imgproc.cu 40.5 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#if !defined CUDA_DISABLER

#include "internal_shared.hpp"
#include "opencv2/gpu/device/vec_traits.hpp"
#include "opencv2/gpu/device/vec_math.hpp"
#include "opencv2/gpu/device/saturate_cast.hpp"
#include "opencv2/gpu/device/border_interpolate.hpp"

namespace cv { namespace gpu { namespace device
{
    namespace imgproc
    {
        /////////////////////////////////// MeanShiftfiltering ///////////////////////////////////////////////

        texture<uchar4, 2> tex_meanshift;

        __device__ short2 do_mean_shift(int x0, int y0, unsigned char* out,
                                        size_t out_step, int cols, int rows,
                                        int sp, int sr, int maxIter, float eps)
        {
            int isr2 = sr*sr;
            uchar4 c = tex2D(tex_meanshift, x0, y0 );

            // iterate meanshift procedure
            for( int iter = 0; iter < maxIter; iter++ )
            {
                int count = 0;
                int s0 = 0, s1 = 0, s2 = 0, sx = 0, sy = 0;
                float icount;

                //mean shift: process pixels in window (p-sigmaSp)x(p+sigmaSp)
                int minx = x0-sp;
                int miny = y0-sp;
                int maxx = x0+sp;
                int maxy = y0+sp;

                for( int y = miny; y <= maxy; y++)
                {
                    int rowCount = 0;
                    for( int x = minx; x <= maxx; x++ )
                    {
                        uchar4 t = tex2D( tex_meanshift, x, y );

                        int norm2 = (t.x - c.x) * (t.x - c.x) + (t.y - c.y) * (t.y - c.y) + (t.z - c.z) * (t.z - c.z);
                        if( norm2 <= isr2 )
                        {
                            s0 += t.x; s1 += t.y; s2 += t.z;
                            sx += x; rowCount++;
                        }
                    }
                    count += rowCount;
                    sy += y*rowCount;
                }

                if( count == 0 )
                    break;

                icount = 1.f/count;
                int x1 = __float2int_rz(sx*icount);
                int y1 = __float2int_rz(sy*icount);
                s0 = __float2int_rz(s0*icount);
                s1 = __float2int_rz(s1*icount);
                s2 = __float2int_rz(s2*icount);

                int norm2 = (s0 - c.x) * (s0 - c.x) + (s1 - c.y) * (s1 - c.y) + (s2 - c.z) * (s2 - c.z);

                bool stopFlag = (x0 == x1 && y0 == y1) || (::abs(x1-x0) + ::abs(y1-y0) + norm2 <= eps);

                x0 = x1; y0 = y1;
                c.x = s0; c.y = s1; c.z = s2;

                if( stopFlag )
                    break;
            }

            int base = (blockIdx.y * blockDim.y + threadIdx.y) * out_step + (blockIdx.x * blockDim.x + threadIdx.x) * 4 * sizeof(uchar);
            *(uchar4*)(out + base) = c;

            return make_short2((short)x0, (short)y0);
        }

        __global__ void meanshift_kernel(unsigned char* out, size_t out_step, int cols, int rows, int sp, int sr, int maxIter, float eps )
        {
            int x0 = blockIdx.x * blockDim.x + threadIdx.x;
            int y0 = blockIdx.y * blockDim.y + threadIdx.y;

            if( x0 < cols && y0 < rows )
                do_mean_shift(x0, y0, out, out_step, cols, rows, sp, sr, maxIter, eps);
        }

