surf.cpp 39 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
/* Original code has been submitted by Liu Liu. Here is the copyright.
----------------------------------------------------------------------------------
 * An OpenCV Implementation of SURF
 * Further Information Refer to "SURF: Speed-Up Robust Feature"
 * Author: Liu Liu
 * liuliu.1987+opencv@gmail.com
 *
 * There are still serveral lacks for this experimental implementation:
 * 1.The interpolation of sub-pixel mentioned in article was not implemented yet;
 * 2.A comparision with original libSurf.so shows that the hessian detector is not a 100% match to their implementation;
 * 3.Due to above reasons, I recommanded the original one for study and reuse;
 *
 * However, the speed of this implementation is something comparable to original one.
 *
 * Copyright© 2008, Liu Liu All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or
 * without modification, are permitted provided that the following
 * conditions are met:
 *  Redistributions of source code must retain the above
 *  copyright notice, this list of conditions and the following
 *  disclaimer.
 *  Redistributions in binary form must reproduce the above
 *  copyright notice, this list of conditions and the following
 *  disclaimer in the documentation and/or other materials
 *  provided with the distribution.
 *  The name of Contributor may not be used to endorse or
 *  promote products derived from this software without
 *  specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
 * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
 * OF SUCH DAMAGE.
 */

/*
   The following changes have been made, comparing to the original contribution:
   1. A lot of small optimizations, less memory allocations, got rid of global buffers
   2. Reversed order of cvGetQuadrangleSubPix and cvResize calls; probably less accurate, but much faster
   3. The descriptor computing part (which is most expensive) is threaded using OpenMP
   (subpixel-accurate keypoint localization and scale estimation are still TBD)
*/

/*
KeyPoint position and scale interpolation has been implemented as described in
the Brown and Lowe paper cited by the SURF paper.

The sampling step along the x and y axes of the image for the determinant of the
Hessian is now the same for each layer in an octave. While this increases the
computation time, it ensures that a true 3x3x3 neighbourhood exists, with
samples calculated at the same position in the layers above and below. This
results in improved maxima detection and non-maxima suppression, and I think it
is consistent with the description in the SURF paper.

The wavelet size sampling interval has also been made consistent. The wavelet
size at the first layer of the first octave is now 9 instead of 7. Along with
regular position sampling steps, this makes location and scale interpolation
easy. I think this is consistent with the SURF paper and original
implementation.

The scaling of the wavelet parameters has been fixed to ensure that the patterns
are symmetric around the centre. Previously the truncation caused by integer
division in the scaling ratio caused a bias towards the top left of the wavelet,
resulting in inconsistent keypoint positions.

The matrices for the determinant and trace of the Hessian are now reused in each
octave.

The extraction of the patch of pixels surrounding a keypoint used to build a
descriptor has been simplified.

KeyPoint descriptor normalisation has been changed from normalising each 4x4
cell (resulting in a descriptor of magnitude 16) to normalising the entire
descriptor to magnitude 1.

The default number of octaves has been increased from 3 to 4 to match the
original SURF binary default. The increase in computation time is minimal since
the higher octaves are sampled sparsely.

The default number of layers per octave has been reduced from 3 to 2, to prevent
redundant calculation of similar sizes in consecutive octaves.  This decreases
computation time. The number of features extracted may be less, however the
additional features were mostly redundant.

The radius of the circle of gradient samples used to assign an orientation has
been increased from 4 to 6 to match the description in the SURF paper. This is
now defined by ORI_RADIUS, and could be made into a parameter.

The size of the sliding window used in orientation assignment has been reduced
from 120 to 60 degrees to match the description in the SURF paper. This is now
defined by ORI_WIN, and could be made into a parameter.

Other options like  HAAR_SIZE0, HAAR_SIZE_INC, SAMPLE_STEP0, ORI_SEARCH_INC,
ORI_SIGMA and DESC_SIGMA have been separated from the code and documented.
These could also be made into parameters.

Modifications by Ian Mahon

*/
#include "precomp.hpp"

namespace cv
{

static const int   SURF_ORI_SEARCH_INC = 5;
static const float SURF_ORI_SIGMA      = 2.5f;
static const float SURF_DESC_SIGMA     = 3.3f;

// Wavelet size at first layer of first octave.
static const int SURF_HAAR_SIZE0 = 9;

// Wavelet size increment between layers. This should be an even number,
// such that the wavelet sizes in an octave are either all even or all odd.
// This ensures that when looking for the neighbours of a sample, the layers
// above and below are aligned correctly.
static const int SURF_HAAR_SIZE_INC = 6;


struct SurfHF
{
    int p0, p1, p2, p3;
    float w;

