lda.cpp 37.9 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Copyright (c) 2011. Philipp Wagner <bytefish[at]gmx[dot]de>.
 * Released to public domain under terms of the BSD Simplified license.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *   * Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above copyright
 *     notice, this list of conditions and the following disclaimer in the
 *     documentation and/or other materials provided with the distribution.
 *   * Neither the name of the organization nor the names of its contributors
 *     may be used to endorse or promote products derived from this software
 *     without specific prior written permission.
 *
 *   See <http://www.opensource.org/licenses/bsd-license>
 */

#include "precomp.hpp"
#include <iostream>
#include <map>
#include <set>

namespace cv
{

wester committed
27 28 29 30 31
using std::map;
using std::set;
using std::cout;
using std::endl;

wester committed
32 33
// Removes duplicate elements in a given vector.
template<typename _Tp>
wester committed
34 35 36 37
inline vector<_Tp> remove_dups(const vector<_Tp>& src) {
    typedef typename set<_Tp>::const_iterator constSetIterator;
    typedef typename vector<_Tp>::const_iterator constVecIterator;
    set<_Tp> set_elems;
wester committed
38 39
    for (constVecIterator it = src.begin(); it != src.end(); ++it)
        set_elems.insert(*it);
wester committed
40
    vector<_Tp> elems;
wester committed
41 42 43 44 45 46 47 48 49
    for (constSetIterator it = set_elems.begin(); it != set_elems.end(); ++it)
        elems.push_back(*it);
    return elems;
}

static Mat argsort(InputArray _src, bool ascending=true)
{
    Mat src = _src.getMat();
    if (src.rows != 1 && src.cols != 1) {
wester committed
50 51
        string error_message = "Wrong shape of input matrix! Expected a matrix with one row or column.";
        CV_Error(CV_StsBadArg, error_message);
wester committed
52
    }
wester committed
53
    int flags = CV_SORT_EVERY_ROW+(ascending ? CV_SORT_ASCENDING : CV_SORT_DESCENDING);
wester committed
54 55 56 57 58 59 60
    Mat sorted_indices;
    sortIdx(src.reshape(1,1),sorted_indices,flags);
    return sorted_indices;
}

static Mat asRowMatrix(InputArrayOfArrays src, int rtype, double alpha=1, double beta=0) {
    // make sure the input data is a vector of matrices or vector of vector
a  
Kai Westerkamp committed
61
    if(src.kind() != _InputArray::STD_VECTOR_MAT && src.kind() != _InputArray::STD_VECTOR_VECTOR) {
wester committed
62 63
        string error_message = "The data is expected as InputArray::STD_VECTOR_MAT (a std::vector<Mat>) or _InputArray::STD_VECTOR_VECTOR (a std::vector< vector<...> >).";
        CV_Error(CV_StsBadArg, error_message);
wester committed
64 65 66 67 68 69 70 71 72 73 74 75 76 77
    }
    // number of samples
    size_t n = src.total();
    // return empty matrix if no matrices given
    if(n == 0)
        return Mat();
    // dimensionality of (reshaped) samples
    size_t d = src.getMat(0).total();
    // create data matrix
    Mat data((int)n, (int)d, rtype);
    // now copy data
    for(int i = 0; i < (int)n; i++) {
        // make sure data can be reshaped, throw exception if not!
        if(src.getMat(i).total() != d) {
wester committed
78 79
            string error_message = format("Wrong number of elements in matrix #%d! Expected %d was %d.", i, (int)d, (int)src.getMat(i).total());
            CV_Error(CV_StsBadArg, error_message);
wester committed
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
        }
        // get a hold of the current row
        Mat xi = data.row(i);
        // make reshape happy by cloning for non-continuous matrices
        if(src.getMat(i).isContinuous()) {
            src.getMat(i).reshape(1, 1).convertTo(xi, rtype, alpha, beta);
        } else {
            src.getMat(i).clone().reshape(1, 1).convertTo(xi, rtype, alpha, beta);
        }
    }
    return data;
}

static void sortMatrixColumnsByIndices(InputArray _src, InputArray _indices, OutputArray _dst) {
    if(_indices.getMat().type() != CV_32SC1) {
wester committed
95
        CV_Error(CV_StsUnsupportedFormat, "cv::sortColumnsByIndices only works on integer indices!");
wester committed
96 97
    }
    Mat src = _src.getMat();
wester committed
98
    vector<int> indices = _indices.getMat();
wester committed
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
    _dst.create(src.rows, src.cols, src.type());
    Mat dst = _dst.getMat();
    for(size_t idx = 0; idx < indices.size(); idx++) {
        Mat originalCol = src.col(indices[idx]);
        Mat sortedCol = dst.col((int)idx);
        originalCol.copyTo(sortedCol);
    }
}

static Mat sortMatrixColumnsByIndices(InputArray src, InputArray indices) {
    Mat dst;
    sortMatrixColumnsByIndices(src, indices, dst);
    return dst;
}


