kdtree_single_index.h 19.7 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
/***********************************************************************
 * Software License Agreement (BSD License)
 *
 * Copyright 2008-2009  Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
 * Copyright 2008-2009  David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
 *
 * THE BSD LICENSE
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *************************************************************************/

#ifndef OPENCV_FLANN_KDTREE_SINGLE_INDEX_H_
#define OPENCV_FLANN_KDTREE_SINGLE_INDEX_H_

#include <algorithm>
#include <map>
#include <cassert>
#include <cstring>

#include "general.h"
#include "nn_index.h"
#include "matrix.h"
#include "result_set.h"
#include "heap.h"
#include "allocator.h"
#include "random.h"
#include "saving.h"

namespace cvflann
{

struct KDTreeSingleIndexParams : public IndexParams
{
    KDTreeSingleIndexParams(int leaf_max_size = 10, bool reorder = true, int dim = -1)
    {
        (*this)["algorithm"] = FLANN_INDEX_KDTREE_SINGLE;
        (*this)["leaf_max_size"] = leaf_max_size;
        (*this)["reorder"] = reorder;
        (*this)["dim"] = dim;
    }
};


/**
 * Randomized kd-tree index
 *
 * Contains the k-d trees and other information for indexing a set of points
 * for nearest-neighbor matching.
 */
template <typename Distance>
class KDTreeSingleIndex : public NNIndex<Distance>
{
public:
    typedef typename Distance::ElementType ElementType;
    typedef typename Distance::ResultType DistanceType;


    /**
     * KDTree constructor
     *
     * Params:
     *          inputData = dataset with the input features
     *          params = parameters passed to the kdtree algorithm
     */
    KDTreeSingleIndex(const Matrix<ElementType>& inputData, const IndexParams& params = KDTreeSingleIndexParams(),
                      Distance d = Distance() ) :
        dataset_(inputData), index_params_(params), distance_(d)
    {
        size_ = dataset_.rows;
        dim_ = dataset_.cols;
        int dim_param = get_param(params,"dim",-1);
        if (dim_param>0) dim_ = dim_param;
        leaf_max_size_ = get_param(params,"leaf_max_size",10);
        reorder_ = get_param(params,"reorder",true);

        // Create a permutable array of indices to the input vectors.
        vind_.resize(size_);
        for (size_t i = 0; i < size_; i++) {
            vind_[i] = (int)i;
        }
    }

    KDTreeSingleIndex(const KDTreeSingleIndex&);
    KDTreeSingleIndex& operator=(const KDTreeSingleIndex&);

    /**
     * Standard destructor
     */
    ~KDTreeSingleIndex()
    {
        if (reorder_) delete[] data_.data;
    }

    /**
     * Builds the index
     */
    void buildIndex()
    {
        computeBoundingBox(root_bbox_);
        root_node_ = divideTree(0, (int)size_, root_bbox_ );   // construct the tree

        if (reorder_) {
            delete[] data_.data;
            data_ = cvflann::Matrix<ElementType>(new ElementType[size_*dim_], size_, dim_);
            for (size_t i=0; i<size_; ++i) {
                for (size_t j=0; j<dim_; ++j) {
                    data_[i][j] = dataset_[vind_[i]][j];
                }
            }
        }
        else {
            data_ = dataset_;
        }
    }

    flann_algorithm_t getType() const
    {
        return FLANN_INDEX_KDTREE_SINGLE;
    }


    void saveIndex(FILE* stream)
    {
        save_value(stream, size_);
        save_value(stream, dim_);
        save_value(stream, root_bbox_);
        save_value(stream, reorder_);
        save_value(stream, leaf_max_size_);
        save_value(stream, vind_);
        if (reorder_) {
            save_value(stream, data_);
        }
        save_tree(stream, root_node_);
    }


    void loadIndex(FILE* stream)
    {
        load_value(stream, size_);
        load_value(stream, dim_);
        load_value(stream, root_bbox_);
        load_value(stream, reorder_);
        load_value(stream, leaf_max_size_);
        load_value(stream, vind_);
        if (reorder_) {
            load_value(stream, data_);
        }
        else {
            data_ = dataset_;
        }
        load_tree(stream, root_node_);


        index_params_["algorithm"] = getType();
        index_params_["leaf_max_size"] = leaf_max_size_;
        index_params_["reorder"] = reorder_;
    }

    /**
     *  Returns size of index.
     */
    size_t size() const
    {
        return size_;
    }

    /**
     * Returns the length of an index feature.
     */
    size_t veclen() const
    {
        return dim_;
    }

    /**
     * Computes the inde memory usage
     * Returns: memory used by the index
     */
    int usedMemory() const
    {
        return (int)(pool_.usedMemory+pool_.wastedMemory+dataset_.rows*sizeof(int));  // pool memory and vind array memory
    }