    SurfHF(): p0(0), p1(0), p2(0), p3(0), w(0) {}
};

inline float calcHaarPattern( const int* origin, const SurfHF* f, int n )
{
    double d = 0;
    for( int k = 0; k < n; k++ )
        d += (origin[f[k].p0] + origin[f[k].p3] - origin[f[k].p1] - origin[f[k].p2])*f[k].w;
    return (float)d;
}

static void
resizeHaarPattern( const int src[][5], SurfHF* dst, int n, int oldSize, int newSize, int widthStep )
{
    float ratio = (float)newSize/oldSize;
    for( int k = 0; k < n; k++ )
    {
        int dx1 = cvRound( ratio*src[k][0] );
        int dy1 = cvRound( ratio*src[k][1] );
        int dx2 = cvRound( ratio*src[k][2] );
        int dy2 = cvRound( ratio*src[k][3] );
        dst[k].p0 = dy1*widthStep + dx1;
        dst[k].p1 = dy2*widthStep + dx1;
        dst[k].p2 = dy1*widthStep + dx2;
        dst[k].p3 = dy2*widthStep + dx2;
        dst[k].w = src[k][4]/((float)(dx2-dx1)*(dy2-dy1));
    }
}

/*
 * Calculate the determinant and trace of the Hessian for a layer of the
 * scale-space pyramid
 */
static void calcLayerDetAndTrace( const Mat& sum, int size, int sampleStep,
                                  Mat& det, Mat& trace )
{
    const int NX=3, NY=3, NXY=4;
    const int dx_s[NX][5] = { {0, 2, 3, 7, 1}, {3, 2, 6, 7, -2}, {6, 2, 9, 7, 1} };
    const int dy_s[NY][5] = { {2, 0, 7, 3, 1}, {2, 3, 7, 6, -2}, {2, 6, 7, 9, 1} };
    const int dxy_s[NXY][5] = { {1, 1, 4, 4, 1}, {5, 1, 8, 4, -1}, {1, 5, 4, 8, -1}, {5, 5, 8, 8, 1} };

    SurfHF Dx[NX], Dy[NY], Dxy[NXY];

    if( size > sum.rows-1 || size > sum.cols-1 )
       return;

    resizeHaarPattern( dx_s , Dx , NX , 9, size, sum.cols );
    resizeHaarPattern( dy_s , Dy , NY , 9, size, sum.cols );
    resizeHaarPattern( dxy_s, Dxy, NXY, 9, size, sum.cols );

    /* The integral image 'sum' is one pixel bigger than the source image */
    int samples_i = 1+(sum.rows-1-size)/sampleStep;
    int samples_j = 1+(sum.cols-1-size)/sampleStep;

    /* Ignore pixels where some of the kernel is outside the image */
    int margin = (size/2)/sampleStep;

    for( int i = 0; i < samples_i; i++ )
    {
        const int* sum_ptr = sum.ptr<int>(i*sampleStep);
        float* det_ptr = &det.at<float>(i+margin, margin);
        float* trace_ptr = &trace.at<float>(i+margin, margin);
        for( int j = 0; j < samples_j; j++ )
        {
            float dx  = calcHaarPattern( sum_ptr, Dx , 3 );
            float dy  = calcHaarPattern( sum_ptr, Dy , 3 );
            float dxy = calcHaarPattern( sum_ptr, Dxy, 4 );
            sum_ptr += sampleStep;
            det_ptr[j] = dx*dy - 0.81f*dxy*dxy;
            trace_ptr[j] = dx + dy;
        }
    }
}


/*
 * Maxima location interpolation as described in "Invariant Features from
 * Interest Point Groups" by Matthew Brown and David Lowe. This is performed by
 * fitting a 3D quadratic to a set of neighbouring samples.
 *
 * The gradient vector and Hessian matrix at the initial keypoint location are
 * approximated using central differences. The linear system Ax = b is then
 * solved, where A is the Hessian, b is the negative gradient, and x is the
 * offset of the interpolated maxima coordinates from the initial estimate.
 * This is equivalent to an iteration of Netwon's optimisation algorithm.
 *
 * N9 contains the samples in the 3x3x3 neighbourhood of the maxima
 * dx is the sampling step in x
 * dy is the sampling step in y
 * ds is the sampling step in size
 * point contains the keypoint coordinates and scale to be modified
 *
 * Return value is 1 if interpolation was successful, 0 on failure.
 */
static int
interpolateKeypoint( float N9[3][9], int dx, int dy, int ds, KeyPoint& kpt )
{
    Vec3f b(-(N9[1][5]-N9[1][3])/2,  // Negative 1st deriv with respect to x
            -(N9[1][7]-N9[1][1])/2,  // Negative 1st deriv with respect to y
            -(N9[2][4]-N9[0][4])/2); // Negative 1st deriv with respect to s

    Matx33f A(
        N9[1][3]-2*N9[1][4]+N9[1][5],            // 2nd deriv x, x
        (N9[1][8]-N9[1][6]-N9[1][2]+N9[1][0])/4, // 2nd deriv x, y
        (N9[2][5]-N9[2][3]-N9[0][5]+N9[0][3])/4, // 2nd deriv x, s
        (N9[1][8]-N9[1][6]-N9[1][2]+N9[1][0])/4, // 2nd deriv x, y
        N9[1][1]-2*N9[1][4]+N9[1][7],            // 2nd deriv y, y
        (N9[2][7]-N9[2][1]-N9[0][7]+N9[0][1])/4, // 2nd deriv y, s
        (N9[2][5]-N9[2][3]-N9[0][5]+N9[0][3])/4, // 2nd deriv x, s
        (N9[2][7]-N9[2][1]-N9[0][7]+N9[0][1])/4, // 2nd deriv y, s
        N9[0][4]-2*N9[1][4]+N9[2][4]);           // 2nd deriv s, s