        __global__ void meanshiftproc_kernel(unsigned char* outr, size_t outrstep,
                                             unsigned char* outsp, size_t outspstep,
                                             int cols, int rows,
                                             int sp, int sr, int maxIter, float eps)
        {
            int x0 = blockIdx.x * blockDim.x + threadIdx.x;
            int y0 = blockIdx.y * blockDim.y + threadIdx.y;

            if( x0 < cols && y0 < rows )
            {
                int basesp = (blockIdx.y * blockDim.y + threadIdx.y) * outspstep + (blockIdx.x * blockDim.x + threadIdx.x) * 2 * sizeof(short);
                *(short2*)(outsp + basesp) = do_mean_shift(x0, y0, outr, outrstep, cols, rows, sp, sr, maxIter, eps);
            }
        }

        void meanShiftFiltering_gpu(const PtrStepSzb& src, PtrStepSzb dst, int sp, int sr, int maxIter, float eps, cudaStream_t stream)
        {
            dim3 grid(1, 1, 1);
            dim3 threads(32, 8, 1);
            grid.x = divUp(src.cols, threads.x);
            grid.y = divUp(src.rows, threads.y);

            cudaChannelFormatDesc desc = cudaCreateChannelDesc<uchar4>();
            cudaSafeCall( cudaBindTexture2D( 0, tex_meanshift, src.data, desc, src.cols, src.rows, src.step ) );

            meanshift_kernel<<< grid, threads, 0, stream >>>( dst.data, dst.step, dst.cols, dst.rows, sp, sr, maxIter, eps );
            cudaSafeCall( cudaGetLastError() );

            if (stream == 0)
                cudaSafeCall( cudaDeviceSynchronize() );

            //cudaSafeCall( cudaUnbindTexture( tex_meanshift ) );
        }

        void meanShiftProc_gpu(const PtrStepSzb& src, PtrStepSzb dstr, PtrStepSzb dstsp, int sp, int sr, int maxIter, float eps, cudaStream_t stream)
        {
            dim3 grid(1, 1, 1);
            dim3 threads(32, 8, 1);
            grid.x = divUp(src.cols, threads.x);
            grid.y = divUp(src.rows, threads.y);

            cudaChannelFormatDesc desc = cudaCreateChannelDesc<uchar4>();
            cudaSafeCall( cudaBindTexture2D( 0, tex_meanshift, src.data, desc, src.cols, src.rows, src.step ) );

            meanshiftproc_kernel<<< grid, threads, 0, stream >>>( dstr.data, dstr.step, dstsp.data, dstsp.step, dstr.cols, dstr.rows, sp, sr, maxIter, eps );
            cudaSafeCall( cudaGetLastError() );

            if (stream == 0)
                cudaSafeCall( cudaDeviceSynchronize() );

            //cudaSafeCall( cudaUnbindTexture( tex_meanshift ) );
        }

        /////////////////////////////////// drawColorDisp ///////////////////////////////////////////////

        template <typename T>
        __device__ unsigned int cvtPixel(T d, int ndisp, float S = 1, float V = 1)
        {
            unsigned int H = ((ndisp-d) * 240)/ndisp;

            unsigned int hi = (H/60) % 6;
            float f = H/60.f - H/60;
            float p = V * (1 - S);
            float q = V * (1 - f * S);
            float t = V * (1 - (1 - f) * S);

            float3 res;

            if (hi == 0) //R = V,	G = t,	B = p
            {
                res.x = p;
                res.y = t;
                res.z = V;
            }

            if (hi == 1) // R = q,	G = V,	B = p
            {
                res.x = p;
                res.y = V;
                res.z = q;
            }

            if (hi == 2) // R = p,	G = V,	B = t
            {
                res.x = t;
                res.y = V;
                res.z = p;
            }

            if (hi == 3) // R = p,	G = q,	B = V
            {
                res.x = V;
                res.y = q;
                res.z = p;
            }

            if (hi == 4) // R = t,	G = p,	B = V
            {
                res.x = V;
                res.y = p;
                res.z = t;
            }