    /**
     * \brief Perform k-nearest neighbor search
     * \param[in] queries The query points for which to find the nearest neighbors
     * \param[out] indices The indices of the nearest neighbors found
     * \param[out] dists Distances to the nearest neighbors found
     * \param[in] knn Number of nearest neighbors to return
     * \param[in] params Search parameters
     */
    void knnSearch(const Matrix<ElementType>& queries, Matrix<int>& indices, Matrix<DistanceType>& dists, int knn, const SearchParams& params)
    {
        assert(queries.cols == veclen());
        assert(indices.rows >= queries.rows);
        assert(dists.rows >= queries.rows);
        assert(int(indices.cols) >= knn);
        assert(int(dists.cols) >= knn);

        KNNSimpleResultSet<DistanceType> resultSet(knn);
        for (size_t i = 0; i < queries.rows; i++) {
            resultSet.init(indices[i], dists[i]);
            findNeighbors(resultSet, queries[i], params);
        }
    }

    IndexParams getParameters() const
    {
        return index_params_;
    }

    /**
     * Find set of nearest neighbors to vec. Their indices are stored inside
     * the result object.
     *
     * Params:
     *     result = the result object in which the indices of the nearest-neighbors are stored
     *     vec = the vector for which to search the nearest neighbors
     *     maxCheck = the maximum number of restarts (in a best-bin-first manner)
     */
    void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams)
    {
        float epsError = 1+get_param(searchParams,"eps",0.0f);

        std::vector<DistanceType> dists(dim_,0);
        DistanceType distsq = computeInitialDistances(vec, dists);
        searchLevel(result, vec, root_node_, distsq, dists, epsError);
    }

private:


    /*--------------------- Internal Data Structures --------------------------*/
    struct Node
    {
        /**
         * Indices of points in leaf node
         */
        int left, right;
        /**
         * Dimension used for subdivision.
         */
        int divfeat;
        /**
         * The values used for subdivision.
         */
        DistanceType divlow, divhigh;
        /**
         * The child nodes.
         */
        Node* child1, * child2;
    };
    typedef Node* NodePtr;


    struct Interval
    {
        DistanceType low, high;
    };

    typedef std::vector<Interval> BoundingBox;

    typedef BranchStruct<NodePtr, DistanceType> BranchSt;
    typedef BranchSt* Branch;




    void save_tree(FILE* stream, NodePtr tree)
    {
        save_value(stream, *tree);
        if (tree->child1!=NULL) {
            save_tree(stream, tree->child1);
        }
        if (tree->child2!=NULL) {
            save_tree(stream, tree->child2);
        }
    }


    void load_tree(FILE* stream, NodePtr& tree)
    {
        tree = pool_.allocate<Node>();
        load_value(stream, *tree);
        if (tree->child1!=NULL) {
            load_tree(stream, tree->child1);
        }
        if (tree->child2!=NULL) {
            load_tree(stream, tree->child2);
        }
    }


    void computeBoundingBox(BoundingBox& bbox)
    {
        bbox.resize(dim_);
        for (size_t i=0; i<dim_; ++i) {
            bbox[i].low = (DistanceType)dataset_[0][i];
            bbox[i].high = (DistanceType)dataset_[0][i];
        }
        for (size_t k=1; k<dataset_.rows; ++k) {
            for (size_t i=0; i<dim_; ++i) {
                if (dataset_[k][i]<bbox[i].low) bbox[i].low = (DistanceType)dataset_[k][i];
                if (dataset_[k][i]>bbox[i].high) bbox[i].high = (DistanceType)dataset_[k][i];
            }
        }
    }


    /**
     * Create a tree node that subdivides the list of vecs from vind[first]
     * to vind[last].  The routine is called recursively on each sublist.
     * Place a pointer to this new tree node in the location pTree.
     *
     * Params: pTree = the new node to create
     *                  first = index of the first vector
     *                  last = index of the last vector
     */
    NodePtr divideTree(int left, int right, BoundingBox& bbox)
    {
        NodePtr node = pool_.allocate<Node>(); // allocate memory

        /* If too few exemplars remain, then make this a leaf node. */
        if ( (right-left) <= leaf_max_size_) {
            node->child1 = node->child2 = NULL;    /* Mark as leaf node. */
            node->left = left;
            node->right = right;