template<typename _Tp> static bool
isSymmetric_(InputArray src) {
    Mat _src = src.getMat();
    if(_src.cols != _src.rows)
        return false;
    for (int i = 0; i < _src.rows; i++) {
        for (int j = 0; j < _src.cols; j++) {
            _Tp a = _src.at<_Tp> (i, j);
            _Tp b = _src.at<_Tp> (j, i);
            if (a != b) {
                return false;
            }
        }
    }
    return true;
}

template<typename _Tp> static bool
isSymmetric_(InputArray src, double eps) {
    Mat _src = src.getMat();
    if(_src.cols != _src.rows)
        return false;
    for (int i = 0; i < _src.rows; i++) {
        for (int j = 0; j < _src.cols; j++) {
            _Tp a = _src.at<_Tp> (i, j);
            _Tp b = _src.at<_Tp> (j, i);
            if (std::abs(a - b) > eps) {
                return false;
            }
        }
    }
    return true;
}

static bool isSymmetric(InputArray src, double eps=1e-16)
{
    Mat m = src.getMat();
    switch (m.type()) {
        case CV_8SC1: return isSymmetric_<char>(m); break;
        case CV_8UC1:
            return isSymmetric_<unsigned char>(m); break;
        case CV_16SC1:
            return isSymmetric_<short>(m); break;
        case CV_16UC1:
            return isSymmetric_<unsigned short>(m); break;
        case CV_32SC1:
            return isSymmetric_<int>(m); break;
        case CV_32FC1:
            return isSymmetric_<float>(m, eps); break;
        case CV_64FC1:
            return isSymmetric_<double>(m, eps); break;
        default:
            break;
    }
    return false;
}


//------------------------------------------------------------------------------
// cv::subspaceProject
//------------------------------------------------------------------------------
wester committed
176
Mat subspaceProject(InputArray _W, InputArray _mean, InputArray _src) {
wester committed
177 178 179 180 181 182 183 184 185
    // get data matrices
    Mat W = _W.getMat();
    Mat mean = _mean.getMat();
    Mat src = _src.getMat();
    // get number of samples and dimension
    int n = src.rows;
    int d = src.cols;
    // make sure the data has the correct shape
    if(W.rows != d) {
wester committed
186 187
        string error_message = format("Wrong shapes for given matrices. Was size(src) = (%d,%d), size(W) = (%d,%d).", src.rows, src.cols, W.rows, W.cols);
        CV_Error(CV_StsBadArg, error_message);
wester committed
188 189 190
    }
    // make sure mean is correct if not empty
    if(!mean.empty() && (mean.total() != (size_t) d)) {
wester committed
191 192
        string error_message = format("Wrong mean shape for the given data matrix. Expected %d, but was %d.", d, mean.total());
        CV_Error(CV_StsBadArg, error_message);
wester committed
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
    }
    // create temporary matrices
    Mat X, Y;
    // make sure you operate on correct type
    src.convertTo(X, W.type());
    // safe to do, because of above assertion
    if(!mean.empty()) {
        for(int i=0; i<n; i++) {
            Mat r_i = X.row(i);
            subtract(r_i, mean.reshape(1,1), r_i);
        }
    }
    // finally calculate projection as Y = (X-mean)*W
    gemm(X, W, 1.0, Mat(), 0.0, Y);
    return Y;
}

//------------------------------------------------------------------------------
// cv::subspaceReconstruct
//------------------------------------------------------------------------------
wester committed
213
Mat subspaceReconstruct(InputArray _W, InputArray _mean, InputArray _src)
wester committed
214 215 216 217 218 219 220 221 222 223
{
    // get data matrices
    Mat W = _W.getMat();
    Mat mean = _mean.getMat();
    Mat src = _src.getMat();
    // get number of samples and dimension
    int n = src.rows;
    int d = src.cols;
    // make sure the data has the correct shape
    if(W.cols != d) {
wester committed
224 225
        string error_message = format("Wrong shapes for given matrices. Was size(src) = (%d,%d), size(W) = (%d,%d).", src.rows, src.cols, W.rows, W.cols);
        CV_Error(CV_StsBadArg, error_message);
wester committed
226 227 228
    }
    // make sure mean is correct if not empty
    if(!mean.empty() && (mean.total() != (size_t) W.rows)) {
wester committed
229 230
        string error_message = format("Wrong mean shape for the given eigenvector matrix. Expected %d, but was %d.", W.cols, mean.total());
        CV_Error(CV_StsBadArg, error_message);
wester committed
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
    }
    // initialize temporary matrices
    Mat X, Y;
    // copy data & make sure we are using the correct type
    src.convertTo(Y, W.type());
    // calculate the reconstruction
    gemm(Y, W, 1.0, Mat(), 0.0, X, GEMM_2_T);
    // safe to do because of above assertion
    if(!mean.empty()) {
        for(int i=0; i<n; i++) {
            Mat r_i = X.row(i);
            add(r_i, mean.reshape(1,1), r_i);
        }
    }
    return X;
}


class EigenvalueDecomposition {
private:

    // Holds the data dimension.
    int n;

    // Stores real/imag part of a complex division.
    double cdivr, cdivi;

    // Pointer to internal memory.
    double *d, *e, *ort;
    double **V, **H;

    // Holds the computed eigenvalues.
    Mat _eigenvalues;

    // Holds the computed eigenvectors.
    Mat _eigenvectors;

    // Allocates memory.
    template<typename _Tp>
    _Tp *alloc_1d(int m) {
        return new _Tp[m];
    }

    // Allocates memory.
    template<typename _Tp>
    _Tp *alloc_1d(int m, _Tp val) {
        _Tp *arr = alloc_1d<_Tp> (m);
        for (int i = 0; i < m; i++)
            arr[i] = val;
        return arr;
    }

    // Allocates memory.
    template<typename _Tp>
    _Tp **alloc_2d(int m, int _n) {
        _Tp **arr = new _Tp*[m];
        for (int i = 0; i < m; i++)
            arr[i] = new _Tp[_n];
        return arr;
    }

    // Allocates memory.
    template<typename _Tp>
    _Tp **alloc_2d(int m, int _n, _Tp val) {
        _Tp **arr = alloc_2d<_Tp> (m, _n);
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < _n; j++) {
                arr[i][j] = val;
            }
        }
        return arr;
    }

    void cdiv(double xr, double xi, double yr, double yi) {
        double r, dv;
        if (std::abs(yr) > std::abs(yi)) {
            r = yi / yr;
            dv = yr + r * yi;
            cdivr = (xr + r * xi) / dv;
            cdivi = (xi - r * xr) / dv;
        } else {
            r = yr / yi;
            dv = yi + r * yr;
            cdivr = (r * xr + xi) / dv;
            cdivi = (r * xi - xr) / dv;
        }
    }

    // Nonsymmetric reduction from Hessenberg to real Schur form.

    void hqr2() {

        //  This is derived from the Algol procedure hqr2,
        //  by Martin and Wilkinson, Handbook for Auto. Comp.,
        //  Vol.ii-Linear Algebra, and the corresponding
        //  Fortran subroutine in EISPACK.

        // Initialize
        int nn = this->n;
        int n1 = nn - 1;
        int low = 0;
        int high = nn - 1;
wester committed
333
        double eps = pow(2.0, -52.0);
wester committed
334 335 336 337 338 339 340 341 342 343 344
        double exshift = 0.0;
        double p = 0, q = 0, r = 0, s = 0, z = 0, t, w, x, y;

        // Store roots isolated by balanc and compute matrix norm

        double norm = 0.0;
        for (int i = 0; i < nn; i++) {
            if (i < low || i > high) {
                d[i] = H[i][i];
                e[i] = 0.0;
            }
wester committed
345
            for (int j = max(i - 1, 0); j < nn; j++) {
wester committed
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
                norm = norm + std::abs(H[i][j]);
            }
        }

        // Outer loop over eigenvalue index
        int iter = 0;
        while (n1 >= low) {

            // Look for single small sub-diagonal element
            int l = n1;
            while (l > low) {
                s = std::abs(H[l - 1][l - 1]) + std::abs(H[l][l]);
                if (s == 0.0) {
                    s = norm;
                }
                if (std::abs(H[l][l - 1]) < eps * s) {
                    break;
                }
                l--;
            }

            // Check for convergence
            // One root found

            if (l == n1) {
                H[n1][n1] = H[n1][n1] + exshift;
                d[n1] = H[n1][n1];
                e[n1] = 0.0;
                n1--;
                iter = 0;

                // Two roots found

            } else if (l == n1 - 1) {
                w = H[n1][n1 - 1] * H[n1 - 1][n1];
                p = (H[n1 - 1][n1 - 1] - H[n1][n1]) / 2.0;
                q = p * p + w;
wester committed
383
                z = sqrt(std::abs(q));
wester committed
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
                H[n1][n1] = H[n1][n1] + exshift;
                H[n1 - 1][n1 - 1] = H[n1 - 1][n1 - 1] + exshift;
                x = H[n1][n1];

                // Real pair

                if (q >= 0) {
                    if (p >= 0) {
                        z = p + z;
                    } else {
                        z = p - z;
                    }
                    d[n1 - 1] = x + z;
                    d[n1] = d[n1 - 1];
                    if (z != 0.0) {
                        d[n1] = x - w / z;
                    }
                    e[n1 - 1] = 0.0;
                    e[n1] = 0.0;
                    x = H[n1][n1 - 1];
                    s = std::abs(x) + std::abs(z);
                    p = x / s;
                    q = z / s;
wester committed
407
                    r = sqrt(p * p + q * q);
wester committed
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
                    p = p / r;
                    q = q / r;

