objdetect_hog.cl 24.8 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
//    Wenju He, wenju@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#define CELL_WIDTH 8
#define CELL_HEIGHT 8
#define CELLS_PER_BLOCK_X 2
#define CELLS_PER_BLOCK_Y 2
#define NTHREADS 256
#define CV_PI_F M_PI_F

#ifdef INTEL_DEVICE
#define QANGLE_TYPE     int
#define QANGLE_TYPE2    int2
#else
#define QANGLE_TYPE     uchar
#define QANGLE_TYPE2    uchar2
#endif

//----------------------------------------------------------------------------
// Histogram computation
// 12 threads for a cell, 12x4 threads per block
// Use pre-computed gaussian and interp_weight lookup tables
__kernel void compute_hists_lut_kernel(
    const int cblock_stride_x, const int cblock_stride_y,
    const int cnbins, const int cblock_hist_size, const int img_block_width,
    const int blocks_in_group, const int blocks_total,
    const int grad_quadstep, const int qangle_step,
    __global const float* grad, __global const QANGLE_TYPE* qangle,
    __global const float* gauss_w_lut,
    __global float* block_hists, __local float* smem)
{
    const int lx = get_local_id(0);
    const int lp = lx / 24; /* local group id */
    const int gid = get_group_id(0) * blocks_in_group + lp;/* global group id */
    const int gidY = gid / img_block_width;
    const int gidX = gid - gidY * img_block_width;

    const int lidX = lx - lp * 24;
    const int lidY = get_local_id(1);

    const int cell_x = lidX / 12;
    const int cell_y = lidY;
    const int cell_thread_x = lidX - cell_x * 12;

    __local float* hists = smem + lp * cnbins * (CELLS_PER_BLOCK_X *
        CELLS_PER_BLOCK_Y * 12 + CELLS_PER_BLOCK_X * CELLS_PER_BLOCK_Y);
    __local float* final_hist = hists + cnbins *
        (CELLS_PER_BLOCK_X * CELLS_PER_BLOCK_Y * 12);

    const int offset_x = gidX * cblock_stride_x + (cell_x << 2) + cell_thread_x;
    const int offset_y = gidY * cblock_stride_y + (cell_y << 2);

    __global const float* grad_ptr = (gid < blocks_total) ?
        grad + offset_y * grad_quadstep + (offset_x << 1) : grad;
    __global const QANGLE_TYPE* qangle_ptr = (gid < blocks_total) ?
        qangle + offset_y * qangle_step + (offset_x << 1) : qangle;

    __local float* hist = hists + 12 * (cell_y * CELLS_PER_BLOCK_Y + cell_x) +
        cell_thread_x;
    for (int bin_id = 0; bin_id < cnbins; ++bin_id)
        hist[bin_id * 48] = 0.f;

    const int dist_x = -4 + cell_thread_x - 4 * cell_x;
    const int dist_center_x = dist_x - 4 * (1 - 2 * cell_x);

    const int dist_y_begin = -4 - 4 * lidY;
    for (int dist_y = dist_y_begin; dist_y < dist_y_begin + 12; ++dist_y)
    {
        float2 vote = (float2) (grad_ptr[0], grad_ptr[1]);
        QANGLE_TYPE2 bin = (QANGLE_TYPE2) (qangle_ptr[0], qangle_ptr[1]);

        grad_ptr += grad_quadstep;
        qangle_ptr += qangle_step;

        int dist_center_y = dist_y - 4 * (1 - 2 * cell_y);

        int idx = (dist_center_y + 8) * 16 + (dist_center_x + 8);
        float gaussian = gauss_w_lut[idx];
        idx = (dist_y + 8) * 16 + (dist_x + 8);
        float interp_weight = gauss_w_lut[256+idx];

        hist[bin.x * 48] += gaussian * interp_weight * vote.x;
        hist[bin.y * 48] += gaussian * interp_weight * vote.y;
    }
    barrier(CLK_LOCAL_MEM_FENCE);