    Vec3f x = A.solve(b, DECOMP_LU);

    bool ok = (x[0] != 0 || x[1] != 0 || x[2] != 0) &&
        std::abs(x[0]) <= 1 && std::abs(x[1]) <= 1 && std::abs(x[2]) <= 1;

    if( ok )
    {
        kpt.pt.x += x[0]*dx;
        kpt.pt.y += x[1]*dy;
        kpt.size = (float)cvRound( kpt.size + x[2]*ds );
    }
    return ok;
}

// Multi-threaded construction of the scale-space pyramid
struct SURFBuildInvoker : ParallelLoopBody
{
    SURFBuildInvoker( const Mat& _sum, const vector<int>& _sizes,
                      const vector<int>& _sampleSteps,
                      vector<Mat>& _dets, vector<Mat>& _traces )
    {
        sum = &_sum;
        sizes = &_sizes;
        sampleSteps = &_sampleSteps;
        dets = &_dets;
        traces = &_traces;
    }

    void operator()(const Range& range) const
    {
        for( int i=range.start; i<range.end; i++ )
            calcLayerDetAndTrace( *sum, (*sizes)[i], (*sampleSteps)[i], (*dets)[i], (*traces)[i] );
    }

    const Mat *sum;
    const vector<int> *sizes;
    const vector<int> *sampleSteps;
    vector<Mat>* dets;
    vector<Mat>* traces;
};

// Multi-threaded search of the scale-space pyramid for keypoints
struct SURFFindInvoker : ParallelLoopBody
{
    SURFFindInvoker( const Mat& _sum, const Mat& _mask_sum,
                     const vector<Mat>& _dets, const vector<Mat>& _traces,
                     const vector<int>& _sizes, const vector<int>& _sampleSteps,
                     const vector<int>& _middleIndices, vector<KeyPoint>& _keypoints,
                     int _nOctaveLayers, float _hessianThreshold )
    {
        sum = &_sum;
        mask_sum = &_mask_sum;
        dets = &_dets;
        traces = &_traces;
        sizes = &_sizes;
        sampleSteps = &_sampleSteps;
        middleIndices = &_middleIndices;
        keypoints = &_keypoints;
        nOctaveLayers = _nOctaveLayers;
        hessianThreshold = _hessianThreshold;
    }

    static void findMaximaInLayer( const Mat& sum, const Mat& mask_sum,
                   const vector<Mat>& dets, const vector<Mat>& traces,
                   const vector<int>& sizes, vector<KeyPoint>& keypoints,
                   int octave, int layer, float hessianThreshold, int sampleStep );

    void operator()(const Range& range) const
    {
        for( int i=range.start; i<range.end; i++ )
        {
            int layer = (*middleIndices)[i];
            int octave = i / nOctaveLayers;
            findMaximaInLayer( *sum, *mask_sum, *dets, *traces, *sizes,
                               *keypoints, octave, layer, hessianThreshold,
                               (*sampleSteps)[layer] );
        }
    }

    const Mat *sum;
    const Mat *mask_sum;
    const vector<Mat>* dets;
    const vector<Mat>* traces;
    const vector<int>* sizes;
    const vector<int>* sampleSteps;
    const vector<int>* middleIndices;
    vector<KeyPoint>* keypoints;
    int nOctaveLayers;
    float hessianThreshold;

    static Mutex findMaximaInLayer_m;
};

Mutex SURFFindInvoker::findMaximaInLayer_m;


/*
 * Find the maxima in the determinant of the Hessian in a layer of the
 * scale-space pyramid
 */
void SURFFindInvoker::findMaximaInLayer( const Mat& sum, const Mat& mask_sum,
                   const vector<Mat>& dets, const vector<Mat>& traces,
                   const vector<int>& sizes, vector<KeyPoint>& keypoints,
                   int octave, int layer, float hessianThreshold, int sampleStep )
{
    // Wavelet Data
    const int NM=1;
    const int dm[NM][5] = { {0, 0, 9, 9, 1} };
    SurfHF Dm;

    int size = sizes[layer];

    // The integral image 'sum' is one pixel bigger than the source image
    int layer_rows = (sum.rows-1)/sampleStep;
    int layer_cols = (sum.cols-1)/sampleStep;