            if (hi == 5) // R = V,	G = p,	B = q
            {
                res.x = q;
                res.y = p;
                res.z = V;
            }
            const unsigned int b = (unsigned int)(::max(0.f, ::min(res.x, 1.f)) * 255.f);
            const unsigned int g = (unsigned int)(::max(0.f, ::min(res.y, 1.f)) * 255.f);
            const unsigned int r = (unsigned int)(::max(0.f, ::min(res.z, 1.f)) * 255.f);
            const unsigned int a = 255U;

            return (a << 24) + (r << 16) + (g << 8) + b;
        }

        __global__ void drawColorDisp(uchar* disp, size_t disp_step, uchar* out_image, size_t out_step, int width, int height, int ndisp)
        {
            const int x = (blockIdx.x * blockDim.x + threadIdx.x) << 2;
            const int y = blockIdx.y * blockDim.y + threadIdx.y;

            if(x < width && y < height)
            {
                uchar4 d4 = *(uchar4*)(disp + y * disp_step + x);

                uint4 res;
                res.x = cvtPixel(d4.x, ndisp);
                res.y = cvtPixel(d4.y, ndisp);
                res.z = cvtPixel(d4.z, ndisp);
                res.w = cvtPixel(d4.w, ndisp);

                uint4* line = (uint4*)(out_image + y * out_step);
                line[x >> 2] = res;
            }
        }

        __global__ void drawColorDisp(short* disp, size_t disp_step, uchar* out_image, size_t out_step, int width, int height, int ndisp)
        {
            const int x = (blockIdx.x * blockDim.x + threadIdx.x) << 1;
            const int y = blockIdx.y * blockDim.y + threadIdx.y;

            if(x < width && y < height)
            {
                short2 d2 = *(short2*)(disp + y * disp_step + x);

                uint2 res;
                res.x = cvtPixel(d2.x, ndisp);
                res.y = cvtPixel(d2.y, ndisp);

                uint2* line = (uint2*)(out_image + y * out_step);
                line[x >> 1] = res;
            }
        }


        void drawColorDisp_gpu(const PtrStepSzb& src, const PtrStepSzb& dst, int ndisp, const cudaStream_t& stream)
        {
            dim3 threads(16, 16, 1);
            dim3 grid(1, 1, 1);
            grid.x = divUp(src.cols, threads.x << 2);
            grid.y = divUp(src.rows, threads.y);

            drawColorDisp<<<grid, threads, 0, stream>>>(src.data, src.step, dst.data, dst.step, src.cols, src.rows, ndisp);
            cudaSafeCall( cudaGetLastError() );

            if (stream == 0)
                cudaSafeCall( cudaDeviceSynchronize() );
        }

        void drawColorDisp_gpu(const PtrStepSz<short>& src, const PtrStepSzb& dst, int ndisp, const cudaStream_t& stream)
        {
            dim3 threads(32, 8, 1);
            dim3 grid(1, 1, 1);
            grid.x = divUp(src.cols, threads.x << 1);
            grid.y = divUp(src.rows, threads.y);

            drawColorDisp<<<grid, threads, 0, stream>>>(src.data, src.step / sizeof(short), dst.data, dst.step, src.cols, src.rows, ndisp);
            cudaSafeCall( cudaGetLastError() );

            if (stream == 0)
                cudaSafeCall( cudaDeviceSynchronize() );
        }

        /////////////////////////////////// reprojectImageTo3D ///////////////////////////////////////////////

        __constant__ float cq[16];

        template <typename T, typename D>
        __global__ void reprojectImageTo3D(const PtrStepSz<T> disp, PtrStep<D> xyz)
        {
            const int x = blockIdx.x * blockDim.x + threadIdx.x;
            const int y = blockIdx.y * blockDim.y + threadIdx.y;

            if (y >= disp.rows || x >= disp.cols)
                return;

            const float qx = x * cq[ 0] + y * cq[ 1] + cq[ 3];
            const float qy = x * cq[ 4] + y * cq[ 5] + cq[ 7];
            const float qz = x * cq[ 8] + y * cq[ 9] + cq[11];
            const float qw = x * cq[12] + y * cq[13] + cq[15];

            const T d = disp(y, x);

            const float iW = 1.f / (qw + cq[14] * d);

