamCopy = _PParam;
        auto _Func = [&_ResultTask, _PParamCopy]() {
            _PParamCopy->_M_Completed.set(std::make_pair(_ResultTask._GetImpl()->_GetResult(), reinterpret_cast<size_t>(_ResultTask._GetImpl()->_M_pTokenState)));
        };
#else
        auto _Func = [&_ResultTask, _PParam]() {
            _PParam->_M_Completed.set(std::make_pair(_ResultTask._GetImpl()->_GetResult(), _ResultTask._GetImpl()->_M_pTokenState));
        };
#endif
        _WhenAnyContinuationWrapper(_PParam, _Func, _ResultTask);
        return S_OK;
    };

#if _MSC_VER >= 1800
    _Lhs._Then(_Continuation, Concurrency::details::_CancellationTokenState::_None());
    _Rhs._Then(_Continuation, Concurrency::details::_CancellationTokenState::_None());
#else
    _Lhs._Then(_Continuation, Concurrency::details::_CancellationTokenState::_None(), false);
    _Rhs._Then(_Continuation, Concurrency::details::_CancellationTokenState::_None(), false);
#endif
    return _ReturnTask;
}

/// <summary>
///     Creates a task that will complete successfully when any of the tasks supplied as arguments completes successfully.
/// </summary>
/// <typeparam name="_ReturnType">
///     The type of the returned task.
/// </typeparam>
/// <param name="_Lhs">
///     The first task to combine into the resulting task.
/// </param>
/// <param name="_Rhs">
///     The second task to combine into the resulting task.
/// </param>
/// <returns>
///     A task that completes sucessfully when either of the input tasks has completed successfully. If the input tasks are of type <c>T</c>,
///     the output of this function will be a <c>task&lt;std::vector&lt;T&gt;</c>. If the input tasks are of type <c>void</c> the output task
///     will also be a <c>task&lt;void&gt;</c>.
///     <para> To allow for a construct of the sort taskA || taskB &amp;&amp; taskC, which are combined in pairs, with &amp;&amp; taking precedence
///     over ||, the operator|| produces a <c>task&lt;std::vector&lt;T&gt;&gt;</c> if one of the tasks is of type <c>task&lt;std::vector&lt;T&gt;&gt;</c>
///     and the other one is of type <c>task&lt;T&gt;.</para>
/// </returns>
/// <remarks>
///     If both of the tasks are canceled or throw exceptions, the returned task will complete in the canceled state, and one of the exceptions,
///     if any are encountered, will be thrown when you call <c>get()</c> or <c>wait()</c> on that task.
/// </remarks>
/// <seealso cref="Task Parallelism (Concurrency Runtime)"/>
/**/
template<typename _ReturnType>
task<std::vector<_ReturnType>> operator||(const task<std::vector<_ReturnType>> & _Lhs, const task<_ReturnType> & _Rhs)
{
    auto _PParam = new details::_RunAnyParam<std::pair<std::vector<_ReturnType>, Concurrency::details::_CancellationTokenState *>>();

    task<std::pair<std::vector<_ReturnType>, Concurrency::details::_CancellationTokenState *>> _Any_tasks_completed(_PParam->_M_Completed, _PParam->_M_cancellationSource.get_token());
#if _MSC_VER < 1800
    _Any_tasks_completed._GetImpl()->_M_fRuntimeAggregate = true;
#endif
    // Chain the return continuation task here to ensure it will get inline execution when _M_Completed.set is called,
    // So that _PParam can be used before it getting deleted.
    auto _ReturnTask = _Any_tasks_completed._Then([=](std::pair<std::vector<_ReturnType>, Concurrency::details::_CancellationTokenState *> _Ret, std::vector<_ReturnType>* retVal) -> HRESULT {
        _CONCRT_ASSERT(_Ret.second);
        details::_JoinAllTokens_Add(_PParam->_M_cancellationSource, _Ret.second);
        *retVal = _Ret.first;
        return S_OK;
    }, nullptr, true);

    if (_Lhs.is_apartment_aware() || _Rhs.is_apartment_aware())
    {
        _ReturnTask._SetAsync();
    }