    volatile __local float* hist_ = hist;
    for (int bin_id = 0; bin_id < cnbins; ++bin_id, hist_ += 48)
    {
        if (cell_thread_x < 6)
            hist_[0] += hist_[6];
        barrier(CLK_LOCAL_MEM_FENCE);
        if (cell_thread_x < 3)
            hist_[0] += hist_[3];
#ifdef CPU
        barrier(CLK_LOCAL_MEM_FENCE);
#endif
        if (cell_thread_x == 0)
            final_hist[(cell_x * 2 + cell_y) * cnbins + bin_id] =
                hist_[0] + hist_[1] + hist_[2];
    }

    barrier(CLK_LOCAL_MEM_FENCE);

    int tid = (cell_y * CELLS_PER_BLOCK_Y + cell_x) * 12 + cell_thread_x;
    if ((tid < cblock_hist_size) && (gid < blocks_total))
    {
        __global float* block_hist = block_hists +
            (gidY * img_block_width + gidX) * cblock_hist_size;
        block_hist[tid] = final_hist[tid];
    }
}

//-------------------------------------------------------------
//  Normalization of histograms via L2Hys_norm
//  optimized for the case of 9 bins
__kernel void normalize_hists_36_kernel(__global float* block_hists,
                                        const float threshold, __local float *squares)
{
    const int tid = get_local_id(0);
    const int gid = get_global_id(0);
    const int bid = tid / 36;      /* block-hist id, (0 - 6) */
    const int boffset = bid * 36;  /* block-hist offset in the work-group */
    const int hid = tid - boffset; /* histogram bin id, (0 - 35) */

    float elem = block_hists[gid];
    squares[tid] = elem * elem;
    barrier(CLK_LOCAL_MEM_FENCE);

    __local float* smem = squares + boffset;
    float sum = smem[hid];
    if (hid < 18)
        smem[hid] = sum = sum + smem[hid + 18];
    barrier(CLK_LOCAL_MEM_FENCE);
    if (hid < 9)
        smem[hid] = sum = sum + smem[hid + 9];
    barrier(CLK_LOCAL_MEM_FENCE);
    if (hid < 4)
        smem[hid] = sum + smem[hid + 4];
    barrier(CLK_LOCAL_MEM_FENCE);
    sum = smem[0] + smem[1] + smem[2] + smem[3] + smem[8];

    elem = elem / (sqrt(sum) + 3.6f);
    elem = min(elem, threshold);

    barrier(CLK_LOCAL_MEM_FENCE);
    squares[tid] = elem * elem;
    barrier(CLK_LOCAL_MEM_FENCE);

    sum = smem[hid];
    if (hid < 18)
      smem[hid] = sum = sum + smem[hid + 18];
    barrier(CLK_LOCAL_MEM_FENCE);
    if (hid < 9)
        smem[hid] = sum = sum + smem[hid + 9];
    barrier(CLK_LOCAL_MEM_FENCE);
    if (hid < 4)
        smem[hid] = sum + smem[hid + 4];
    barrier(CLK_LOCAL_MEM_FENCE);
    sum = smem[0] + smem[1] + smem[2] + smem[3] + smem[8];

    block_hists[gid] = elem / (sqrt(sum) + 1e-3f);
}

//-------------------------------------------------------------
//  Normalization of histograms via L2Hys_norm
//
inline float reduce_smem(volatile __local float* smem, int size)
{
    unsigned int tid = get_local_id(0);
    float sum = smem[tid];

