half.cpp 7.59 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
// Digital Ltd. LLC
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
// *       Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// *       Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// *       Neither the name of Industrial Light & Magic nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
///////////////////////////////////////////////////////////////////////////

// Primary authors:
//     Florian Kainz <kainz@ilm.com>
//     Rod Bogart <rgb@ilm.com>


//---------------------------------------------------------------------------
//
//	class half --
//	implementation of non-inline members
//
//---------------------------------------------------------------------------

#include <assert.h>
#include "half.h"

using namespace std;

//-------------------------------------------------------------
// Lookup tables for half-to-float and float-to-half conversion
//-------------------------------------------------------------

HALF_EXPORT_CONST half::uif half::_toFloat[1 << 16] =
#include "toFloat.h"
HALF_EXPORT_CONST unsigned short half::_eLut[1 << 9] =
#include "eLut.h"


//-----------------------------------------------
// Overflow handler for float-to-half conversion;
// generates a hardware floating-point overflow,
// which may be trapped by the operating system.
//-----------------------------------------------

float
half::overflow ()
{
    volatile float f = 1e10;

    for (int i = 0; i < 10; i++)
    f *= f;				// this will overflow before
                    // the for­loop terminates
    return f;
}


//-----------------------------------------------------
// Float-to-half conversion -- general case, including
// zeroes, denormalized numbers and exponent overflows.
//-----------------------------------------------------

short
half::convert (int i)
{
    //
    // Our floating point number, f, is represented by the bit
    // pattern in integer i.  Disassemble that bit pattern into
    // the sign, s, the exponent, e, and the significand, m.
    // Shift s into the position where it will go in in the
    // resulting half number.
    // Adjust e, accounting for the different exponent bias
    // of float and half (127 versus 15).
    //

    register int s =  (i >> 16) & 0x00008000;
    register int e = ((i >> 23) & 0x000000ff) - (127 - 15);
    register int m =   i        & 0x007fffff;

    //
    // Now reassemble s, e and m into a half:
    //

    if (e <= 0)
    {
    if (e < -10)
    {
        //
        // E is less than -10.  The absolute value of f is
        // less than HALF_MIN (f may be a small normalized
        // float, a denormalized float or a zero).
        //
        // We convert f to a half zero with the same sign as f.
        //

        return s;
    }

    //
    // E is between -10 and 0.  F is a normalized float
    // whose magnitude is less than HALF_NRM_MIN.
    //
    // We convert f to a denormalized half.
    //

    //
    // Add an explicit leading 1 to the significand.
    //

    m = m | 0x00800000;

    //
    // Round to m to the nearest (10+e)-bit value (with e between
    // -10 and 0); in case of a tie, round to the nearest even value.
    //
    // Rounding may cause the significand to overflow and make
    // our number normalized.  Because of the way a half's bits
    // are laid out, we don't have to treat this case separately;
    // the code below will handle it correctly.
    //

    int t = 14 - e;
    int a = (1 << (t - 1)) - 1;
    int b = (m >> t) & 1;

    m = (m + a + b) >> t;

    //
    // Assemble the half from s, e (zero) and m.
    //

    return s | m;
    }
    else if (e == 0xff - (127 - 15))
    {
    if (m == 0)
    {
        //
        // F is an infinity; convert f to a half
        // infinity with the same sign as f.
        //

        return s | 0x7c00;
    }
    else
    {
        //
        // F is a NAN; we produce a half NAN that preserves
        // the sign bit and the 10 leftmost bits of the
        // significand of f, with one exception: If the 10
        // leftmost bits are all zero, the NAN would turn
        // into an infinity, so we have to set at least one
        // bit in the significand.
        //

        m >>= 13;
        return s | 0x7c00 | m | (m == 0);
    }
    }
    else
    {
    //
    // E is greater than zero.  F is a normalized float.
    // We try to convert f to a normalized half.
    //

    //
    // Round to m to the nearest 10-bit value.  In case of
    // a tie, round to the nearest even value.
    //

    m = m + 0x00000fff + ((m >> 13) & 1);

    if (m & 0x00800000)
    {
        m =  0;		// overflow in significand,
        e += 1;		// adjust exponent
    }

    //
    // Handle exponent overflow
    //

    if (e > 30)
    {
        overflow ();	// Cause a hardware floating point overflow;
        return s | 0x7c00;	// if this returns, the half becomes an
    }   			// infinity with the same sign as f.

    //
    // Assemble the half from s, e and m.
    //

    return s | (e << 10) | (m >> 13);
    }
}


//---------------------
// Stream I/O operators
//---------------------

ostream &
operator << (ostream &os, half h)
{
    os << float (h);
    return os;
}


istream &
operator >> (istream &is, half &h)
{
    float f;
    is >> f;
    h = half (f);
    return is;
}


//---------------------------------------
// Functions to print the bit-layout of
// floats and halfs, mostly for debugging
//---------------------------------------

void
printBits (ostream &os, half h)
{
    unsigned short b = h.bits();

    for (int i = 15; i >= 0; i--)
    {
    os << (((b >> i) & 1)? '1': '0');

    if (i == 15 || i == 10)
        os << ' ';
    }
}


void
printBits (ostream &os, float f)
{
    half::uif x;
    x.f = f;

    for (int i = 31; i >= 0; i--)
    {
    os << (((x.i >> i) & 1)? '1': '0');

    if (i == 31 || i == 23)
        os << ' ';
    }
}


void
printBits (char c[19], half h)
{
    unsigned short b = h.bits();

    for (int i = 15, j = 0; i >= 0; i--, j++)
    {
    c[j] = (((b >> i) & 1)? '1': '0');

    if (i == 15 || i == 10)
        c[++j] = ' ';
    }

    c[18] = 0;
}


void
printBits (char c[35], float f)
{
    half::uif x;
    x.f = f;

    for (int i = 31, j = 0; i >= 0; i--, j++)
    {
    c[j] = (((x.i >> i) & 1)? '1': '0');

    if (i == 31 || i == 23)
        c[++j] = ' ';
    }

    c[34] = 0;
}