            D v = VecTraits<D>::all(1.0f);
            v.x = (qx + cq[2] * d) * iW;
            v.y = (qy + cq[6] * d) * iW;
            v.z = (qz + cq[10] * d) * iW;

            xyz(y, x) = v;
        }

        template <typename T, typename D>
        void reprojectImageTo3D_gpu(const PtrStepSzb disp, PtrStepSzb xyz, const float* q, cudaStream_t stream)
        {
            dim3 block(32, 8);
            dim3 grid(divUp(disp.cols, block.x), divUp(disp.rows, block.y));

            cudaSafeCall( cudaMemcpyToSymbol(cq, q, 16 * sizeof(float)) );

            reprojectImageTo3D<T, D><<<grid, block, 0, stream>>>((PtrStepSz<T>)disp, (PtrStepSz<D>)xyz);
            cudaSafeCall( cudaGetLastError() );

            if (stream == 0)
                cudaSafeCall( cudaDeviceSynchronize() );
        }

        template void reprojectImageTo3D_gpu<uchar, float3>(const PtrStepSzb disp, PtrStepSzb xyz, const float* q, cudaStream_t stream);
        template void reprojectImageTo3D_gpu<uchar, float4>(const PtrStepSzb disp, PtrStepSzb xyz, const float* q, cudaStream_t stream);
        template void reprojectImageTo3D_gpu<short, float3>(const PtrStepSzb disp, PtrStepSzb xyz, const float* q, cudaStream_t stream);
        template void reprojectImageTo3D_gpu<short, float4>(const PtrStepSzb disp, PtrStepSzb xyz, const float* q, cudaStream_t stream);

        /////////////////////////////////////////// Corner Harris /////////////////////////////////////////////////

        texture<float, cudaTextureType2D, cudaReadModeElementType> harrisDxTex(0, cudaFilterModePoint, cudaAddressModeClamp);
        texture<float, cudaTextureType2D, cudaReadModeElementType> harrisDyTex(0, cudaFilterModePoint, cudaAddressModeClamp);

        __global__ void cornerHarris_kernel(const int block_size, const float k, PtrStepSzf dst)
        {
            const int x = blockIdx.x * blockDim.x + threadIdx.x;
            const int y = blockIdx.y * blockDim.y + threadIdx.y;

            if (x < dst.cols && y < dst.rows)
            {
                float a = 0.f;
                float b = 0.f;
                float c = 0.f;

                const int ibegin = y - (block_size / 2);
                const int jbegin = x - (block_size / 2);
                const int iend = ibegin + block_size;
                const int jend = jbegin + block_size;

                for (int i = ibegin; i < iend; ++i)
                {
                    for (int j = jbegin; j < jend; ++j)
                    {
                        float dx = tex2D(harrisDxTex, j, i);
                        float dy = tex2D(harrisDyTex, j, i);

                        a += dx * dx;
                        b += dx * dy;
                        c += dy * dy;
                    }
                }

                dst(y, x) = a * c - b * b - k * (a + c) * (a + c);
            }
        }

        template <typename BR, typename BC>
        __global__ void cornerHarris_kernel(const int block_size, const float k, PtrStepSzf dst, const BR border_row, const BC border_col)
        {
            const int x = blockIdx.x * blockDim.x + threadIdx.x;
            const int y = blockIdx.y * blockDim.y + threadIdx.y;

            if (x < dst.cols && y < dst.rows)
            {
                float a = 0.f;
                float b = 0.f;
                float c = 0.f;

                const int ibegin = y - (block_size / 2);
                const int jbegin = x - (block_size / 2);
                const int iend = ibegin + block_size;
                const int jend = jbegin + block_size;

                for (int i = ibegin; i < iend; ++i)
                {
                    const int y = border_col.idx_row(i);

                    for (int j = jbegin; j < jend; ++j)
                    {
                        const int x = border_row.idx_col(j);