    if (size >= 512) { if (tid < 256) smem[tid] = sum = sum + smem[tid + 256];
        barrier(CLK_LOCAL_MEM_FENCE); }
    if (size >= 256) { if (tid < 128) smem[tid] = sum = sum + smem[tid + 128];
        barrier(CLK_LOCAL_MEM_FENCE); }
    if (size >= 128) { if (tid < 64) smem[tid] = sum = sum + smem[tid + 64];
        barrier(CLK_LOCAL_MEM_FENCE); }
#ifdef CPU
    if (size >= 64) { if (tid < 32) smem[tid] = sum = sum + smem[tid + 32];
        barrier(CLK_LOCAL_MEM_FENCE); }
    if (size >= 32) { if (tid < 16) smem[tid] = sum = sum + smem[tid + 16];
        barrier(CLK_LOCAL_MEM_FENCE); }
    if (size >= 16) { if (tid < 8) smem[tid] = sum = sum + smem[tid + 8];
        barrier(CLK_LOCAL_MEM_FENCE); }
    if (size >= 8) { if (tid < 4) smem[tid] = sum = sum + smem[tid + 4];
        barrier(CLK_LOCAL_MEM_FENCE); }
    if (size >= 4) { if (tid < 2) smem[tid] = sum = sum + smem[tid + 2];
        barrier(CLK_LOCAL_MEM_FENCE); }
    if (size >= 2) { if (tid < 1) smem[tid] = sum = sum + smem[tid + 1];
        barrier(CLK_LOCAL_MEM_FENCE); }
#else
    if (tid < 32)
    {
        if (size >= 64) smem[tid] = sum = sum + smem[tid + 32];
#if WAVE_SIZE < 32
    } barrier(CLK_LOCAL_MEM_FENCE);
    if (tid < 16) {
#endif
        if (size >= 32) smem[tid] = sum = sum + smem[tid + 16];
        if (size >= 16) smem[tid] = sum = sum + smem[tid + 8];
        if (size >= 8) smem[tid] = sum = sum + smem[tid + 4];
        if (size >= 4) smem[tid] = sum = sum + smem[tid + 2];
        if (size >= 2) smem[tid] = sum = sum + smem[tid + 1];
    }
#endif

    return sum;
}

__kernel void normalize_hists_kernel(
    const int nthreads, const int block_hist_size, const int img_block_width,
    __global float* block_hists, const float threshold, __local float *squares)
{
    const int tid = get_local_id(0);
    const int gidX = get_group_id(0);
    const int gidY = get_group_id(1);

    __global float* hist = block_hists + (gidY * img_block_width + gidX) *
        block_hist_size + tid;

    float elem = 0.f;
    if (tid < block_hist_size)
        elem = hist[0];

    squares[tid] = elem * elem;

    barrier(CLK_LOCAL_MEM_FENCE);
    float sum = reduce_smem(squares, nthreads);

    float scale = 1.0f / (sqrt(sum) + 0.1f * block_hist_size);
    elem = min(elem * scale, threshold);

    barrier(CLK_LOCAL_MEM_FENCE);
    squares[tid] = elem * elem;

    barrier(CLK_LOCAL_MEM_FENCE);
    sum = reduce_smem(squares, nthreads);
    scale = 1.0f / (sqrt(sum) + 1e-3f);

    if (tid < block_hist_size)
        hist[0] = elem * scale;
}

//---------------------------------------------------------------------
//  Linear SVM based classification
//  48x96 window, 9 bins and default parameters
//  180 threads, each thread corresponds to a bin in a row
__kernel void classify_hists_180_kernel(
    const int cdescr_width, const int cdescr_height, const int cblock_hist_size,
    const int img_win_width, const int img_block_width,
    const int win_block_stride_x, const int win_block_stride_y,
    __global const float * block_hists, __global const float* coefs,
    float free_coef, float threshold, __global uchar* labels)
{
    const int tid = get_local_id(0);
    const int gidX = get_group_id(0);
    const int gidY = get_group_id(1);

    __global const float* hist = block_hists + (gidY * win_block_stride_y *
        img_block_width + gidX * win_block_stride_x) * cblock_hist_size;

    float product = 0.f;

    for (int i = 0; i < cdescr_height; i++)
    {
        product += coefs[i * cdescr_width + tid] *
            hist[i * img_block_width * cblock_hist_size + tid];
    }