                    // Row modification

                    for (int j = n1 - 1; j < nn; j++) {
                        z = H[n1 - 1][j];
                        H[n1 - 1][j] = q * z + p * H[n1][j];
                        H[n1][j] = q * H[n1][j] - p * z;
                    }

                    // Column modification

                    for (int i = 0; i <= n1; i++) {
                        z = H[i][n1 - 1];
                        H[i][n1 - 1] = q * z + p * H[i][n1];
                        H[i][n1] = q * H[i][n1] - p * z;
                    }

                    // Accumulate transformations

                    for (int i = low; i <= high; i++) {
                        z = V[i][n1 - 1];
                        V[i][n1 - 1] = q * z + p * V[i][n1];
                        V[i][n1] = q * V[i][n1] - p * z;
                    }

                    // Complex pair

                } else {
                    d[n1 - 1] = x + p;
                    d[n1] = x + p;
                    e[n1 - 1] = z;
                    e[n1] = -z;
                }
                n1 = n1 - 2;
                iter = 0;

                // No convergence yet

            } else {

                // Form shift

                x = H[n1][n1];
                y = 0.0;
                w = 0.0;
                if (l < n1) {
                    y = H[n1 - 1][n1 - 1];
                    w = H[n1][n1 - 1] * H[n1 - 1][n1];
                }

                // Wilkinson's original ad hoc shift

                if (iter == 10) {
                    exshift += x;
                    for (int i = low; i <= n1; i++) {
                        H[i][i] -= x;
                    }
                    s = std::abs(H[n1][n1 - 1]) + std::abs(H[n1 - 1][n1 - 2]);
                    x = y = 0.75 * s;
                    w = -0.4375 * s * s;
                }

                // MATLAB's new ad hoc shift

                if (iter == 30) {
                    s = (y - x) / 2.0;
                    s = s * s + w;
                    if (s > 0) {
wester committed
478
                        s = sqrt(s);
wester committed
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
                        if (y < x) {
                            s = -s;
                        }
                        s = x - w / ((y - x) / 2.0 + s);
                        for (int i = low; i <= n1; i++) {
                            H[i][i] -= s;
                        }
                        exshift += s;
                        x = y = w = 0.964;
                    }
                }

                iter = iter + 1; // (Could check iteration count here.)

                // Look for two consecutive small sub-diagonal elements
                int m = n1 - 2;
                while (m >= l) {
                    z = H[m][m];
                    r = x - z;
                    s = y - z;
                    p = (r * s - w) / H[m + 1][m] + H[m][m + 1];
                    q = H[m + 1][m + 1] - z - r - s;
                    r = H[m + 2][m + 1];
                    s = std::abs(p) + std::abs(q) + std::abs(r);
                    p = p / s;
                    q = q / s;
                    r = r / s;
                    if (m == l) {
                        break;
                    }
                    if (std::abs(H[m][m - 1]) * (std::abs(q) + std::abs(r)) < eps * (std::abs(p)
                                                                                     * (std::abs(H[m - 1][m - 1]) + std::abs(z) + std::abs(
                                                                                                                                           H[m + 1][m + 1])))) {
                        break;
                    }
                    m--;
                }

                for (int i = m + 2; i <= n1; i++) {
                    H[i][i - 2] = 0.0;
                    if (i > m + 2) {
                        H[i][i - 3] = 0.0;
                    }
                }

                // Double QR step involving rows l:n and columns m:n

                for (int k = m; k <= n1 - 1; k++) {
                    bool notlast = (k != n1 - 1);
                    if (k != m) {
                        p = H[k][k - 1];
                        q = H[k + 1][k - 1];
                        r = (notlast ? H[k + 2][k - 1] : 0.0);
                        x = std::abs(p) + std::abs(q) + std::abs(r);
                        if (x != 0.0) {
                            p = p / x;
                            q = q / x;
                            r = r / x;
                        }
                    }
                    if (x == 0.0) {
                        break;
                    }
wester committed
542
                    s = sqrt(p * p + q * q + r * r);
wester committed
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
                    if (p < 0) {
                        s = -s;
                    }
                    if (s != 0) {
                        if (k != m) {
                            H[k][k - 1] = -s * x;
                        } else if (l != m) {
                            H[k][k - 1] = -H[k][k - 1];
                        }
                        p = p + s;
                        x = p / s;
                        y = q / s;
                        z = r / s;
                        q = q / p;
                        r = r / p;

                        // Row modification

                        for (int j = k; j < nn; j++) {
                            p = H[k][j] + q * H[k + 1][j];
                            if (notlast) {
                                p = p + r * H[k + 2][j];
                                H[k + 2][j] = H[k + 2][j] - p * z;
                            }
                            H[k][j] = H[k][j] - p * x;
                            H[k + 1][j] = H[k + 1][j] - p * y;
                        }