                        float dx = tex2D(harrisDxTex, x, y);
                        float dy = tex2D(harrisDyTex, x, y);

                        a += dx * dx;
                        b += dx * dy;
                        c += dy * dy;
                    }
                }

                dst(y, x) = a * c - b * b - k * (a + c) * (a + c);
            }
        }

        void cornerHarris_gpu(int block_size, float k, PtrStepSzf Dx, PtrStepSzf Dy, PtrStepSzf dst, int border_type, cudaStream_t stream)
        {
            dim3 block(32, 8);
            dim3 grid(divUp(Dx.cols, block.x), divUp(Dx.rows, block.y));

            bindTexture(&harrisDxTex, Dx);
            bindTexture(&harrisDyTex, Dy);

            switch (border_type)
            {
            case BORDER_REFLECT101_GPU:
                cornerHarris_kernel<<<grid, block, 0, stream>>>(block_size, k, dst, BrdRowReflect101<void>(Dx.cols), BrdColReflect101<void>(Dx.rows));
                break;

            case BORDER_REFLECT_GPU:
                cornerHarris_kernel<<<grid, block, 0, stream>>>(block_size, k, dst, BrdRowReflect<void>(Dx.cols), BrdColReflect<void>(Dx.rows));
                break;

            case BORDER_REPLICATE_GPU:
                cornerHarris_kernel<<<grid, block, 0, stream>>>(block_size, k, dst);
                break;
            }

            cudaSafeCall( cudaGetLastError() );

            if (stream == 0)
                cudaSafeCall( cudaDeviceSynchronize() );
        }

        /////////////////////////////////////////// Corner Min Eigen Val /////////////////////////////////////////////////

        texture<float, cudaTextureType2D, cudaReadModeElementType> minEigenValDxTex(0, cudaFilterModePoint, cudaAddressModeClamp);
        texture<float, cudaTextureType2D, cudaReadModeElementType> minEigenValDyTex(0, cudaFilterModePoint, cudaAddressModeClamp);

        __global__ void cornerMinEigenVal_kernel(const int block_size, PtrStepSzf dst)
        {
            const int x = blockIdx.x * blockDim.x + threadIdx.x;
            const int y = blockIdx.y * blockDim.y + threadIdx.y;

            if (x < dst.cols && y < dst.rows)
            {
                float a = 0.f;
                float b = 0.f;
                float c = 0.f;

                const int ibegin = y - (block_size / 2);
                const int jbegin = x - (block_size / 2);
                const int iend = ibegin + block_size;
                const int jend = jbegin + block_size;

                for (int i = ibegin; i < iend; ++i)
                {
                    for (int j = jbegin; j < jend; ++j)
                    {
                        float dx = tex2D(minEigenValDxTex, j, i);
                        float dy = tex2D(minEigenValDyTex, j, i);

                        a += dx * dx;
                        b += dx * dy;
                        c += dy * dy;
                    }
                }

                a *= 0.5f;
                c *= 0.5f;

                dst(y, x) = (a + c) - sqrtf((a - c) * (a - c) + b * b);
            }
        }


        template <typename BR, typename BC>
        __global__ void cornerMinEigenVal_kernel(const int block_size, PtrStepSzf dst, const BR border_row, const BC border_col)
        {
            const int x = blockIdx.x * blockDim.x + threadIdx.x;
            const int y = blockIdx.y * blockDim.y + threadIdx.y;

            if (x < dst.cols && y < dst.rows)
            {
                float a = 0.f;
                float b = 0.f;
                float c = 0.f;

                const int ibegin = y - (block_size / 2);
                const int jbegin = x - (block_size / 2);
                const int iend = ibegin + block_size;
                const int jend = jbegin + block_size;

                for (int i = ibegin; i < iend; ++i)
                {
                    int y = border_col.idx_row(i);

                    for (int j = jbegin; j < jend; ++j)
                    {
                        int x = border_row.idx_col(j);