    __local float products[180];

    products[tid] = product;

    barrier(CLK_LOCAL_MEM_FENCE);

    if (tid < 90) products[tid] = product = product + products[tid + 90];
    barrier(CLK_LOCAL_MEM_FENCE);

    if (tid < 45) products[tid] = product = product + products[tid + 45];
    barrier(CLK_LOCAL_MEM_FENCE);

    volatile __local float* smem = products;
#ifdef CPU
    if (tid < 13) smem[tid] = product = product + smem[tid + 32];
    barrier(CLK_LOCAL_MEM_FENCE);
    if (tid < 16) smem[tid] = product = product + smem[tid + 16];
    barrier(CLK_LOCAL_MEM_FENCE);
    if(tid<8) smem[tid] = product = product + smem[tid + 8];
    barrier(CLK_LOCAL_MEM_FENCE);
    if(tid<4) smem[tid] = product = product + smem[tid + 4];
    barrier(CLK_LOCAL_MEM_FENCE);
    if(tid<2) smem[tid] = product = product + smem[tid + 2];
    barrier(CLK_LOCAL_MEM_FENCE);
#else
    if (tid < 13)
    {
        smem[tid] = product = product + smem[tid + 32];
    }
#if WAVE_SIZE < 32
    barrier(CLK_LOCAL_MEM_FENCE);
#endif
    if (tid < 16)
    {
        smem[tid] = product = product + smem[tid + 16];
        smem[tid] = product = product + smem[tid + 8];
        smem[tid] = product = product + smem[tid + 4];
        smem[tid] = product = product + smem[tid + 2];
    }
#endif

    if (tid == 0){
        product = product + smem[tid + 1];
        labels[gidY * img_win_width + gidX] = (product + free_coef >= threshold);
    }
}

//---------------------------------------------------------------------
//  Linear SVM based classification
//  64x128 window, 9 bins and default parameters
//  256 threads, 252 of them are used
__kernel void classify_hists_252_kernel(
    const int cdescr_width, const int cdescr_height, const int cblock_hist_size,
    const int img_win_width, const int img_block_width,
    const int win_block_stride_x, const int win_block_stride_y,
    __global const float * block_hists, __global const float* coefs,
    float free_coef, float threshold, __global uchar* labels)
{
    const int tid = get_local_id(0);
    const int gidX = get_group_id(0);
    const int gidY = get_group_id(1);

    __global const float* hist = block_hists + (gidY * win_block_stride_y *
        img_block_width + gidX * win_block_stride_x) * cblock_hist_size;

    float product = 0.f;
    if (tid < cdescr_width)
    {
        for (int i = 0; i < cdescr_height; i++)
            product += coefs[i * cdescr_width + tid] *
                hist[i * img_block_width * cblock_hist_size + tid];
    }

    __local float products[NTHREADS];

    products[tid] = product;

    barrier(CLK_LOCAL_MEM_FENCE);

    if (tid < 128) products[tid] = product = product + products[tid + 128];
    barrier(CLK_LOCAL_MEM_FENCE);

    if (tid < 64) products[tid] = product = product + products[tid + 64];
    barrier(CLK_LOCAL_MEM_FENCE);