    _PParam->_M_numTasks = 2;
    _Lhs._Then([_PParam](task<std::vector<_ReturnType>> _ResultTask) -> HRESULT {
#if _MSC_VER >= 1800
        //  Dev10 compiler bug
        auto _PParamCopy = _PParam;
        auto _Func = [&_ResultTask, _PParamCopy]() {
            auto _Result = _ResultTask._GetImpl()->_GetResult();
            _PParamCopy->_M_Completed.set(std::make_pair(_Result, _ResultTask._GetImpl()->_M_pTokenState));
        };
#else
        auto _Func = [&_ResultTask, _PParam]() {
            std::vector<_ReturnType> _Result = _ResultTask._GetImpl()->_GetResult();
            _PParam->_M_Completed.set(std::make_pair(_Result, _ResultTask._GetImpl()->_M_pTokenState));
        };
#endif
        _WhenAnyContinuationWrapper(_PParam, _Func, _ResultTask);
        return S_OK;
#if _MSC_VER >= 1800
    }, Concurrency::details::_CancellationTokenState::_None());
#else
    }, Concurrency::details::_CancellationTokenState::_None(), false);
#endif
    _Rhs._Then([_PParam](task<_ReturnType> _ResultTask) -> HRESULT {
#if _MSC_VER >= 1800
        //  Dev10 compiler bug
        typedef _ReturnType _ReturnTypeDev10;
        auto _PParamCopy = _PParam;
        auto _Func = [&_ResultTask, _PParamCopy]() {
            auto _Result = _ResultTask._GetImpl()->_GetResult();

            std::vector<_ReturnTypeDev10> _Vec;
            _Vec.push_back(_Result);
            _PParamCopy->_M_Completed.set(std::make_pair(_Vec, _ResultTask._GetImpl()->_M_pTokenState));
        };
#else
        auto _Func = [&_ResultTask, _PParam]() {
            _ReturnType _Result = _ResultTask._GetImpl()->_GetResult();

            std::vector<_ReturnType> _Vec;
            _Vec.push_back(_Result);
            _PParam->_M_Completed.set(std::make_pair(_Vec, _ResultTask._GetImpl()->_M_pTokenState));
        };
#endif
        _WhenAnyContinuationWrapper(_PParam, _Func, _ResultTask);
        return S_OK;
#if _MSC_VER >= 1800
    }, Concurrency::details::_CancellationTokenState::_None());
#else
    }, Concurrency::details::_CancellationTokenState::_None(), false);
#endif
    return _ReturnTask;
}

/// <summary>
///     Creates a task that will complete successfully when any of the tasks supplied as arguments completes successfully.
/// </summary>
/// <typeparam name="_ReturnType">
///     The type of the returned task.
/// </typeparam>
/// <param name="_Lhs">
///     The first task to combine into the resulting task.
/// </param>
/// <param name="_Rhs">
///     The second task to combine into the resulting task.
/// </param>
/// <returns>
///     A task that completes sucessfully when either of the input tasks has completed successfully. If the input tasks are of type <c>T</c>,
///     the output of this function will be a <c>task&lt;std::vector&lt;T&gt;</c>. If the input tasks are of type <c>void</c> the output task
///     will also be a <c>task&lt;void&gt;</c>.
///     <para> To allow for a construct of the sort taskA || taskB &amp;&amp; taskC, which are combined in pairs, with &amp;&amp; taking precedence
///     over ||, the operator|| produces a <c>task&lt;std::vector&lt;T&gt;&gt;</c> if one of the tasks is of type <c>task&lt;std::vector&lt;T&gt;&gt;</c>
///     and the other one is of type <c>task&lt;T&gt;.</para>
/// </returns>
/// <remarks>
///     If both of the tasks are canceled or throw exceptions, the returned task will complete in the canceled state, and one of the exceptions,
///     if any are encountered, will be thrown when you call <c>get()</c> or <c>wait()</c> on that task.
/// </remarks>
/// <seealso cref="Task Parallelism (Concurrency Runtime)"/>
/**/
template<typename _ReturnType>
task<std::vector<_ReturnType>> operator||(const task<_ReturnType> & _Lhs, const task<std::vector<_ReturnType>> & _Rhs)
{
    return _Rhs || _Lhs;
}

/// <summary>
///     Creates a task that will complete successfully when any of the tasks supplied as arguments completes successfully.
/// </summary>
/// <typeparam name="_ReturnType">
///     The type of the returned task.
/// </typeparam>
/// <param name="_Lhs">
///     The first task to combine into the resulting task.
/// </param>
/// <param name="_Rhs">
///     The second task to combine into the resulting task.
/// </param>
/// <returns>
///     A task that completes sucessfully when either of the input tasks has completed successfully. If the input tasks are of type <c>T</c>,
///     the output of this function will be a <c>task&lt;std::vector&lt;T&gt;</c>. If the input tasks are of type <c>void</c> the output task
///     will also be a <c>task&lt;void&gt;</c>.
///     <para> To allow for a construct of the sort taskA || taskB &amp;&amp; taskC, which are combined in pairs, with &amp;&amp; taking precedence
///     over ||, the operator|| produces a <c>task&lt;std::vector&lt;T&gt;&gt;</c> if one of the tasks is of type <c>task&lt;std::vector&lt;T&gt;&gt;</c>
///     and the other one is of type <c>task&lt;T&gt;.</para>
/// </returns>
/// <remarks>
///     If both of the tasks are canceled or throw exceptions, the returned task will complete in the canceled state, and one of the exceptions,
///     if any are encountered, will be thrown when you call <c>get()</c> or <c>wait()</c> on that task.
/// </remarks>
/// <seealso cref="Task Parallelism (Concurrency Runtime)"/>
/**/
inline task<void> operator||(const task<void> & _Lhs, const task<void> & _Rhs)
{
    auto _PParam = new details::_RunAnyParam<std::pair<details::_Unit_type, Concurrency::details::_CancellationTokenState *>>();

