tvl1flow.cu 13.2 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#if !defined CUDA_DISABLER

#include "opencv2/core/cuda/common.hpp"
#include "opencv2/core/cuda/border_interpolate.hpp"
#include "opencv2/core/cuda/limits.hpp"

using namespace cv::cuda;
using namespace cv::cuda::device;

////////////////////////////////////////////////////////////
// centeredGradient

namespace tvl1flow
{
    __global__ void centeredGradientKernel(const PtrStepSzf src, PtrStepf dx, PtrStepf dy)
    {
        const int x = blockIdx.x * blockDim.x + threadIdx.x;
        const int y = blockIdx.y * blockDim.y + threadIdx.y;

        if (x >= src.cols || y >= src.rows)
            return;

        dx(y, x) = 0.5f * (src(y, ::min(x + 1, src.cols - 1)) - src(y, ::max(x - 1, 0)));
        dy(y, x) = 0.5f * (src(::min(y + 1, src.rows - 1), x) - src(::max(y - 1, 0), x));
    }

    void centeredGradient(PtrStepSzf src, PtrStepSzf dx, PtrStepSzf dy, cudaStream_t stream)
    {
        const dim3 block(32, 8);
        const dim3 grid(divUp(src.cols, block.x), divUp(src.rows, block.y));

        centeredGradientKernel<<<grid, block, 0, stream>>>(src, dx, dy);
        cudaSafeCall( cudaGetLastError() );

        if (!stream)
            cudaSafeCall( cudaDeviceSynchronize() );
    }
}

////////////////////////////////////////////////////////////
// warpBackward

namespace tvl1flow
{
    static __device__ __forceinline__ float bicubicCoeff(float x_)
    {
        float x = fabsf(x_);
        if (x <= 1.0f)
        {
            return x * x * (1.5f * x - 2.5f) + 1.0f;
        }
        else if (x < 2.0f)
        {
            return x * (x * (-0.5f * x + 2.5f) - 4.0f) + 2.0f;
        }
        else
        {
            return 0.0f;
        }
    }

    texture<float, cudaTextureType2D, cudaReadModeElementType> tex_I1 (false, cudaFilterModePoint, cudaAddressModeClamp);
    texture<float, cudaTextureType2D, cudaReadModeElementType> tex_I1x(false, cudaFilterModePoint, cudaAddressModeClamp);
    texture<float, cudaTextureType2D, cudaReadModeElementType> tex_I1y(false, cudaFilterModePoint, cudaAddressModeClamp);

    __global__ void warpBackwardKernel(const PtrStepSzf I0, const PtrStepf u1, const PtrStepf u2, PtrStepf I1w, PtrStepf I1wx, PtrStepf I1wy, PtrStepf grad, PtrStepf rho)
    {
        const int x = blockIdx.x * blockDim.x + threadIdx.x;
        const int y = blockIdx.y * blockDim.y + threadIdx.y;

        if (x >= I0.cols || y >= I0.rows)
            return;

        const float u1Val = u1(y, x);
        const float u2Val = u2(y, x);

        const float wx = x + u1Val;
        const float wy = y + u2Val;

        const int xmin = ::ceilf(wx - 2.0f);
        const int xmax = ::floorf(wx + 2.0f);

        const int ymin = ::ceilf(wy - 2.0f);
        const int ymax = ::floorf(wy + 2.0f);

        float sum  = 0.0f;
        float sumx = 0.0f;
        float sumy = 0.0f;
        float wsum = 0.0f;

        for (int cy = ymin; cy <= ymax; ++cy)
        {
            for (int cx = xmin; cx <= xmax; ++cx)
            {
                const float w = bicubicCoeff(wx - cx) * bicubicCoeff(wy - cy);

                sum  += w * tex2D(tex_I1 , cx, cy);
                sumx += w * tex2D(tex_I1x, cx, cy);
                sumy += w * tex2D(tex_I1y, cx, cy);

                wsum += w;
            }
        }

        const float coeff = 1.0f / wsum;

        const float I1wVal  = sum  * coeff;
        const float I1wxVal = sumx * coeff;
        const float I1wyVal = sumy * coeff;

        I1w(y, x)  = I1wVal;
        I1wx(y, x) = I1wxVal;
        I1wy(y, x) = I1wyVal;

        const float Ix2 = I1wxVal * I1wxVal;
        const float Iy2 = I1wyVal * I1wyVal;

        // store the |Grad(I1)|^2
        grad(y, x) = Ix2 + Iy2;