    volatile __local float* smem = products;
#ifdef CPU
    if(tid<32) smem[tid] = product = product + smem[tid + 32];
    barrier(CLK_LOCAL_MEM_FENCE);
    if(tid<16) smem[tid] = product = product + smem[tid + 16];
    barrier(CLK_LOCAL_MEM_FENCE);
    if(tid<8) smem[tid] = product = product + smem[tid + 8];
    barrier(CLK_LOCAL_MEM_FENCE);
    if(tid<4) smem[tid] = product = product + smem[tid + 4];
    barrier(CLK_LOCAL_MEM_FENCE);
    if(tid<2) smem[tid] = product = product + smem[tid + 2];
    barrier(CLK_LOCAL_MEM_FENCE);
#else
    if (tid < 32)
    {
        smem[tid] = product = product + smem[tid + 32];
#if WAVE_SIZE < 32
    } barrier(CLK_LOCAL_MEM_FENCE);
    if (tid < 16) {
#endif
        smem[tid] = product = product + smem[tid + 16];
        smem[tid] = product = product + smem[tid + 8];
        smem[tid] = product = product + smem[tid + 4];
        smem[tid] = product = product + smem[tid + 2];
    }
#endif
    if (tid == 0){
        product = product + smem[tid + 1];
        labels[gidY * img_win_width + gidX] = (product + free_coef >= threshold);
    }
}

//---------------------------------------------------------------------
//  Linear SVM based classification
//  256 threads
__kernel void classify_hists_kernel(
    const int cdescr_size, const int cdescr_width, const int cblock_hist_size,
    const int img_win_width, const int img_block_width,
    const int win_block_stride_x, const int win_block_stride_y,
    __global const float * block_hists, __global const float* coefs,
    float free_coef, float threshold, __global uchar* labels)
{
    const int tid = get_local_id(0);
    const int gidX = get_group_id(0);
    const int gidY = get_group_id(1);

    __global const float* hist = block_hists + (gidY * win_block_stride_y *
        img_block_width + gidX * win_block_stride_x) * cblock_hist_size;

    float product = 0.f;
    for (int i = tid; i < cdescr_size; i += NTHREADS)
    {
        int offset_y = i / cdescr_width;
        int offset_x = i - offset_y * cdescr_width;
        product += coefs[i] *
            hist[offset_y * img_block_width * cblock_hist_size + offset_x];
    }

    __local float products[NTHREADS];

    products[tid] = product;

    barrier(CLK_LOCAL_MEM_FENCE);

    if (tid < 128) products[tid] = product = product + products[tid + 128];
    barrier(CLK_LOCAL_MEM_FENCE);

    if (tid < 64) products[tid] = product = product + products[tid + 64];
    barrier(CLK_LOCAL_MEM_FENCE);

    volatile __local float* smem = products;
#ifdef CPU
    if(tid<32) smem[tid] = product = product + smem[tid + 32];
    barrier(CLK_LOCAL_MEM_FENCE);
    if(tid<16) smem[tid] = product = product + smem[tid + 16];
    barrier(CLK_LOCAL_MEM_FENCE);
    if(tid<8) smem[tid] = product = product + smem[tid + 8];
    barrier(CLK_LOCAL_MEM_FENCE);
    if(tid<4) smem[tid] = product = product + smem[tid + 4];
    barrier(CLK_LOCAL_MEM_FENCE);
    if(tid<2) smem[tid] = product = product + smem[tid + 2];
    barrier(CLK_LOCAL_MEM_FENCE);
#else
    if (tid < 32)
    {
        smem[tid] = product = product + smem[tid + 32];
#if WAVE_SIZE < 32
    } barrier(CLK_LOCAL_MEM_FENCE);
    if (tid < 16) {
#endif
        smem[tid] = product = product + smem[tid + 16];
        smem[tid] = product = product + smem[tid + 8];
        smem[tid] = product = product + smem[tid + 4];
        smem[tid] = product = product + smem[tid + 2];
    }
#endif
    if (tid == 0){
        smem[tid] = product = product + smem[tid + 1];
        labels[gidY * img_win_width + gidX] = (product + free_coef >= threshold);
    }
}

//----------------------------------------------------------------------------
// Extract descriptors

__kernel void extract_descrs_by_rows_kernel(
    const int cblock_hist_size, const int descriptors_quadstep,
    const int cdescr_size, const int cdescr_width, const int img_block_width,
    const int win_block_stride_x, const int win_block_stride_y,
    __global const float* block_hists, __global float* descriptors)
{
    int tid = get_local_id(0);
    int gidX = get_group_id(0);
    int gidY = get_group_id(1);

