test_modelest.cpp 8.46 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                        Intel License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "test_precomp.hpp"
#include "_modelest.h"

using namespace cv;

class BareModelEstimator : public CvModelEstimator2
{
public:
    BareModelEstimator(int modelPoints, CvSize modelSize, int maxBasicSolutions);

    virtual int runKernel( const CvMat*, const CvMat*, CvMat* );
    virtual void computeReprojError( const CvMat*, const CvMat*,
                                     const CvMat*, CvMat* );

    bool checkSubsetPublic( const CvMat* ms1, int count, bool checkPartialSubset );
};

BareModelEstimator::BareModelEstimator(int _modelPoints, CvSize _modelSize, int _maxBasicSolutions)
    :CvModelEstimator2(_modelPoints, _modelSize, _maxBasicSolutions)
{
}

int BareModelEstimator::runKernel( const CvMat*, const CvMat*, CvMat* )
{
    return 0;
}

void BareModelEstimator::computeReprojError( const CvMat*, const CvMat*,
                                             const CvMat*, CvMat* )
{
}

bool BareModelEstimator::checkSubsetPublic( const CvMat* ms1, int count, bool checkPartialSubset )
{
    checkPartialSubsets = checkPartialSubset;
    return checkSubset(ms1, count);
}

class CV_ModelEstimator2_Test : public cvtest::ArrayTest
{
public:
    CV_ModelEstimator2_Test();

protected:
    void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
    void fill_array( int test_case_idx, int i, int j, Mat& arr );
    double get_success_error_level( int test_case_idx, int i, int j );
    void run_func();
    void prepare_to_validation( int test_case_idx );

    bool checkPartialSubsets;
    int usedPointsCount;

    bool checkSubsetResult;
    int generalPositionsCount;
    int maxPointsCount;
};

CV_ModelEstimator2_Test::CV_ModelEstimator2_Test()
{
    generalPositionsCount = get_test_case_count() / 2;
    maxPointsCount = 100;

    test_array[INPUT].push_back(NULL);
    test_array[OUTPUT].push_back(NULL);
    test_array[REF_OUTPUT].push_back(NULL);
}

void CV_ModelEstimator2_Test::get_test_array_types_and_sizes( int /*test_case_idx*/,
                                                              vector<vector<Size> > &sizes, vector<vector<int> > &types )
{
    RNG &rng = ts->get_rng();
    checkPartialSubsets = (cvtest::randInt(rng) % 2 == 0);

    int pointsCount = cvtest::randInt(rng) % maxPointsCount;
    usedPointsCount = pointsCount == 0 ? 0 : cvtest::randInt(rng) % pointsCount;

    sizes[INPUT][0] = cvSize(1, pointsCount);
    types[INPUT][0] = CV_64FC2;

    sizes[OUTPUT][0] = sizes[REF_OUTPUT][0] = cvSize(1, 1);
    types[OUTPUT][0] = types[REF_OUTPUT][0] = CV_8UC1;
}

void CV_ModelEstimator2_Test::fill_array( int test_case_idx, int i, int j, Mat& arr )
{
    if( i != INPUT )
    {
        cvtest::ArrayTest::fill_array( test_case_idx, i, j, arr );
        return;
    }

    if (test_case_idx < generalPositionsCount)
    {
        //generate points in a general position (i.e. no three points can lie on the same line.)

        bool isGeneralPosition;
        do
        {
            ArrayTest::fill_array(test_case_idx, i, j, arr);

            //a simple check that the position is general:
            //  for each line check that all other points don't belong to it
            isGeneralPosition = true;
            for (int startPointIndex = 0; startPointIndex < usedPointsCount && isGeneralPosition; startPointIndex++)
            {
                for (int endPointIndex = startPointIndex + 1; endPointIndex < usedPointsCount && isGeneralPosition; endPointIndex++)
                {

                    for (int testPointIndex = 0; testPointIndex < usedPointsCount && isGeneralPosition; testPointIndex++)
                    {
                        if (testPointIndex == startPointIndex || testPointIndex == endPointIndex)
                        {
                            continue;
                        }

                        CV_Assert(arr.type() == CV_64FC2);
                        Point2d tangentVector_1 = arr.at<Point2d>(endPointIndex) - arr.at<Point2d>(startPointIndex);
                        Point2d tangentVector_2 = arr.at<Point2d>(testPointIndex) - arr.at<Point2d>(startPointIndex);

                        const float eps = 1e-4f;
                        //TODO: perhaps it is better to normalize the cross product by norms of the tangent vectors
                        if (fabs(tangentVector_1.cross(tangentVector_2)) < eps)
                        {
                            isGeneralPosition = false;
                        }
                    }
                }
            }
        }
        while(!isGeneralPosition);
    }
    else
    {
        //create points in a degenerate position (there are at least 3 points belonging to the same line)

        ArrayTest::fill_array(test_case_idx, i, j, arr);
        if (usedPointsCount <= 2)
        {
            return;
        }

        RNG &rng = ts->get_rng();
        int startPointIndex, endPointIndex, modifiedPointIndex;
        do
        {
            startPointIndex = cvtest::randInt(rng) % usedPointsCount;
            endPointIndex = cvtest::randInt(rng) % usedPointsCount;
            modifiedPointIndex = checkPartialSubsets ? usedPointsCount - 1 : cvtest::randInt(rng) % usedPointsCount;
        }
        while (startPointIndex == endPointIndex || startPointIndex == modifiedPointIndex || endPointIndex == modifiedPointIndex);

        double startWeight = cvtest::randReal(rng);
        CV_Assert(arr.type() == CV_64FC2);
        arr.at<Point2d>(modifiedPointIndex) = startWeight * arr.at<Point2d>(startPointIndex) + (1.0 - startWeight) * arr.at<Point2d>(endPointIndex);
    }
}


double CV_ModelEstimator2_Test::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ )
{
    return 0;
}

void CV_ModelEstimator2_Test::prepare_to_validation( int test_case_idx )
{
    test_mat[OUTPUT][0].at<uchar>(0) = checkSubsetResult;
    test_mat[REF_OUTPUT][0].at<uchar>(0) = test_case_idx < generalPositionsCount || usedPointsCount <= 2;
}

void CV_ModelEstimator2_Test::run_func()
{
    //make the input continuous
    Mat input = test_mat[INPUT][0].clone();
    CvMat _input = input;

    RNG &rng = ts->get_rng();
    int modelPoints = cvtest::randInt(rng);
    CvSize modelSize = cvSize(2, modelPoints);
    int maxBasicSolutions = cvtest::randInt(rng);
    BareModelEstimator modelEstimator(modelPoints, modelSize, maxBasicSolutions);
    checkSubsetResult = modelEstimator.checkSubsetPublic(&_input, usedPointsCount, checkPartialSubsets);
}

TEST(Calib3d_ModelEstimator2, accuracy) { CV_ModelEstimator2_Test test; test.safe_run(); }