    // Ignore pixels without a 3x3x3 neighbourhood in the layer above
    int margin = (sizes[layer+1]/2)/sampleStep+1;

    if( !mask_sum.empty() )
       resizeHaarPattern( dm, &Dm, NM, 9, size, mask_sum.cols );

    int step = (int)(dets[layer].step/dets[layer].elemSize());

    for( int i = margin; i < layer_rows - margin; i++ )
    {
        const float* det_ptr = dets[layer].ptr<float>(i);
        const float* trace_ptr = traces[layer].ptr<float>(i);
        for( int j = margin; j < layer_cols-margin; j++ )
        {
            float val0 = det_ptr[j];
            if( val0 > hessianThreshold )
            {
                /* Coordinates for the start of the wavelet in the sum image. There
                   is some integer division involved, so don't try to simplify this
                   (cancel out sampleStep) without checking the result is the same */
                int sum_i = sampleStep*(i-(size/2)/sampleStep);
                int sum_j = sampleStep*(j-(size/2)/sampleStep);

                /* The 3x3x3 neighbouring samples around the maxima.
                   The maxima is included at N9[1][4] */

                const float *det1 = &dets[layer-1].at<float>(i, j);
                const float *det2 = &dets[layer].at<float>(i, j);
                const float *det3 = &dets[layer+1].at<float>(i, j);
                float N9[3][9] = { { det1[-step-1], det1[-step], det1[-step+1],
                                     det1[-1]  , det1[0] , det1[1],
                                     det1[step-1] , det1[step] , det1[step+1]  },
                                   { det2[-step-1], det2[-step], det2[-step+1],
                                     det2[-1]  , det2[0] , det2[1],
                                     det2[step-1] , det2[step] , det2[step+1]  },
                                   { det3[-step-1], det3[-step], det3[-step+1],
                                     det3[-1]  , det3[0] , det3[1],
                                     det3[step-1] , det3[step] , det3[step+1]  } };

                /* Check the mask - why not just check the mask at the center of the wavelet? */
                if( !mask_sum.empty() )
                {
                    const int* mask_ptr = &mask_sum.at<int>(sum_i, sum_j);
                    float mval = calcHaarPattern( mask_ptr, &Dm, 1 );
                    if( mval < 0.5 )
                        continue;
                }

                /* Non-maxima suppression. val0 is at N9[1][4]*/
                if( val0 > N9[0][0] && val0 > N9[0][1] && val0 > N9[0][2] &&
                    val0 > N9[0][3] && val0 > N9[0][4] && val0 > N9[0][5] &&
                    val0 > N9[0][6] && val0 > N9[0][7] && val0 > N9[0][8] &&
                    val0 > N9[1][0] && val0 > N9[1][1] && val0 > N9[1][2] &&
                    val0 > N9[1][3]                    && val0 > N9[1][5] &&
                    val0 > N9[1][6] && val0 > N9[1][7] && val0 > N9[1][8] &&
                    val0 > N9[2][0] && val0 > N9[2][1] && val0 > N9[2][2] &&
                    val0 > N9[2][3] && val0 > N9[2][4] && val0 > N9[2][5] &&
                    val0 > N9[2][6] && val0 > N9[2][7] && val0 > N9[2][8] )
                {
                    /* Calculate the wavelet center coordinates for the maxima */
                    float center_i = sum_i + (size-1)*0.5f;
                    float center_j = sum_j + (size-1)*0.5f;

                    KeyPoint kpt( center_j, center_i, (float)sizes[layer],
                                  -1, val0, octave, CV_SIGN(trace_ptr[j]) );

                    /* Interpolate maxima location within the 3x3x3 neighbourhood  */
                    int ds = size - sizes[layer-1];
                    int interp_ok = interpolateKeypoint( N9, sampleStep, sampleStep, ds, kpt );

                    /* Sometimes the interpolation step gives a negative size etc. */
                    if( interp_ok  )
                    {
                        /*printf( "KeyPoint %f %f %d\n", point.pt.x, point.pt.y, point.size );*/
                        cv::AutoLock lock(findMaximaInLayer_m);
                        keypoints.push_back(kpt);
                    }
                }
            }
        }
    }
}

struct KeypointGreater
{
    inline bool operator()(const KeyPoint& kp1, const KeyPoint& kp2) const
    {
        if(kp1.response > kp2.response) return true;
        if(kp1.response < kp2.response) return false;
        if(kp1.size > kp2.size) return true;
        if(kp1.size < kp2.size) return false;
        if(kp1.octave > kp2.octave) return true;
        if(kp1.octave < kp2.octave) return false;
        if(kp1.pt.y < kp2.pt.y) return false;
        if(kp1.pt.y > kp2.pt.y) return true;
        return kp1.pt.x < kp2.pt.x;
    }
};


static void fastHessianDetector( const Mat& sum, const Mat& mask_sum, vector<KeyPoint>& keypoints,
                                 int nOctaves, int nOctaveLayers, float hessianThreshold )
{
    /* Sampling step along image x and y axes at first octave. This is doubled
       for each additional octave. WARNING: Increasing this improves speed,
       however keypoint extraction becomes unreliable. */
    const int SAMPLE_STEP0 = 1;

    int nTotalLayers = (nOctaveLayers+2)*nOctaves;
    int nMiddleLayers = nOctaveLayers*nOctaves;

    vector<Mat> dets(nTotalLayers);
    vector<Mat> traces(nTotalLayers);
    vector<int> sizes(nTotalLayers);
    vector<int> sampleSteps(nTotalLayers);
    vector<int> middleIndices(nMiddleLayers);

    keypoints.clear();