                        // Column modification

wester committed
573
                        for (int i = 0; i <= min(n1, k + 3); i++) {
wester committed
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
                            p = x * H[i][k] + y * H[i][k + 1];
                            if (notlast) {
                                p = p + z * H[i][k + 2];
                                H[i][k + 2] = H[i][k + 2] - p * r;
                            }
                            H[i][k] = H[i][k] - p;
                            H[i][k + 1] = H[i][k + 1] - p * q;
                        }

                        // Accumulate transformations

                        for (int i = low; i <= high; i++) {
                            p = x * V[i][k] + y * V[i][k + 1];
                            if (notlast) {
                                p = p + z * V[i][k + 2];
                                V[i][k + 2] = V[i][k + 2] - p * r;
                            }
                            V[i][k] = V[i][k] - p;
                            V[i][k + 1] = V[i][k + 1] - p * q;
                        }
                    } // (s != 0)
                } // k loop
            } // check convergence
        } // while (n1 >= low)

        // Backsubstitute to find vectors of upper triangular form

        if (norm == 0.0) {
            return;
        }

        for (n1 = nn - 1; n1 >= 0; n1--) {
            p = d[n1];
            q = e[n1];

            // Real vector

            if (q == 0) {
                int l = n1;
                H[n1][n1] = 1.0;
                for (int i = n1 - 1; i >= 0; i--) {
                    w = H[i][i] - p;
                    r = 0.0;
                    for (int j = l; j <= n1; j++) {
                        r = r + H[i][j] * H[j][n1];
                    }
                    if (e[i] < 0.0) {
                        z = w;
                        s = r;
                    } else {
                        l = i;
                        if (e[i] == 0.0) {
                            if (w != 0.0) {
                                H[i][n1] = -r / w;
                            } else {
                                H[i][n1] = -r / (eps * norm);
                            }

                            // Solve real equations

                        } else {
                            x = H[i][i + 1];
                            y = H[i + 1][i];
                            q = (d[i] - p) * (d[i] - p) + e[i] * e[i];
                            t = (x * s - z * r) / q;
                            H[i][n1] = t;
                            if (std::abs(x) > std::abs(z)) {
                                H[i + 1][n1] = (-r - w * t) / x;
                            } else {
                                H[i + 1][n1] = (-s - y * t) / z;
                            }
                        }

                        // Overflow control

                        t = std::abs(H[i][n1]);
                        if ((eps * t) * t > 1) {
                            for (int j = i; j <= n1; j++) {
                                H[j][n1] = H[j][n1] / t;
                            }
                        }
                    }
                }
                // Complex vector
            } else if (q < 0) {
                int l = n1 - 1;

                // Last vector component imaginary so matrix is triangular

                if (std::abs(H[n1][n1 - 1]) > std::abs(H[n1 - 1][n1])) {
                    H[n1 - 1][n1 - 1] = q / H[n1][n1 - 1];
                    H[n1 - 1][n1] = -(H[n1][n1] - p) / H[n1][n1 - 1];
                } else {
                    cdiv(0.0, -H[n1 - 1][n1], H[n1 - 1][n1 - 1] - p, q);
                    H[n1 - 1][n1 - 1] = cdivr;
                    H[n1 - 1][n1] = cdivi;
                }
                H[n1][n1 - 1] = 0.0;
                H[n1][n1] = 1.0;
                for (int i = n1 - 2; i >= 0; i--) {
                    double ra, sa, vr, vi;
                    ra = 0.0;
                    sa = 0.0;
                    for (int j = l; j <= n1; j++) {
                        ra = ra + H[i][j] * H[j][n1 - 1];
                        sa = sa + H[i][j] * H[j][n1];
                    }
                    w = H[i][i] - p;

                    if (e[i] < 0.0) {
                        z = w;
                        r = ra;
                        s = sa;
                    } else {
                        l = i;
                        if (e[i] == 0) {
                            cdiv(-ra, -sa, w, q);
                            H[i][n1 - 1] = cdivr;
                            H[i][n1] = cdivi;
                        } else {

                            // Solve complex equations

                            x = H[i][i + 1];
                            y = H[i + 1][i];
                            vr = (d[i] - p) * (d[i] - p) + e[i] * e[i] - q * q;
                            vi = (d[i] - p) * 2.0 * q;
                            if (vr == 0.0 && vi == 0.0) {
                                vr = eps * norm * (std::abs(w) + std::abs(q) + std::abs(x)
                                                   + std::abs(y) + std::abs(z));
                            }
                            cdiv(x * r - z * ra + q * sa,
                                 x * s - z * sa - q * ra, vr, vi);
                            H[i][n1 - 1] = cdivr;
                            H[i][n1] = cdivi;
                            if (std::abs(x) > (std::abs(z) + std::abs(q))) {
                                H[i + 1][n1 - 1] = (-ra - w * H[i][n1 - 1] + q
                                                   * H[i][n1]) / x;
                                H[i + 1][n1] = (-sa - w * H[i][n1] - q * H[i][n1
                                                                            - 1]) / x;
                            } else {
                                cdiv(-r - y * H[i][n1 - 1], -s - y * H[i][n1], z,
                                     q);
                                H[i + 1][n1 - 1] = cdivr;
                                H[i + 1][n1] = cdivi;
                            }
                        }