    // Get left top corner of the window in src
    __global const float* hist = block_hists + (gidY * win_block_stride_y *
        img_block_width + gidX * win_block_stride_x) * cblock_hist_size;

    // Get left top corner of the window in dst
    __global float* descriptor = descriptors +
        (gidY * get_num_groups(0) + gidX) * descriptors_quadstep;

    // Copy elements from src to dst
    for (int i = tid; i < cdescr_size; i += NTHREADS)
    {
        int offset_y = i / cdescr_width;
        int offset_x = i - offset_y * cdescr_width;
        descriptor[i] = hist[offset_y * img_block_width * cblock_hist_size + offset_x];
    }
}

__kernel void extract_descrs_by_cols_kernel(
    const int cblock_hist_size, const int descriptors_quadstep, const int cdescr_size,
    const int cnblocks_win_x, const int cnblocks_win_y, const int img_block_width,
    const int win_block_stride_x, const int win_block_stride_y,
    __global const float* block_hists, __global float* descriptors)
{
    int tid = get_local_id(0);
    int gidX = get_group_id(0);
    int gidY = get_group_id(1);

    // Get left top corner of the window in src
    __global const float* hist = block_hists +  (gidY * win_block_stride_y *
        img_block_width + gidX * win_block_stride_x) * cblock_hist_size;

    // Get left top corner of the window in dst
    __global float* descriptor = descriptors +
        (gidY * get_num_groups(0) + gidX) * descriptors_quadstep;

    // Copy elements from src to dst
    for (int i = tid; i < cdescr_size; i += NTHREADS)
    {
        int block_idx = i / cblock_hist_size;
        int idx_in_block = i - block_idx * cblock_hist_size;

        int y = block_idx / cnblocks_win_x;
        int x = block_idx - y * cnblocks_win_x;

        descriptor[(x * cnblocks_win_y + y) * cblock_hist_size + idx_in_block] =
            hist[(y * img_block_width  + x) * cblock_hist_size + idx_in_block];
    }
}

//----------------------------------------------------------------------------
// Gradients computation

__kernel void compute_gradients_8UC4_kernel(
    const int height, const int width,
    const int img_step, const int grad_quadstep, const int qangle_step,
    const __global uchar4 * img, __global float * grad, __global QANGLE_TYPE * qangle,
    const float angle_scale, const char correct_gamma, const int cnbins)
{
    const int x = get_global_id(0);
    const int tid = get_local_id(0);
    const int gSizeX = get_local_size(0);
    const int gidY = get_group_id(1);

    __global const uchar4* row = img + gidY * img_step;

    __local float sh_row[(NTHREADS + 2) * 3];

    uchar4 val;
    if (x < width)
        val = row[x];
    else
        val = row[width - 2];

    sh_row[tid + 1] = val.x;
    sh_row[tid + 1 + (NTHREADS + 2)] = val.y;
    sh_row[tid + 1 + 2 * (NTHREADS + 2)] = val.z;

    if (tid == 0)
    {
        val = row[max(x - 1, 1)];
        sh_row[0] = val.x;
        sh_row[(NTHREADS + 2)] = val.y;
        sh_row[2 * (NTHREADS + 2)] = val.z;
    }

    if (tid == gSizeX - 1)
    {
        val = row[min(x + 1, width - 2)];
        sh_row[gSizeX + 1] = val.x;
        sh_row[gSizeX + 1 + (NTHREADS + 2)] = val.y;
        sh_row[gSizeX + 1 + 2 * (NTHREADS + 2)] = val.z;
    }

    barrier(CLK_LOCAL_MEM_FENCE);
    if (x < width)
    {
        float4 a = (float4) (sh_row[tid], sh_row[tid + (NTHREADS + 2)],
            sh_row[tid + 2 * (NTHREADS + 2)], 0);
        float4 b = (float4) (sh_row[tid + 2], sh_row[tid + 2 + (NTHREADS + 2)],
            sh_row[tid + 2 + 2 * (NTHREADS + 2)], 0);

