composite_index.h 5.85 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
/***********************************************************************
 * Software License Agreement (BSD License)
 *
 * Copyright 2008-2009  Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
 * Copyright 2008-2009  David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
 *
 * THE BSD LICENSE
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *************************************************************************/

#ifndef OPENCV_FLANN_COMPOSITE_INDEX_H_
#define OPENCV_FLANN_COMPOSITE_INDEX_H_

#include "general.h"
#include "nn_index.h"
#include "kdtree_index.h"
#include "kmeans_index.h"

namespace cvflann
{

/**
 * Index parameters for the CompositeIndex.
 */
struct CompositeIndexParams : public IndexParams
{
    CompositeIndexParams(int trees = 4, int branching = 32, int iterations = 11,
                         flann_centers_init_t centers_init = FLANN_CENTERS_RANDOM, float cb_index = 0.2 )
    {
        (*this)["algorithm"] = FLANN_INDEX_KMEANS;
        // number of randomized trees to use (for kdtree)
        (*this)["trees"] = trees;
        // branching factor
        (*this)["branching"] = branching;
        // max iterations to perform in one kmeans clustering (kmeans tree)
        (*this)["iterations"] = iterations;
        // algorithm used for picking the initial cluster centers for kmeans tree
        (*this)["centers_init"] = centers_init;
        // cluster boundary index. Used when searching the kmeans tree
        (*this)["cb_index"] = cb_index;
    }
};


/**
 * This index builds a kd-tree index and a k-means index and performs nearest
 * neighbour search both indexes. This gives a slight boost in search performance
 * as some of the neighbours that are missed by one index are found by the other.
 */
template <typename Distance>
class CompositeIndex : public NNIndex<Distance>
{
public:
    typedef typename Distance::ElementType ElementType;
    typedef typename Distance::ResultType DistanceType;

    /**
     * Index constructor
     * @param inputData dataset containing the points to index
     * @param params Index parameters
     * @param d Distance functor
     * @return
     */
    CompositeIndex(const Matrix<ElementType>& inputData, const IndexParams& params = CompositeIndexParams(),
                   Distance d = Distance()) : index_params_(params)
    {
        kdtree_index_ = new KDTreeIndex<Distance>(inputData, params, d);
        kmeans_index_ = new KMeansIndex<Distance>(inputData, params, d);

    }

    CompositeIndex(const CompositeIndex&);
    CompositeIndex& operator=(const CompositeIndex&);

    virtual ~CompositeIndex()
    {
        delete kdtree_index_;
        delete kmeans_index_;
    }

    /**
     * @return The index type
     */
    flann_algorithm_t getType() const
    {
        return FLANN_INDEX_COMPOSITE;
    }

    /**
     * @return Size of the index
     */
    size_t size() const
    {
        return kdtree_index_->size();
    }

    /**
     * \returns The dimensionality of the features in this index.
     */
    size_t veclen() const
    {
        return kdtree_index_->veclen();
    }

    /**
     * \returns The amount of memory (in bytes) used by the index.
     */
    int usedMemory() const
    {
        return kmeans_index_->usedMemory() + kdtree_index_->usedMemory();
    }

    /**
     * \brief Builds the index
     */
    void buildIndex()
    {
        Logger::info("Building kmeans tree...\n");
        kmeans_index_->buildIndex();
        Logger::info("Building kdtree tree...\n");
        kdtree_index_->buildIndex();
    }

    /**
     * \brief Saves the index to a stream
     * \param stream The stream to save the index to
     */
    void saveIndex(FILE* stream)
    {
        kmeans_index_->saveIndex(stream);
        kdtree_index_->saveIndex(stream);
    }

    /**
     * \brief Loads the index from a stream
     * \param stream The stream from which the index is loaded
     */
    void loadIndex(FILE* stream)
    {
        kmeans_index_->loadIndex(stream);
        kdtree_index_->loadIndex(stream);
    }

    /**
     * \returns The index parameters
     */
    IndexParams getParameters() const
    {
        return index_params_;
    }

    /**
     * \brief Method that searches for nearest-neighbours
     */
    void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams)
    {
        kmeans_index_->findNeighbors(result, vec, searchParams);
        kdtree_index_->findNeighbors(result, vec, searchParams);
    }

private:
    /** The k-means index */
    KMeansIndex<Distance>* kmeans_index_;

    /** The kd-tree index */
    KDTreeIndex<Distance>* kdtree_index_;

    /** The index parameters */
    const IndexParams index_params_;
};

}

#endif //OPENCV_FLANN_COMPOSITE_INDEX_H_