                        float dx = tex2D(minEigenValDxTex, x, y);
                        float dy = tex2D(minEigenValDyTex, x, y);

                        a += dx * dx;
                        b += dx * dy;
                        c += dy * dy;
                    }
                }

                a *= 0.5f;
                c *= 0.5f;

                dst(y, x) = (a + c) - sqrtf((a - c) * (a - c) + b * b);
            }
        }

        void cornerMinEigenVal_gpu(int block_size, PtrStepSzf Dx, PtrStepSzf Dy, PtrStepSzf dst, int border_type, cudaStream_t stream)
        {
            dim3 block(32, 8);
            dim3 grid(divUp(Dx.cols, block.x), divUp(Dx.rows, block.y));

            bindTexture(&minEigenValDxTex, Dx);
            bindTexture(&minEigenValDyTex, Dy);

            switch (border_type)
            {
            case BORDER_REFLECT101_GPU:
                cornerMinEigenVal_kernel<<<grid, block, 0, stream>>>(block_size, dst, BrdRowReflect101<void>(Dx.cols), BrdColReflect101<void>(Dx.rows));
                break;

            case BORDER_REFLECT_GPU:
                cornerMinEigenVal_kernel<<<grid, block, 0, stream>>>(block_size, dst, BrdRowReflect<void>(Dx.cols), BrdColReflect<void>(Dx.rows));
                break;

            case BORDER_REPLICATE_GPU:
                cornerMinEigenVal_kernel<<<grid, block, 0, stream>>>(block_size, dst);
                break;
            }

            cudaSafeCall( cudaGetLastError() );

            if (stream == 0)
                cudaSafeCall(cudaDeviceSynchronize());
        }

        ////////////////////////////// Column Sum //////////////////////////////////////

        __global__ void column_sumKernel_32F(int cols, int rows, const PtrStepb src, const PtrStepb dst)
        {
            int x = blockIdx.x * blockDim.x + threadIdx.x;

            if (x < cols)
            {
                const unsigned char* src_data = src.data + x * sizeof(float);
                unsigned char* dst_data = dst.data + x * sizeof(float);

                float sum = 0.f;
                for (int y = 0; y < rows; ++y)
                {
                    sum += *(const float*)src_data;
                    *(float*)dst_data = sum;
                    src_data += src.step;
                    dst_data += dst.step;
                }
            }
        }


        void columnSum_32F(const PtrStepSzb src, const PtrStepSzb dst)
        {
            dim3 threads(256);
            dim3 grid(divUp(src.cols, threads.x));

            column_sumKernel_32F<<<grid, threads>>>(src.cols, src.rows, src, dst);
            cudaSafeCall( cudaGetLastError() );

            cudaSafeCall( cudaDeviceSynchronize() );
        }


        //////////////////////////////////////////////////////////////////////////
        // mulSpectrums

#ifdef HAVE_CUFFT
        __global__ void mulSpectrumsKernel(const PtrStep<cufftComplex> a, const PtrStep<cufftComplex> b, PtrStepSz<cufftComplex> c)
        {
            const int x = blockIdx.x * blockDim.x + threadIdx.x;
            const int y = blockIdx.y * blockDim.y + threadIdx.y;

            if (x < c.cols && y < c.rows)
            {
                c.ptr(y)[x] = cuCmulf(a.ptr(y)[x], b.ptr(y)[x]);
            }
        }


        void mulSpectrums(const PtrStep<cufftComplex> a, const PtrStep<cufftComplex> b, PtrStepSz<cufftComplex> c, cudaStream_t stream)
        {
            dim3 threads(256);
            dim3 grid(divUp(c.cols, threads.x), divUp(c.rows, threads.y));

            mulSpectrumsKernel<<<grid, threads, 0, stream>>>(a, b, c);
            cudaSafeCall( cudaGetLastError() );

            if (stream == 0)
                cudaSafeCall( cudaDeviceSynchronize() );
        }
#endif


