test_kalman.cpp 4.89 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
//    Jin Ma, jin@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "test_precomp.hpp"

#ifdef HAVE_OPENCL

using namespace cv;
using namespace cv::ocl;
using namespace cvtest;
using namespace testing;
using namespace std;

//////////////////////////////////////////////////////////////////////////

PARAM_TEST_CASE(Kalman, int, int)
{
    int size_;
    int iteration;
    virtual void SetUp()
    {
        size_ = GET_PARAM(0);
        iteration = GET_PARAM(1);
    }
};

OCL_TEST_P(Kalman, Accuracy)
{
    const int Dim = size_;
    const int Steps = iteration;
    const double max_init = 1;
    const double max_noise = 0.1;

    Mat sample_mat(Dim, 1, CV_32F), temp_mat;
    oclMat Sample(Dim, 1, CV_32F);
    oclMat Temp(Dim, 1, CV_32F);
    Mat Temp_cpu(Dim, 1, CV_32F);

    Size size(Sample.cols, Sample.rows);

    sample_mat =  randomMat(size, Sample.type(), -max_init, max_init, false);
    Sample.upload(sample_mat);

    //ocl start
    cv::ocl::KalmanFilter kalman_filter_ocl;
    kalman_filter_ocl.init(Dim, Dim);

    cv::ocl::setIdentity(kalman_filter_ocl.errorCovPre, 1);
    cv::ocl::setIdentity(kalman_filter_ocl.measurementMatrix, 1);
    cv::ocl::setIdentity(kalman_filter_ocl.errorCovPost, 1);

    kalman_filter_ocl.measurementNoiseCov.setTo(Scalar::all(0));
    kalman_filter_ocl.statePre.setTo(Scalar::all(0));
    kalman_filter_ocl.statePost.setTo(Scalar::all(0));

    kalman_filter_ocl.correct(Sample);
    //ocl end

    //cpu start
    cv::KalmanFilter kalman_filter_cpu;

    kalman_filter_cpu.init(Dim, Dim);

    cv::setIdentity(kalman_filter_cpu.errorCovPre, 1);
    cv::setIdentity(kalman_filter_cpu.measurementMatrix, 1);
    cv::setIdentity(kalman_filter_cpu.errorCovPost, 1);

    kalman_filter_cpu.measurementNoiseCov.setTo(Scalar::all(0));
    kalman_filter_cpu.statePre.setTo(Scalar::all(0));
    kalman_filter_cpu.statePost.setTo(Scalar::all(0));

    kalman_filter_cpu.correct(sample_mat);
    //cpu end
    //test begin
    for(int i = 0; i<Steps; i++)
    {
        kalman_filter_ocl.predict();
        kalman_filter_cpu.predict();

        cv::gemm(kalman_filter_cpu.transitionMatrix, sample_mat, 1, cv::Mat(), 0, Temp_cpu);

        Size size1(Temp.cols, Temp.rows);
        Mat temp = randomMat(size1, Temp.type(), 0, 0xffff, false);


        cv::multiply(2, temp, temp);

        cv::subtract(temp, 1, temp);

        cv::multiply(max_noise, temp, temp);

        cv::add(temp, Temp_cpu, Temp_cpu);

        Temp.upload(Temp_cpu);
        Temp.copyTo(Sample);
        Temp_cpu.copyTo(sample_mat);

        kalman_filter_ocl.correct(Temp);
        kalman_filter_cpu.correct(Temp_cpu);
    }
    //test end
    EXPECT_MAT_NEAR(kalman_filter_cpu.statePost, kalman_filter_ocl.statePost, 0);
}

INSTANTIATE_TEST_CASE_P(OCL_Video, Kalman, Combine(Values(3, 7), Values(30)));

#endif // HAVE_OPENCL