        // compute the constant part of the rho function
        const float I0Val = I0(y, x);
        rho(y, x) = I1wVal - I1wxVal * u1Val - I1wyVal * u2Val - I0Val;
    }

    void warpBackward(PtrStepSzf I0, PtrStepSzf I1, PtrStepSzf I1x, PtrStepSzf I1y,
                      PtrStepSzf u1, PtrStepSzf u2, PtrStepSzf I1w, PtrStepSzf I1wx,
                      PtrStepSzf I1wy, PtrStepSzf grad, PtrStepSzf rho,
                      cudaStream_t stream)
    {
        const dim3 block(32, 8);
        const dim3 grid(divUp(I0.cols, block.x), divUp(I0.rows, block.y));

        bindTexture(&tex_I1 , I1);
        bindTexture(&tex_I1x, I1x);
        bindTexture(&tex_I1y, I1y);

        warpBackwardKernel<<<grid, block, 0, stream>>>(I0, u1, u2, I1w, I1wx, I1wy, grad, rho);
        cudaSafeCall( cudaGetLastError() );

        if (!stream)
            cudaSafeCall( cudaDeviceSynchronize() );
    }
}

////////////////////////////////////////////////////////////
// estimateU

namespace tvl1flow
{
    __device__ float divergence(const PtrStepf& v1, const PtrStepf& v2, int y, int x)
    {
        if (x > 0 && y > 0)
        {
            const float v1x = v1(y, x) - v1(y, x - 1);
            const float v2y = v2(y, x) - v2(y - 1, x);
            return v1x + v2y;
        }
        else
        {
            if (y > 0)
                return v1(y, 0) + v2(y, 0) - v2(y - 1, 0);
            else
            {
                if (x > 0)
                    return v1(0, x) - v1(0, x - 1) + v2(0, x);
                else
                    return v1(0, 0) + v2(0, 0);
            }
        }
    }

    __global__ void estimateUKernel(const PtrStepSzf I1wx, const PtrStepf I1wy,
                              const PtrStepf grad, const PtrStepf rho_c,
                              const PtrStepf p11, const PtrStepf p12,
                              const PtrStepf p21, const PtrStepf p22,
                              const PtrStepf p31, const PtrStepf p32,
                              PtrStepf u1, PtrStepf u2, PtrStepf u3, PtrStepf error,
                              const float l_t, const float theta, const float gamma, const bool calcError)
    {
        const int x = blockIdx.x * blockDim.x + threadIdx.x;
        const int y = blockIdx.y * blockDim.y + threadIdx.y;

        if (x >= I1wx.cols || y >= I1wx.rows)
            return;

        const float I1wxVal = I1wx(y, x);
        const float I1wyVal = I1wy(y, x);
        const float gradVal = grad(y, x);
        const float u1OldVal = u1(y, x);
        const float u2OldVal = u2(y, x);
        const float u3OldVal = gamma ? u3(y, x) : 0;

        const float rho = rho_c(y, x) + (I1wxVal * u1OldVal + I1wyVal * u2OldVal + gamma * u3OldVal);

        // estimate the values of the variable (v1, v2) (thresholding operator TH)

        float d1 = 0.0f;
        float d2 = 0.0f;
        float d3 = 0.0f;

        if (rho < -l_t * gradVal)
        {
            d1 = l_t * I1wxVal;
            d2 = l_t * I1wyVal;
            if (gamma)
                d3 = l_t * gamma;
        }
        else if (rho > l_t * gradVal)
        {
            d1 = -l_t * I1wxVal;
            d2 = -l_t * I1wyVal;
            if (gamma)
                d3 = -l_t * gamma;
        }
        else if (gradVal > numeric_limits<float>::epsilon())
        {
            const float fi = -rho / gradVal;
            d1 = fi * I1wxVal;
            d2 = fi * I1wyVal;
            if (gamma)
                d3 = fi * gamma;
        }

        const float v1 = u1OldVal + d1;
        const float v2 = u2OldVal + d2;
        const float v3 = u3OldVal + d3;

        // compute the divergence of the dual variable (p1, p2)

        const float div_p1 = divergence(p11, p12, y, x);
        const float div_p2 = divergence(p21, p22, y, x);
        const float div_p3 = gamma ? divergence(p31, p32, y, x) : 0;