    // Allocate space and calculate properties of each layer
    int index = 0, middleIndex = 0, step = SAMPLE_STEP0;

    for( int octave = 0; octave < nOctaves; octave++ )
    {
        for( int layer = 0; layer < nOctaveLayers+2; layer++ )
        {
            /* The integral image sum is one pixel bigger than the source image*/
            dets[index].create( (sum.rows-1)/step, (sum.cols-1)/step, CV_32F );
            traces[index].create( (sum.rows-1)/step, (sum.cols-1)/step, CV_32F );
            sizes[index] = (SURF_HAAR_SIZE0 + SURF_HAAR_SIZE_INC*layer) << octave;
            sampleSteps[index] = step;

            if( 0 < layer && layer <= nOctaveLayers )
                middleIndices[middleIndex++] = index;
            index++;
        }
        step *= 2;
    }

    // Calculate hessian determinant and trace samples in each layer
    parallel_for_( Range(0, nTotalLayers),
                   SURFBuildInvoker(sum, sizes, sampleSteps, dets, traces) );

    // Find maxima in the determinant of the hessian
    parallel_for_( Range(0, nMiddleLayers),
                   SURFFindInvoker(sum, mask_sum, dets, traces, sizes,
                                   sampleSteps, middleIndices, keypoints,
                                   nOctaveLayers, hessianThreshold) );

    std::sort(keypoints.begin(), keypoints.end(), KeypointGreater());
}


struct SURFInvoker : ParallelLoopBody
{
    enum { ORI_RADIUS = 6, ORI_WIN = 60, PATCH_SZ = 20 };

    SURFInvoker( const Mat& _img, const Mat& _sum,
                 vector<KeyPoint>& _keypoints, Mat& _descriptors,
                 bool _extended, bool _upright )
    {
        keypoints = &_keypoints;
        descriptors = &_descriptors;
        img = &_img;
        sum = &_sum;
        extended = _extended;
        upright = _upright;

        // Simple bound for number of grid points in circle of radius ORI_RADIUS
        const int nOriSampleBound = (2*ORI_RADIUS+1)*(2*ORI_RADIUS+1);

        // Allocate arrays
        apt.resize(nOriSampleBound);
        aptw.resize(nOriSampleBound);
        DW.resize(PATCH_SZ*PATCH_SZ);

        /* Coordinates and weights of samples used to calculate orientation */
        Mat G_ori = getGaussianKernel( 2*ORI_RADIUS+1, SURF_ORI_SIGMA, CV_32F );
        nOriSamples = 0;
        for( int i = -ORI_RADIUS; i <= ORI_RADIUS; i++ )
        {
            for( int j = -ORI_RADIUS; j <= ORI_RADIUS; j++ )
            {
                if( i*i + j*j <= ORI_RADIUS*ORI_RADIUS )
                {
                    apt[nOriSamples] = cvPoint(i,j);
                    aptw[nOriSamples++] = G_ori.at<float>(i+ORI_RADIUS,0) * G_ori.at<float>(j+ORI_RADIUS,0);
                }
            }
        }
        CV_Assert( nOriSamples <= nOriSampleBound );

        /* Gaussian used to weight descriptor samples */
        Mat G_desc = getGaussianKernel( PATCH_SZ, SURF_DESC_SIGMA, CV_32F );
        for( int i = 0; i < PATCH_SZ; i++ )
        {
            for( int j = 0; j < PATCH_SZ; j++ )
                DW[i*PATCH_SZ+j] = G_desc.at<float>(i,0) * G_desc.at<float>(j,0);
        }
    }

    void operator()(const Range& range) const
    {
        /* X and Y gradient wavelet data */
        const int NX=2, NY=2;
        const int dx_s[NX][5] = {{0, 0, 2, 4, -1}, {2, 0, 4, 4, 1}};
        const int dy_s[NY][5] = {{0, 0, 4, 2, 1}, {0, 2, 4, 4, -1}};

        // Optimisation is better using nOriSampleBound than nOriSamples for
        // array lengths.  Maybe because it is a constant known at compile time
        const int nOriSampleBound =(2*ORI_RADIUS+1)*(2*ORI_RADIUS+1);

        float X[nOriSampleBound], Y[nOriSampleBound], angle[nOriSampleBound];
        uchar PATCH[PATCH_SZ+1][PATCH_SZ+1];
        float DX[PATCH_SZ][PATCH_SZ], DY[PATCH_SZ][PATCH_SZ];
        CvMat matX = cvMat(1, nOriSampleBound, CV_32F, X);
        CvMat matY = cvMat(1, nOriSampleBound, CV_32F, Y);
        CvMat _angle = cvMat(1, nOriSampleBound, CV_32F, angle);
        Mat _patch(PATCH_SZ+1, PATCH_SZ+1, CV_8U, PATCH);