        float4 dx;
        if (correct_gamma == 1)
            dx = sqrt(b) - sqrt(a);
        else
            dx = b - a;

        float4 dy = (float4) 0.f;

        if (gidY > 0 && gidY < height - 1)
        {
            a = convert_float4(img[(gidY - 1) * img_step + x].xyzw);
            b = convert_float4(img[(gidY + 1) * img_step + x].xyzw);

            if (correct_gamma == 1)
                dy = sqrt(b) - sqrt(a);
            else
                dy = b - a;
        }

        float4 mag = hypot(dx, dy);
        float best_dx = dx.x;
        float best_dy = dy.x;

        float mag0 = mag.x;
        if (mag0 < mag.y)
        {
            best_dx = dx.y;
            best_dy = dy.y;
            mag0 = mag.y;
        }

        if (mag0 < mag.z)
        {
            best_dx = dx.z;
            best_dy = dy.z;
            mag0 = mag.z;
        }

        float ang = (atan2(best_dy, best_dx) + CV_PI_F) * angle_scale - 0.5f;
        int hidx = (int)floor(ang);
        ang -= hidx;
        hidx = (hidx + cnbins) % cnbins;

        qangle[(gidY * qangle_step + x) << 1] = hidx;
        qangle[((gidY * qangle_step + x) << 1) + 1] = (hidx + 1) % cnbins;
        grad[(gidY * grad_quadstep + x) << 1] = mag0 * (1.f - ang);
        grad[((gidY * grad_quadstep + x) << 1) + 1] = mag0 * ang;
    }
}

__kernel void compute_gradients_8UC1_kernel(
    const int height, const int width,
    const int img_step, const int grad_quadstep, const int qangle_step,
    __global const uchar * img, __global float * grad, __global QANGLE_TYPE * qangle,
    const float angle_scale, const char correct_gamma, const int cnbins)
{
    const int x = get_global_id(0);
    const int tid = get_local_id(0);
    const int gSizeX = get_local_size(0);
    const int gidY = get_group_id(1);

    __global const uchar* row = img + gidY * img_step;

    __local float sh_row[NTHREADS + 2];

    if (x < width)
        sh_row[tid + 1] = row[x];
    else
        sh_row[tid + 1] = row[width - 2];

    if (tid == 0)
        sh_row[0] = row[max(x - 1, 1)];

    if (tid == gSizeX - 1)
        sh_row[gSizeX + 1] = row[min(x + 1, width - 2)];

    barrier(CLK_LOCAL_MEM_FENCE);
    if (x < width)
    {
        float dx;

        if (correct_gamma == 1)
            dx = sqrt(sh_row[tid + 2]) - sqrt(sh_row[tid]);
        else
            dx = sh_row[tid + 2] - sh_row[tid];

        float dy = 0.f;
        if (gidY > 0 && gidY < height - 1)
        {
            float a = (float) img[ (gidY + 1) * img_step + x ];
            float b = (float) img[ (gidY - 1) * img_step + x ];
            if (correct_gamma == 1)
                dy = sqrt(a) - sqrt(b);
            else
                dy = a - b;
        }
        float mag = hypot(dx, dy);

        float ang = (atan2(dy, dx) + CV_PI_F) * angle_scale - 0.5f;
        int hidx = (int)floor(ang);
        ang -= hidx;
        hidx = (hidx + cnbins) % cnbins;

        qangle[ (gidY * qangle_step + x) << 1 ]     = hidx;
        qangle[ ((gidY * qangle_step + x) << 1) + 1 ] = (hidx + 1) % cnbins;
        grad[ (gidY * grad_quadstep + x) << 1 ]       = mag * (1.f - ang);
        grad[ ((gidY * grad_quadstep + x) << 1) + 1 ]   = mag * ang;
    }
}