        // estimate the values of the optical flow (u1, u2)

        const float u1NewVal = v1 + theta * div_p1;
        const float u2NewVal = v2 + theta * div_p2;
        const float u3NewVal = gamma ? v3 + theta * div_p3 : 0;

        u1(y, x) = u1NewVal;
        u2(y, x) = u2NewVal;
        if (gamma)
            u3(y, x) = u3NewVal;

        if (calcError)
        {
            const float n1 = (u1OldVal - u1NewVal) * (u1OldVal - u1NewVal);
            const float n2 = (u2OldVal - u2NewVal) * (u2OldVal - u2NewVal);
            error(y, x) = n1 + n2;
        }
    }

    void estimateU(PtrStepSzf I1wx, PtrStepSzf I1wy,
                   PtrStepSzf grad, PtrStepSzf rho_c,
                   PtrStepSzf p11, PtrStepSzf p12, PtrStepSzf p21, PtrStepSzf p22, PtrStepSzf p31, PtrStepSzf p32,
                   PtrStepSzf u1, PtrStepSzf u2, PtrStepSzf u3, PtrStepSzf error,
                   float l_t, float theta, float gamma, bool calcError,
                   cudaStream_t stream)
    {
        const dim3 block(32, 8);
        const dim3 grid(divUp(I1wx.cols, block.x), divUp(I1wx.rows, block.y));

        estimateUKernel<<<grid, block, 0, stream>>>(I1wx, I1wy, grad, rho_c, p11, p12, p21, p22, p31, p32, u1, u2, u3, error, l_t, theta, gamma, calcError);
        cudaSafeCall( cudaGetLastError() );

        if (!stream)
            cudaSafeCall( cudaDeviceSynchronize() );
    }
}

////////////////////////////////////////////////////////////
// estimateDualVariables

namespace tvl1flow
{
    __global__ void estimateDualVariablesKernel(const PtrStepSzf u1, const PtrStepf u2, const PtrStepSzf u3,
                                                PtrStepf p11, PtrStepf p12, PtrStepf p21, PtrStepf p22, PtrStepf p31, PtrStepf p32, const float taut, const float gamma)
    {
        const int x = blockIdx.x * blockDim.x + threadIdx.x;
        const int y = blockIdx.y * blockDim.y + threadIdx.y;

        if (x >= u1.cols || y >= u1.rows)
            return;

        const float u1x = u1(y, ::min(x + 1, u1.cols - 1)) - u1(y, x);
        const float u1y = u1(::min(y + 1, u1.rows - 1), x) - u1(y, x);

        const float u2x = u2(y, ::min(x + 1, u1.cols - 1)) - u2(y, x);
        const float u2y = u2(::min(y + 1, u1.rows - 1), x) - u2(y, x);

        const float u3x = gamma ? u3(y, ::min(x + 1, u1.cols - 1)) - u3(y, x) : 0;
        const float u3y = gamma ? u3(::min(y + 1, u1.rows - 1), x) - u3(y, x) : 0;

        const float g1 = ::hypotf(u1x, u1y);
        const float g2 = ::hypotf(u2x, u2y);
        const float g3 = gamma ? ::hypotf(u3x, u3y) : 0;

        const float ng1 = 1.0f + taut * g1;
        const float ng2 = 1.0f + taut * g2;
        const float ng3 = gamma ? 1.0f + taut * g3 : 0;

        p11(y, x) = (p11(y, x) + taut * u1x) / ng1;
        p12(y, x) = (p12(y, x) + taut * u1y) / ng1;
        p21(y, x) = (p21(y, x) + taut * u2x) / ng2;
        p22(y, x) = (p22(y, x) + taut * u2y) / ng2;
        if (gamma)
        {
            p31(y, x) = (p31(y, x) + taut * u3x) / ng3;
            p32(y, x) = (p32(y, x) + taut * u3y) / ng3;
        }
    }

    void estimateDualVariables(PtrStepSzf u1, PtrStepSzf u2, PtrStepSzf u3,
                               PtrStepSzf p11, PtrStepSzf p12, PtrStepSzf p21, PtrStepSzf p22, PtrStepSzf p31, PtrStepSzf p32,
                               float taut, float gamma,
                               cudaStream_t stream)
    {
        const dim3 block(32, 8);
        const dim3 grid(divUp(u1.cols, block.x), divUp(u1.rows, block.y));

        estimateDualVariablesKernel<<<grid, block, 0, stream>>>(u1, u2, u3, p11, p12, p21, p22, p31, p32, taut, gamma);
        cudaSafeCall( cudaGetLastError() );

        if (!stream)
            cudaSafeCall( cudaDeviceSynchronize() );
    }
}

#endif // !defined CUDA_DISABLER