        int dsize = extended ? 128 : 64;

        int k, k1 = range.start, k2 = range.end;
        float maxSize = 0;
        for( k = k1; k < k2; k++ )
        {
            maxSize = std::max(maxSize, (*keypoints)[k].size);
        }
        int imaxSize = std::max(cvCeil((PATCH_SZ+1)*maxSize*1.2f/9.0f), 1);
        Ptr<CvMat> winbuf = cvCreateMat( 1, imaxSize*imaxSize, CV_8U );
        for( k = k1; k < k2; k++ )
        {
            int i, j, kk, nangle;
            float* vec;
            SurfHF dx_t[NX], dy_t[NY];
            KeyPoint& kp = (*keypoints)[k];
            float size = kp.size;
            Point2f center = kp.pt;
            /* The sampling intervals and wavelet sized for selecting an orientation
             and building the keypoint descriptor are defined relative to 's' */
            float s = size*1.2f/9.0f;
            /* To find the dominant orientation, the gradients in x and y are
             sampled in a circle of radius 6s using wavelets of size 4s.
             We ensure the gradient wavelet size is even to ensure the
             wavelet pattern is balanced and symmetric around its center */
            int grad_wav_size = 2*cvRound( 2*s );
            if( sum->rows < grad_wav_size || sum->cols < grad_wav_size )
            {
                /* when grad_wav_size is too big,
                 * the sampling of gradient will be meaningless
                 * mark keypoint for deletion. */
                kp.size = -1;
                continue;
            }

            float descriptor_dir = 360.f - 90.f;
            if (upright == 0)
            {
                resizeHaarPattern( dx_s, dx_t, NX, 4, grad_wav_size, sum->cols );
                resizeHaarPattern( dy_s, dy_t, NY, 4, grad_wav_size, sum->cols );
                for( kk = 0, nangle = 0; kk < nOriSamples; kk++ )
                {
                    int x = cvRound( center.x + apt[kk].x*s - (float)(grad_wav_size-1)/2 );
                    int y = cvRound( center.y + apt[kk].y*s - (float)(grad_wav_size-1)/2 );
                    if( y < 0 || y >= sum->rows - grad_wav_size ||
                        x < 0 || x >= sum->cols - grad_wav_size )
                        continue;
                    const int* ptr = &sum->at<int>(y, x);
                    float vx = calcHaarPattern( ptr, dx_t, 2 );
                    float vy = calcHaarPattern( ptr, dy_t, 2 );
                    X[nangle] = vx*aptw[kk];
                    Y[nangle] = vy*aptw[kk];
                    nangle++;
                }
                if( nangle == 0 )
                {
                    // No gradient could be sampled because the keypoint is too
                    // near too one or more of the sides of the image. As we
                    // therefore cannot find a dominant direction, we skip this
                    // keypoint and mark it for later deletion from the sequence.
                    kp.size = -1;
                    continue;
                }
                matX.cols = matY.cols = _angle.cols = nangle;
                cvCartToPolar( &matX, &matY, 0, &_angle, 1 );

                float bestx = 0, besty = 0, descriptor_mod = 0;
                for( i = 0; i < 360; i += SURF_ORI_SEARCH_INC )
                {
                    float sumx = 0, sumy = 0, temp_mod;
                    for( j = 0; j < nangle; j++ )
                    {
                        int d = std::abs(cvRound(angle[j]) - i);
                        if( d < ORI_WIN/2 || d > 360-ORI_WIN/2 )
                        {
                            sumx += X[j];
                            sumy += Y[j];
                        }
                    }
                    temp_mod = sumx*sumx + sumy*sumy;
                    if( temp_mod > descriptor_mod )
                    {
                        descriptor_mod = temp_mod;
                        bestx = sumx;
                        besty = sumy;
                    }
                }
                descriptor_dir = fastAtan2( -besty, bestx );
            }
            kp.angle = descriptor_dir;
            if( !descriptors || !descriptors->data )
                continue;

            /* Extract a window of pixels around the keypoint of size 20s */
            int win_size = (int)((PATCH_SZ+1)*s);
            CV_Assert( winbuf->cols >= win_size*win_size );
            Mat win(win_size, win_size, CV_8U, winbuf->data.ptr);

            if( !upright )
            {
                descriptor_dir *= (float)(CV_PI/180);
                float sin_dir = -std::sin(descriptor_dir);
                float cos_dir =  std::cos(descriptor_dir);