                        // Overflow control

wester committed
724
                        t = max(std::abs(H[i][n1 - 1]), std::abs(H[i][n1]));
wester committed
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
                        if ((eps * t) * t > 1) {
                            for (int j = i; j <= n1; j++) {
                                H[j][n1 - 1] = H[j][n1 - 1] / t;
                                H[j][n1] = H[j][n1] / t;
                            }
                        }
                    }
                }
            }
        }

        // Vectors of isolated roots

        for (int i = 0; i < nn; i++) {
            if (i < low || i > high) {
                for (int j = i; j < nn; j++) {
                    V[i][j] = H[i][j];
                }
            }
        }

        // Back transformation to get eigenvectors of original matrix

        for (int j = nn - 1; j >= low; j--) {
            for (int i = low; i <= high; i++) {
                z = 0.0;
wester committed
751
                for (int k = low; k <= min(j, high); k++) {
wester committed
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
                    z = z + V[i][k] * H[k][j];
                }
                V[i][j] = z;
            }
        }
    }

    // Nonsymmetric reduction to Hessenberg form.
    void orthes() {
        //  This is derived from the Algol procedures orthes and ortran,
        //  by Martin and Wilkinson, Handbook for Auto. Comp.,
        //  Vol.ii-Linear Algebra, and the corresponding
        //  Fortran subroutines in EISPACK.
        int low = 0;
        int high = n - 1;

        for (int m = low + 1; m <= high - 1; m++) {

            // Scale column.

            double scale = 0.0;
            for (int i = m; i <= high; i++) {
                scale = scale + std::abs(H[i][m - 1]);
            }
            if (scale != 0.0) {

                // Compute Householder transformation.

                double h = 0.0;
                for (int i = high; i >= m; i--) {
                    ort[i] = H[i][m - 1] / scale;
                    h += ort[i] * ort[i];
                }
wester committed
785
                double g = sqrt(h);
wester committed
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
                if (ort[m] > 0) {
                    g = -g;
                }
                h = h - ort[m] * g;
                ort[m] = ort[m] - g;

                // Apply Householder similarity transformation
                // H = (I-u*u'/h)*H*(I-u*u')/h)

                for (int j = m; j < n; j++) {
                    double f = 0.0;
                    for (int i = high; i >= m; i--) {
                        f += ort[i] * H[i][j];
                    }
                    f = f / h;
                    for (int i = m; i <= high; i++) {
                        H[i][j] -= f * ort[i];
                    }
                }

                for (int i = 0; i <= high; i++) {
                    double f = 0.0;
                    for (int j = high; j >= m; j--) {
                        f += ort[j] * H[i][j];
                    }
                    f = f / h;
                    for (int j = m; j <= high; j++) {
                        H[i][j] -= f * ort[j];
                    }
                }
                ort[m] = scale * ort[m];
                H[m][m - 1] = scale * g;
            }
        }

        // Accumulate transformations (Algol's ortran).

        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                V[i][j] = (i == j ? 1.0 : 0.0);
            }
        }

        for (int m = high - 1; m >= low + 1; m--) {
            if (H[m][m - 1] != 0.0) {
                for (int i = m + 1; i <= high; i++) {
                    ort[i] = H[i][m - 1];
                }
                for (int j = m; j <= high; j++) {
                    double g = 0.0;
                    for (int i = m; i <= high; i++) {
                        g += ort[i] * V[i][j];
                    }
                    // Double division avoids possible underflow
                    g = (g / ort[m]) / H[m][m - 1];
                    for (int i = m; i <= high; i++) {
                        V[i][j] += g * ort[i];
                    }
                }
            }
        }
    }

    // Releases all internal working memory.
    void release() {
        // releases the working data
        delete[] d;
        delete[] e;
        delete[] ort;
        for (int i = 0; i < n; i++) {
            delete[] H[i];
            delete[] V[i];
        }
        delete[] H;
        delete[] V;
    }

    // Computes the Eigenvalue Decomposition for a matrix given in H.
    void compute() {
        // Allocate memory for the working data.
        V = alloc_2d<double> (n, n, 0.0);
        d = alloc_1d<double> (n);
        e = alloc_1d<double> (n);
        ort = alloc_1d<double> (n);
        // Reduce to Hessenberg form.
        orthes();
        // Reduce Hessenberg to real Schur form.
        hqr2();
        // Copy eigenvalues to OpenCV Matrix.
        _eigenvalues.create(1, n, CV_64FC1);
        for (int i = 0; i < n; i++) {
            _eigenvalues.at<double> (0, i) = d[i];
        }
        // Copy eigenvectors to OpenCV Matrix.
        _eigenvectors.create(n, n, CV_64FC1);
        for (int i = 0; i < n; i++)
            for (int j = 0; j < n; j++)
                _eigenvectors.at<double> (i, j) = V[i][j];
        // Deallocate the memory by releasing all internal working data.
        release();
    }

public:
    EigenvalueDecomposition()
a  
Kai Westerkamp committed
890
    : n(0) { }
wester committed
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943