    task<std::pair<details::_Unit_type, Concurrency::details::_CancellationTokenState *>> _Any_task_completed(_PParam->_M_Completed, _PParam->_M_cancellationSource.get_token());
    // Chain the return continuation task here to ensure it will get inline execution when _M_Completed.set is called,
    // So that _PParam can be used before it getting deleted.
    auto _ReturnTask = _Any_task_completed._Then([=](std::pair<details::_Unit_type, Concurrency::details::_CancellationTokenState *> _Ret) -> HRESULT {
        _CONCRT_ASSERT(_Ret.second);
        details::_JoinAllTokens_Add(_PParam->_M_cancellationSource, _Ret.second);
        return S_OK;
#if _MSC_VER >= 1800
    }, nullptr);
#else
    }, nullptr, false);
#endif

    if (_Lhs.is_apartment_aware() || _Rhs.is_apartment_aware())
    {
        _ReturnTask._SetAsync();
    }

    _PParam->_M_numTasks = 2;
    auto _Continuation = [_PParam](task<void> _ResultTask) mutable -> HRESULT {
        //  Dev10 compiler needs this.
        auto _PParam1 = _PParam;
        auto _Func = [&_ResultTask, _PParam1]() {
            _PParam1->_M_Completed.set(std::make_pair(details::_Unit_type(), _ResultTask._GetImpl()->_M_pTokenState));
        };
        _WhenAnyContinuationWrapper(_PParam, _Func, _ResultTask);
        return S_OK;
    };

#if _MSC_VER >= 1800
    _Lhs._Then(_Continuation, Concurrency::details::_CancellationTokenState::_None());
    _Rhs._Then(_Continuation, Concurrency::details::_CancellationTokenState::_None());
#else
    _Lhs._Then(_Continuation, Concurrency::details::_CancellationTokenState::_None(), false);
    _Rhs._Then(_Continuation, Concurrency::details::_CancellationTokenState::_None(), false);
#endif

    return _ReturnTask;
}

#if _MSC_VER >= 1800
template<typename _Ty>
task<_Ty> task_from_result(_Ty _Param, const task_options& _TaskOptions = task_options())
{
    task_completion_event<_Ty> _Tce;
    _Tce.set(_Param);
    return create_task<_Ty>(_Tce, _TaskOptions);
}

// Work around VS 2010 compiler bug
#if _MSC_VER == 1600
inline task<bool> task_from_result(bool _Param)
{
    task_completion_event<bool> _Tce;
    _Tce.set(_Param);
    return create_task<bool>(_Tce, task_options());
}
#endif
inline task<void> task_from_result(const task_options& _TaskOptions = task_options())
{
    task_completion_event<void> _Tce;
    _Tce.set();
    return create_task<void>(_Tce, _TaskOptions);
}

template<typename _TaskType, typename _ExType>
task<_TaskType> task_from_exception(_ExType _Exception, const task_options& _TaskOptions = task_options())
{
    task_completion_event<_TaskType> _Tce;
    _Tce.set_exception(_Exception);
    return create_task<_TaskType>(_Tce, _TaskOptions);
}

namespace details
{
    /// <summary>
    /// A convenient extension to Concurrency: loop until a condition is no longer met
    /// </summary>
    /// <param name="func">
    ///   A function representing the body of the loop. It will be invoked at least once and
    ///   then repetitively as long as it returns true.
    /// </param>
    inline
    task<bool> do_while(std::function<task<bool>(void)> func)
    {
            task<bool> first = func();
            return first.then([=](bool guard, task<bool>* retVal) -> HRESULT {
                if (guard)
                    *retVal = do_while(func);
                else
                    *retVal = first;
                return S_OK;
            });
    }

} // namespace details
#endif

} // namespace Concurrency_winrt

namespace concurrency_winrt = Concurrency_winrt;

#pragma pop_macro("new")
#pragma warning(pop)
#pragma pack(pop)
#endif

#endif