                /* Subpixel interpolation version (slower). Subpixel not required since
                the pixels will all get averaged when we scale down to 20 pixels */
                /*
                float w[] = { cos_dir, sin_dir, center.x,
                -sin_dir, cos_dir , center.y };
                CvMat W = cvMat(2, 3, CV_32F, w);
                cvGetQuadrangleSubPix( img, &win, &W );
                */

                float win_offset = -(float)(win_size-1)/2;
                float start_x = center.x + win_offset*cos_dir + win_offset*sin_dir;
                float start_y = center.y - win_offset*sin_dir + win_offset*cos_dir;
                uchar* WIN = win.data;
#if 0
                // Nearest neighbour version (faster)
                for( i = 0; i < win_size; i++, start_x += sin_dir, start_y += cos_dir )
                {
                    float pixel_x = start_x;
                    float pixel_y = start_y;
                    for( j = 0; j < win_size; j++, pixel_x += cos_dir, pixel_y -= sin_dir )
                    {
                        int x = std::min(std::max(cvRound(pixel_x), 0), img->cols-1);
                        int y = std::min(std::max(cvRound(pixel_y), 0), img->rows-1);
                        WIN[i*win_size + j] = img->at<uchar>(y, x);
                    }
                }
#else
                int ncols1 = img->cols-1, nrows1 = img->rows-1;
                size_t imgstep = img->step;
                for( i = 0; i < win_size; i++, start_x += sin_dir, start_y += cos_dir )
                {
                    double pixel_x = start_x;
                    double pixel_y = start_y;
                    for( j = 0; j < win_size; j++, pixel_x += cos_dir, pixel_y -= sin_dir )
                    {
                        int ix = cvFloor(pixel_x), iy = cvFloor(pixel_y);
                        if( (unsigned)ix < (unsigned)ncols1 &&
                            (unsigned)iy < (unsigned)nrows1 )
                        {
                            float a = (float)(pixel_x - ix), b = (float)(pixel_y - iy);
                            const uchar* imgptr = &img->at<uchar>(iy, ix);
                            WIN[i*win_size + j] = (uchar)
                                cvRound(imgptr[0]*(1.f - a)*(1.f - b) +
                                        imgptr[1]*a*(1.f - b) +
                                        imgptr[imgstep]*(1.f - a)*b +
                                        imgptr[imgstep+1]*a*b);
                        }
                        else
                        {
                            int x = std::min(std::max(cvRound(pixel_x), 0), ncols1);
                            int y = std::min(std::max(cvRound(pixel_y), 0), nrows1);
                            WIN[i*win_size + j] = img->at<uchar>(y, x);
                        }
                    }
                }
#endif
            }
            else
            {
                // extract rect - slightly optimized version of the code above
                // TODO: find faster code, as this is simply an extract rect operation,
                //       e.g. by using cvGetSubRect, problem is the border processing
                // descriptor_dir == 90 grad
                // sin_dir == 1
                // cos_dir == 0

                float win_offset = -(float)(win_size-1)/2;
                int start_x = cvRound(center.x + win_offset);
                int start_y = cvRound(center.y - win_offset);
                uchar* WIN = win.data;
                for( i = 0; i < win_size; i++, start_x++ )
                {
                    int pixel_x = start_x;
                    int pixel_y = start_y;
                    for( j = 0; j < win_size; j++, pixel_y-- )
                    {
                        int x = MAX( pixel_x, 0 );
                        int y = MAX( pixel_y, 0 );
                        x = MIN( x, img->cols-1 );
                        y = MIN( y, img->rows-1 );
                        WIN[i*win_size + j] = img->at<uchar>(y, x);
                    }
                }
            }
            // Scale the window to size PATCH_SZ so each pixel's size is s. This
            // makes calculating the gradients with wavelets of size 2s easy
            resize(win, _patch, _patch.size(), 0, 0, INTER_AREA);

            // Calculate gradients in x and y with wavelets of size 2s
            for( i = 0; i < PATCH_SZ; i++ )
                for( j = 0; j < PATCH_SZ; j++ )
                {
                    float dw = DW[i*PATCH_SZ + j];
                    float vx = (PATCH[i][j+1] - PATCH[i][j] + PATCH[i+1][j+1] - PATCH[i+1][j])*dw;
                    float vy = (PATCH[i+1][j] - PATCH[i][j] + PATCH[i+1][j+1] - PATCH[i][j+1])*dw;
                    DX[i][j] = vx;
                    DY[i][j] = vy;
                }

            // Construct the descriptor
            vec = descriptors->ptr<float>(k);
            for( kk = 0; kk < dsize; kk++ )
                vec[kk] = 0;
            double square_mag = 0;
            if( extended )
            {
                // 128-bin descriptor
                for( i = 0; i < 4; i++ )
                    for( j = 0; j < 4; j++ )
                    {
                        for(int y = i*5; y < i*5+5; y++ )
                        {
                            for(int x = j*5; x < j*5+5; x++ )
                            {
                                float tx = DX[y][x], ty = DY[y][x];
                                if( ty >= 0 )
                                {
                                    vec[0] += tx;
                                    vec[1] += (float)fabs(tx);
                                } else {
                                    vec[2] += tx;
                                    vec[3] += (float)fabs(tx);
                                }
                                if ( tx >= 0 )
                                {
                                    vec[4] += ty;
                                    vec[5] += (float)fabs(ty);
                                } else {
                                    vec[6] += ty;
                                    vec[7] += (float)fabs(ty);
                                }
                            }
                        }
                        for( kk = 0; kk < 8; kk++ )
                            square_mag += vec[kk]*vec[kk];
                        vec += 8;
                    }
            }
            else
            {
                // 64-bin descriptor
                for( i = 0; i < 4; i++ )
                    for( j = 0; j < 4; j++ )
                    {
                        for(int y = i*5; y < i*5+5; y++ )
                        {
                            for(int x = j*5; x < j*5+5; x++ )
                            {
                                float tx = DX[y][x], ty = DY[y][x];
                                vec[0] += tx; vec[1] += ty;
                                vec[2] += (float)fabs(tx); vec[3] += (float)fabs(ty);
                            }
                        }
                        for( kk = 0; kk < 4; kk++ )
                            square_mag += vec[kk]*vec[kk];
                        vec+=4;
                    }
            }