    // Initializes & computes the Eigenvalue Decomposition for a general matrix
    // given in src. This function is a port of the EigenvalueSolver in JAMA,
    // which has been released to public domain by The MathWorks and the
    // National Institute of Standards and Technology (NIST).
    EigenvalueDecomposition(InputArray src) {
        compute(src);
    }

    // This function computes the Eigenvalue Decomposition for a general matrix
    // given in src. This function is a port of the EigenvalueSolver in JAMA,
    // which has been released to public domain by The MathWorks and the
    // National Institute of Standards and Technology (NIST).
    void compute(InputArray src)
    {
        if(isSymmetric(src)) {
            // Fall back to OpenCV for a symmetric matrix!
            cv::eigen(src, _eigenvalues, _eigenvectors);
        } else {
            Mat tmp;
            // Convert the given input matrix to double. Is there any way to
            // prevent allocating the temporary memory? Only used for copying
            // into working memory and deallocated after.
            src.getMat().convertTo(tmp, CV_64FC1);
            // Get dimension of the matrix.
            this->n = tmp.cols;
            // Allocate the matrix data to work on.
            this->H = alloc_2d<double> (n, n);
            // Now safely copy the data.
            for (int i = 0; i < tmp.rows; i++) {
                for (int j = 0; j < tmp.cols; j++) {
                    this->H[i][j] = tmp.at<double>(i, j);
                }
            }
            // Deallocates the temporary matrix before computing.
            tmp.release();
            // Performs the eigenvalue decomposition of H.
            compute();
        }
    }

    ~EigenvalueDecomposition() {}

    // Returns the eigenvalues of the Eigenvalue Decomposition.
    Mat eigenvalues() {    return _eigenvalues; }
    // Returns the eigenvectors of the Eigenvalue Decomposition.
    Mat eigenvectors() { return _eigenvectors; }
};


//------------------------------------------------------------------------------
// Linear Discriminant Analysis implementation
//------------------------------------------------------------------------------
wester committed
944
void LDA::save(const string& filename) const {
wester committed
945 946
    FileStorage fs(filename, FileStorage::WRITE);
    if (!fs.isOpened()) {
wester committed
947
        CV_Error(CV_StsError, "File can't be opened for writing!");
wester committed
948 949 950 951 952 953
    }
    this->save(fs);
    fs.release();
}

// Deserializes this object from a given filename.
wester committed
954
void LDA::load(const string& filename) {
wester committed
955 956
    FileStorage fs(filename, FileStorage::READ);
    if (!fs.isOpened())
wester committed
957
       CV_Error(CV_StsError, "File can't be opened for writing!");
wester committed
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
    this->load(fs);
    fs.release();
}

// Serializes this object to a given FileStorage.
void LDA::save(FileStorage& fs) const {
    // write matrices
    fs << "num_components" << _num_components;
    fs << "eigenvalues" << _eigenvalues;
    fs << "eigenvectors" << _eigenvectors;
}

// Deserializes this object from a given FileStorage.
void LDA::load(const FileStorage& fs) {
    //read matrices
    fs["num_components"] >> _num_components;
    fs["eigenvalues"] >> _eigenvalues;
    fs["eigenvectors"] >> _eigenvectors;
}