        //////////////////////////////////////////////////////////////////////////
        // mulSpectrums_CONJ

#ifdef HAVE_CUFFT
        __global__ void mulSpectrumsKernel_CONJ(const PtrStep<cufftComplex> a, const PtrStep<cufftComplex> b, PtrStepSz<cufftComplex> c)
        {
            const int x = blockIdx.x * blockDim.x + threadIdx.x;
            const int y = blockIdx.y * blockDim.y + threadIdx.y;

            if (x < c.cols && y < c.rows)
            {
                c.ptr(y)[x] = cuCmulf(a.ptr(y)[x], cuConjf(b.ptr(y)[x]));
            }
        }


        void mulSpectrums_CONJ(const PtrStep<cufftComplex> a, const PtrStep<cufftComplex> b, PtrStepSz<cufftComplex> c, cudaStream_t stream)
        {
            dim3 threads(256);
            dim3 grid(divUp(c.cols, threads.x), divUp(c.rows, threads.y));

            mulSpectrumsKernel_CONJ<<<grid, threads, 0, stream>>>(a, b, c);
            cudaSafeCall( cudaGetLastError() );

            if (stream == 0)
                cudaSafeCall( cudaDeviceSynchronize() );
        }
#endif


        //////////////////////////////////////////////////////////////////////////
        // mulAndScaleSpectrums

#ifdef HAVE_CUFFT
        __global__ void mulAndScaleSpectrumsKernel(const PtrStep<cufftComplex> a, const PtrStep<cufftComplex> b, float scale, PtrStepSz<cufftComplex> c)
        {
            const int x = blockIdx.x * blockDim.x + threadIdx.x;
            const int y = blockIdx.y * blockDim.y + threadIdx.y;

            if (x < c.cols && y < c.rows)
            {
                cufftComplex v = cuCmulf(a.ptr(y)[x], b.ptr(y)[x]);
                c.ptr(y)[x] = make_cuFloatComplex(cuCrealf(v) * scale, cuCimagf(v) * scale);
            }
        }


        void mulAndScaleSpectrums(const PtrStep<cufftComplex> a, const PtrStep<cufftComplex> b, float scale, PtrStepSz<cufftComplex> c, cudaStream_t stream)
        {
            dim3 threads(256);
            dim3 grid(divUp(c.cols, threads.x), divUp(c.rows, threads.y));

            mulAndScaleSpectrumsKernel<<<grid, threads, 0, stream>>>(a, b, scale, c);
            cudaSafeCall( cudaGetLastError() );

            if (stream)
                cudaSafeCall( cudaDeviceSynchronize() );
        }
#endif


        //////////////////////////////////////////////////////////////////////////
        // mulAndScaleSpectrums_CONJ

#ifdef HAVE_CUFFT
        __global__ void mulAndScaleSpectrumsKernel_CONJ(const PtrStep<cufftComplex> a, const PtrStep<cufftComplex> b, float scale, PtrStepSz<cufftComplex> c)
        {
            const int x = blockIdx.x * blockDim.x + threadIdx.x;
            const int y = blockIdx.y * blockDim.y + threadIdx.y;

            if (x < c.cols && y < c.rows)
            {
                cufftComplex v = cuCmulf(a.ptr(y)[x], cuConjf(b.ptr(y)[x]));
                c.ptr(y)[x] = make_cuFloatComplex(cuCrealf(v) * scale, cuCimagf(v) * scale);
            }
        }


        void mulAndScaleSpectrums_CONJ(const PtrStep<cufftComplex> a, const PtrStep<cufftComplex> b, float scale, PtrStepSz<cufftComplex> c, cudaStream_t stream)
        {
            dim3 threads(256);
            dim3 grid(divUp(c.cols, threads.x), divUp(c.rows, threads.y));

            mulAndScaleSpectrumsKernel_CONJ<<<grid, threads, 0, stream>>>(a, b, scale, c);
            cudaSafeCall( cudaGetLastError() );

            if (stream == 0)
                cudaSafeCall( cudaDeviceSynchronize() );
        }
#endif