            // unit vector is essential for contrast invariance
            vec = descriptors->ptr<float>(k);
            float scale = (float)(1./(sqrt(square_mag) + DBL_EPSILON));
            for( kk = 0; kk < dsize; kk++ )
                vec[kk] *= scale;
        }
    }

    // Parameters
    const Mat* img;
    const Mat* sum;
    vector<KeyPoint>* keypoints;
    Mat* descriptors;
    bool extended;
    bool upright;

    // Pre-calculated values
    int nOriSamples;
    vector<Point> apt;
    vector<float> aptw;
    vector<float> DW;
};


SURF::SURF()
{
    hessianThreshold = 100;
    extended = false;
    upright = false;
    nOctaves = 4;
    nOctaveLayers = 3;
}

SURF::SURF(double _threshold, int _nOctaves, int _nOctaveLayers, bool _extended, bool _upright)
{
    hessianThreshold = _threshold;
    extended = _extended;
    upright = _upright;
    nOctaves = _nOctaves;
    nOctaveLayers = _nOctaveLayers;
}

int SURF::descriptorSize() const { return extended ? 128 : 64; }
int SURF::descriptorType() const { return CV_32F; }

void SURF::operator()(InputArray imgarg, InputArray maskarg,
                      CV_OUT vector<KeyPoint>& keypoints) const
{
    (*this)(imgarg, maskarg, keypoints, noArray(), false);
}

void SURF::operator()(InputArray _img, InputArray _mask,
                      CV_OUT vector<KeyPoint>& keypoints,
                      OutputArray _descriptors,
                      bool useProvidedKeypoints) const
{
    Mat img = _img.getMat(), mask = _mask.getMat(), mask1, sum, msum;
    bool doDescriptors = _descriptors.needed();

    CV_Assert(!img.empty() && img.depth() == CV_8U);
    if( img.channels() > 1 )
        cvtColor(img, img, COLOR_BGR2GRAY);

    CV_Assert(mask.empty() || (mask.type() == CV_8U && mask.size() == img.size()));
    CV_Assert(hessianThreshold >= 0);
    CV_Assert(nOctaves > 0);
    CV_Assert(nOctaveLayers > 0);

    integral(img, sum, CV_32S);

    // Compute keypoints only if we are not asked for evaluating the descriptors are some given locations:
    if( !useProvidedKeypoints )
    {
        if( !mask.empty() )
        {
            cv::min(mask, 1, mask1);
            integral(mask1, msum, CV_32S);
        }
        fastHessianDetector( sum, msum, keypoints, nOctaves, nOctaveLayers, (float)hessianThreshold );
    }

    int i, j, N = (int)keypoints.size();
    if( N > 0 )
    {
        Mat descriptors;
        bool _1d = false;
        int dcols = extended ? 128 : 64;
        size_t dsize = dcols*sizeof(float);

        if( doDescriptors )
        {
            _1d = _descriptors.kind() == _InputArray::STD_VECTOR && _descriptors.type() == CV_32F;
            if( _1d )
            {
                _descriptors.create(N*dcols, 1, CV_32F);
                descriptors = _descriptors.getMat().reshape(1, N);
            }
            else
            {
                _descriptors.create(N, dcols, CV_32F);
                descriptors = _descriptors.getMat();
            }
        }

        // we call SURFInvoker in any case, even if we do not need descriptors,
        // since it computes orientation of each feature.
        parallel_for_(Range(0, N), SURFInvoker(img, sum, keypoints, descriptors, extended, upright) );

        // remove keypoints that were marked for deletion
        for( i = j = 0; i < N; i++ )
        {
            if( keypoints[i].size > 0 )
            {
                if( i > j )
                {
                    keypoints[j] = keypoints[i];
                    if( doDescriptors )
                        memcpy( descriptors.ptr(j), descriptors.ptr(i), dsize);
                }
                j++;
            }
        }
        if( N > j )
        {
            N = j;
            keypoints.resize(N);
            if( doDescriptors )
            {
                Mat d = descriptors.rowRange(0, N);
                if( _1d )
                    d = d.reshape(1, N*dcols);
                d.copyTo(_descriptors);
            }
        }
    }
}


void SURF::detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask) const
{
    (*this)(image, mask, keypoints, noArray(), false);
}

void SURF::computeImpl( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors) const
{
    (*this)(image, Mat(), keypoints, descriptors, true);
}

}