void LDA::lda(InputArrayOfArrays _src, InputArray _lbls) {
    // get data
    Mat src = _src.getMat();
wester committed
981
    vector<int> labels;
wester committed
982 983 984 985 986 987 988 989 990 991 992 993
    // safely copy the labels
    {
        Mat tmp = _lbls.getMat();
        for(unsigned int i = 0; i < tmp.total(); i++) {
            labels.push_back(tmp.at<int>(i));
        }
    }
    // turn into row sampled matrix
    Mat data;
    // ensure working matrix is double precision
    src.convertTo(data, CV_64FC1);
    // maps the labels, so they're ascending: [0,1,...,C]
wester committed
994 995 996
    vector<int> mapped_labels(labels.size());
    vector<int> num2label = remove_dups(labels);
    map<int, int> label2num;
wester committed
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
    for (int i = 0; i < (int)num2label.size(); i++)
        label2num[num2label[i]] = i;
    for (size_t i = 0; i < labels.size(); i++)
        mapped_labels[i] = label2num[labels[i]];
    // get sample size, dimension
    int N = data.rows;
    int D = data.cols;
    // number of unique labels
    int C = (int)num2label.size();
    // we can't do a LDA on one class, what do you
    // want to separate from each other then?
    if(C == 1) {
wester committed
1009 1010
        string error_message = "At least two classes are needed to perform a LDA. Reason: Only one class was given!";
        CV_Error(CV_StsBadArg, error_message);
wester committed
1011 1012 1013
    }
    // throw error if less labels, than samples
    if (labels.size() != static_cast<size_t>(N)) {
wester committed
1014 1015
        string error_message = format("The number of samples must equal the number of labels. Given %d labels, %d samples. ", labels.size(), N);
        CV_Error(CV_StsBadArg, error_message);
wester committed
1016 1017 1018
    }
    // warn if within-classes scatter matrix becomes singular
    if (N < D) {
wester committed
1019 1020 1021
        cout << "Warning: Less observations than feature dimension given!"
             << "Computation will probably fail."
             << endl;
wester committed
1022 1023 1024 1025 1026 1027 1028 1029
    }
    // clip number of components to be a valid number
    if ((_num_components <= 0) || (_num_components > (C - 1))) {
        _num_components = (C - 1);
    }
    // holds the mean over all classes
    Mat meanTotal = Mat::zeros(1, D, data.type());
    // holds the mean for each class
wester committed
1030 1031
    vector<Mat> meanClass(C);
    vector<int> numClass(C);
wester committed
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
    // initialize
    for (int i = 0; i < C; i++) {
        numClass[i] = 0;
        meanClass[i] = Mat::zeros(1, D, data.type()); //! Dx1 image vector
    }
    // calculate sums
    for (int i = 0; i < N; i++) {
        Mat instance = data.row(i);
        int classIdx = mapped_labels[i];
        add(meanTotal, instance, meanTotal);
        add(meanClass[classIdx], instance, meanClass[classIdx]);
        numClass[classIdx]++;
    }
    // calculate total mean
    meanTotal.convertTo(meanTotal, meanTotal.type(), 1.0 / static_cast<double> (N));
    // calculate class means
    for (int i = 0; i < C; i++) {
        meanClass[i].convertTo(meanClass[i], meanClass[i].type(), 1.0 / static_cast<double> (numClass[i]));
    }
    // subtract class means
    for (int i = 0; i < N; i++) {
        int classIdx = mapped_labels[i];
        Mat instance = data.row(i);
        subtract(instance, meanClass[classIdx], instance);
    }
    // calculate within-classes scatter
    Mat Sw = Mat::zeros(D, D, data.type());
    mulTransposed(data, Sw, true);
    // calculate between-classes scatter
    Mat Sb = Mat::zeros(D, D, data.type());
    for (int i = 0; i < C; i++) {
        Mat tmp;
        subtract(meanClass[i], meanTotal, tmp);
        mulTransposed(tmp, tmp, true);
        add(Sb, tmp, Sb);
    }
    // invert Sw
    Mat Swi = Sw.inv();
    // M = inv(Sw)*Sb
    Mat M;
    gemm(Swi, Sb, 1.0, Mat(), 0.0, M);
    EigenvalueDecomposition es(M);
    _eigenvalues = es.eigenvalues();
    _eigenvectors = es.eigenvectors();
    // reshape eigenvalues, so they are stored by column
    _eigenvalues = _eigenvalues.reshape(1, 1);
    // get sorted indices descending by their eigenvalue
wester committed
1079
    vector<int> sorted_indices = argsort(_eigenvalues, false);
wester committed
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
    // now sort eigenvalues and eigenvectors accordingly
    _eigenvalues = sortMatrixColumnsByIndices(_eigenvalues, sorted_indices);
    _eigenvectors = sortMatrixColumnsByIndices(_eigenvectors, sorted_indices);
    // and now take only the num_components and we're out!
    _eigenvalues = Mat(_eigenvalues, Range::all(), Range(0, _num_components));
    _eigenvectors = Mat(_eigenvectors, Range::all(), Range(0, _num_components));
}

void LDA::compute(InputArrayOfArrays _src, InputArray _lbls) {
    switch(_src.kind()) {
    case _InputArray::STD_VECTOR_MAT:
        lda(asRowMatrix(_src, CV_64FC1), _lbls);
        break;
    case _InputArray::MAT:
        lda(_src.getMat(), _lbls);
        break;
    default:
wester committed
1097 1098
        string error_message= format("InputArray Datatype %d is not supported.", _src.kind());
        CV_Error(CV_StsBadArg, error_message);
wester committed
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
        break;
    }
}

// Projects one or more row aligned samples into the LDA subspace.
Mat LDA::project(InputArray src) {
   return subspaceProject(_eigenvectors, Mat(), src);
}

// Reconstructs projections from the LDA subspace from one or more row aligned samples.
Mat LDA::reconstruct(InputArray src) {
   return subspaceReconstruct(_eigenvectors, Mat(), src);
}

}