            // compute bounding-box of leaf points
            for (size_t i=0; i<dim_; ++i) {
                bbox[i].low = (DistanceType)dataset_[vind_[left]][i];
                bbox[i].high = (DistanceType)dataset_[vind_[left]][i];
            }
            for (int k=left+1; k<right; ++k) {
                for (size_t i=0; i<dim_; ++i) {
                    if (bbox[i].low>dataset_[vind_[k]][i]) bbox[i].low=(DistanceType)dataset_[vind_[k]][i];
                    if (bbox[i].high<dataset_[vind_[k]][i]) bbox[i].high=(DistanceType)dataset_[vind_[k]][i];
                }
            }
        }
        else {
            int idx;
            int cutfeat;
            DistanceType cutval;
            middleSplit_(&vind_[0]+left, right-left, idx, cutfeat, cutval, bbox);

            node->divfeat = cutfeat;

            BoundingBox left_bbox(bbox);
            left_bbox[cutfeat].high = cutval;
            node->child1 = divideTree(left, left+idx, left_bbox);

            BoundingBox right_bbox(bbox);
            right_bbox[cutfeat].low = cutval;
            node->child2 = divideTree(left+idx, right, right_bbox);

            node->divlow = left_bbox[cutfeat].high;
            node->divhigh = right_bbox[cutfeat].low;

            for (size_t i=0; i<dim_; ++i) {
                bbox[i].low = std::min(left_bbox[i].low, right_bbox[i].low);
                bbox[i].high = std::max(left_bbox[i].high, right_bbox[i].high);
            }
        }

        return node;
    }

    void computeMinMax(int* ind, int count, int dim, ElementType& min_elem, ElementType& max_elem)
    {
        min_elem = dataset_[ind[0]][dim];
        max_elem = dataset_[ind[0]][dim];
        for (int i=1; i<count; ++i) {
            ElementType val = dataset_[ind[i]][dim];
            if (val<min_elem) min_elem = val;
            if (val>max_elem) max_elem = val;
        }
    }

    void middleSplit(int* ind, int count, int& index, int& cutfeat, DistanceType& cutval, const BoundingBox& bbox)
    {
        // find the largest span from the approximate bounding box
        ElementType max_span = bbox[0].high-bbox[0].low;
        cutfeat = 0;
        cutval = (bbox[0].high+bbox[0].low)/2;
        for (size_t i=1; i<dim_; ++i) {
            ElementType span = bbox[i].high-bbox[i].low;
            if (span>max_span) {
                max_span = span;
                cutfeat = i;
                cutval = (bbox[i].high+bbox[i].low)/2;
            }
        }

        // compute exact span on the found dimension
        ElementType min_elem, max_elem;
        computeMinMax(ind, count, cutfeat, min_elem, max_elem);
        cutval = (min_elem+max_elem)/2;
        max_span = max_elem - min_elem;

        // check if a dimension of a largest span exists
        size_t k = cutfeat;
        for (size_t i=0; i<dim_; ++i) {
            if (i==k) continue;
            ElementType span = bbox[i].high-bbox[i].low;
            if (span>max_span) {
                computeMinMax(ind, count, i, min_elem, max_elem);
                span = max_elem - min_elem;
                if (span>max_span) {
                    max_span = span;
                    cutfeat = i;
                    cutval = (min_elem+max_elem)/2;
                }
            }
        }
        int lim1, lim2;
        planeSplit(ind, count, cutfeat, cutval, lim1, lim2);

        if (lim1>count/2) index = lim1;
        else if (lim2<count/2) index = lim2;
        else index = count/2;
    }


    void middleSplit_(int* ind, int count, int& index, int& cutfeat, DistanceType& cutval, const BoundingBox& bbox)
    {
        const float EPS=0.00001f;
        DistanceType max_span = bbox[0].high-bbox[0].low;
        for (size_t i=1; i<dim_; ++i) {
            DistanceType span = bbox[i].high-bbox[i].low;
            if (span>max_span) {
                max_span = span;
            }
        }
        DistanceType max_spread = -1;
        cutfeat = 0;
        for (size_t i=0; i<dim_; ++i) {
            DistanceType span = bbox[i].high-bbox[i].low;
            if (span>(DistanceType)((1-EPS)*max_span)) {
                ElementType min_elem, max_elem;
                computeMinMax(ind, count, cutfeat, min_elem, max_elem);
                DistanceType spread = (DistanceType)(max_elem-min_elem);
                if (spread>max_spread) {
                    cutfeat = (int)i;
                    max_spread = spread;
                }
            }
        }
        // split in the middle
        DistanceType split_val = (bbox[cutfeat].low+bbox[cutfeat].high)/2;
        ElementType min_elem, max_elem;
        computeMinMax(ind, count, cutfeat, min_elem, max_elem);

        if (split_val<min_elem) cutval = (DistanceType)min_elem;
        else if (split_val>max_elem) cutval = (DistanceType)max_elem;
        else cutval = split_val;

        int lim1, lim2;
        planeSplit(ind, count, cutfeat, cutval, lim1, lim2);

        if (lim1>count/2) index = lim1;
        else if (lim2<count/2) index = lim2;
        else index = count/2;
    }


    /**
     *  Subdivide the list of points by a plane perpendicular on axe corresponding
     *  to the 'cutfeat' dimension at 'cutval' position.
     *
     *  On return:
     *  dataset[ind[0..lim1-1]][cutfeat]<cutval
     *  dataset[ind[lim1..lim2-1]][cutfeat]==cutval
     *  dataset[ind[lim2..count]][cutfeat]>cutval
     */
    void planeSplit(int* ind, int count, int cutfeat, DistanceType cutval, int& lim1, int& lim2)
    {
        /* Move vector indices for left subtree to front of list. */
        int left = 0;
        int right = count-1;
        for (;; ) {
            while (left<=right && dataset_[ind[left]][cutfeat]<cutval) ++left;
            while (left<=right && dataset_[ind[right]][cutfeat]>=cutval) --right;
            if (left>right) break;
            std::swap(ind[left], ind[right]); ++left; --right;
        }
        /* If either list is empty, it means that all remaining features
         * are identical. Split in the middle to maintain a balanced tree.
         */
        lim1 = left;
        right = count-1;
        for (;; ) {
            while (left<=right && dataset_[ind[left]][cutfeat]<=cutval) ++left;
            while (left<=right && dataset_[ind[right]][cutfeat]>cutval) --right;
            if (left>right) break;
            std::swap(ind[left], ind[right]); ++left; --right;
        }
        lim2 = left;
    }

    DistanceType computeInitialDistances(const ElementType* vec, std::vector<DistanceType>& dists)
    {
        DistanceType distsq = 0.0;

        for (size_t i = 0; i < dim_; ++i) {
            if (vec[i] < root_bbox_[i].low) {
                dists[i] = distance_.accum_dist(vec[i], root_bbox_[i].low, (int)i);
                distsq += dists[i];
            }
            if (vec[i] > root_bbox_[i].high) {
                dists[i] = distance_.accum_dist(vec[i], root_bbox_[i].high, (int)i);
                distsq += dists[i];
            }
        }

        return distsq;
    }

    /**
     * Performs an exact search in the tree starting from a node.
     */
    void searchLevel(ResultSet<DistanceType>& result_set, const ElementType* vec, const NodePtr node, DistanceType mindistsq,
                     std::vector<DistanceType>& dists, const float epsError)
    {
        /* If this is a leaf node, then do check and return. */
        if ((node->child1 == NULL)&&(node->child2 == NULL)) {
            DistanceType worst_dist = result_set.worstDist();
            for (int i=node->left; i<node->right; ++i) {
                int index = reorder_ ? i : vind_[i];
                DistanceType dist = distance_(vec, data_[index], dim_, worst_dist);
                if (dist<worst_dist) {
                    result_set.addPoint(dist,vind_[i]);
                }
            }
            return;
        }

        /* Which child branch should be taken first? */
        int idx = node->divfeat;
        ElementType val = vec[idx];
        DistanceType diff1 = val - node->divlow;
        DistanceType diff2 = val - node->divhigh;

        NodePtr bestChild;
        NodePtr otherChild;
        DistanceType cut_dist;
        if ((diff1+diff2)<0) {
            bestChild = node->child1;
            otherChild = node->child2;
            cut_dist = distance_.accum_dist(val, node->divhigh, idx);
        }
        else {
            bestChild = node->child2;
            otherChild = node->child1;
            cut_dist = distance_.accum_dist( val, node->divlow, idx);
        }

        /* Call recursively to search next level down. */
        searchLevel(result_set, vec, bestChild, mindistsq, dists, epsError);

        DistanceType dst = dists[idx];
        mindistsq = mindistsq + cut_dist - dst;
        dists[idx] = cut_dist;
        if (mindistsq*epsError<=result_set.worstDist()) {
            searchLevel(result_set, vec, otherChild, mindistsq, dists, epsError);
        }
        dists[idx] = dst;
    }

private:

    /**
     * The dataset used by this index
     */
    const Matrix<ElementType> dataset_;

    IndexParams index_params_;

    int leaf_max_size_;
    bool reorder_;


    /**
     *  Array of indices to vectors in the dataset.
     */
    std::vector<int> vind_;

    Matrix<ElementType> data_;

    size_t size_;
    size_t dim_;

    /**
     * Array of k-d trees used to find neighbours.
     */
    NodePtr root_node_;

    BoundingBox root_bbox_;

    /**
     * Pooled memory allocator.
     *
     * Using a pooled memory allocator is more efficient
     * than allocating memory directly when there is a large
     * number small of memory allocations.
     */
    PooledAllocator pool_;

    Distance distance_;
};   // class KDTree

}

#endif //OPENCV_FLANN_KDTREE_SINGLE_INDEX_H_