        //////////////////////////////////////////////////////////////////////////
        // buildWarpMaps

        // TODO use intrinsics like __sinf and so on

        namespace build_warp_maps
        {

            __constant__ float ck_rinv[9];
            __constant__ float cr_kinv[9];
            __constant__ float ct[3];
            __constant__ float cscale;
        }


        class PlaneMapper
        {
        public:
            static __device__ __forceinline__ void mapBackward(float u, float v, float &x, float &y)
            {
                using namespace build_warp_maps;

                float x_ = u / cscale - ct[0];
                float y_ = v / cscale - ct[1];

                float z;
                x = ck_rinv[0] * x_ + ck_rinv[1] * y_ + ck_rinv[2] * (1 - ct[2]);
                y = ck_rinv[3] * x_ + ck_rinv[4] * y_ + ck_rinv[5] * (1 - ct[2]);
                z = ck_rinv[6] * x_ + ck_rinv[7] * y_ + ck_rinv[8] * (1 - ct[2]);

                x /= z;
                y /= z;
            }
        };


        class CylindricalMapper
        {
        public:
            static __device__ __forceinline__ void mapBackward(float u, float v, float &x, float &y)
            {
                using namespace build_warp_maps;

                u /= cscale;
                float x_ = ::sinf(u);
                float y_ = v / cscale;
                float z_ = ::cosf(u);

                float z;
                x = ck_rinv[0] * x_ + ck_rinv[1] * y_ + ck_rinv[2] * z_;
                y = ck_rinv[3] * x_ + ck_rinv[4] * y_ + ck_rinv[5] * z_;
                z = ck_rinv[6] * x_ + ck_rinv[7] * y_ + ck_rinv[8] * z_;

                if (z > 0) { x /= z; y /= z; }
                else x = y = -1;
            }
        };


        class SphericalMapper
        {
        public:
            static __device__ __forceinline__ void mapBackward(float u, float v, float &x, float &y)
            {
                using namespace build_warp_maps;

                v /= cscale;
                u /= cscale;

                float sinv = ::sinf(v);
                float x_ = sinv * ::sinf(u);
                float y_ = -::cosf(v);
                float z_ = sinv * ::cosf(u);

                float z;
                x = ck_rinv[0] * x_ + ck_rinv[1] * y_ + ck_rinv[2] * z_;
                y = ck_rinv[3] * x_ + ck_rinv[4] * y_ + ck_rinv[5] * z_;
                z = ck_rinv[6] * x_ + ck_rinv[7] * y_ + ck_rinv[8] * z_;

                if (z > 0) { x /= z; y /= z; }
                else x = y = -1;
            }
        };


        template <typename Mapper>
        __global__ void buildWarpMapsKernel(int tl_u, int tl_v, int cols, int rows,
                                            PtrStepf map_x, PtrStepf map_y)
        {
            int du = blockIdx.x * blockDim.x + threadIdx.x;
            int dv = blockIdx.y * blockDim.y + threadIdx.y;
            if (du < cols && dv < rows)
            {
                float u = tl_u + du;
                float v = tl_v + dv;
                float x, y;
                Mapper::mapBackward(u, v, x, y);
                map_x.ptr(dv)[du] = x;
                map_y.ptr(dv)[du] = y;
            }
        }


        void buildWarpPlaneMaps(int tl_u, int tl_v, PtrStepSzf map_x, PtrStepSzf map_y,
                                const float k_rinv[9], const float r_kinv[9], const float t[3],
                                float scale, cudaStream_t stream)
        {
            cudaSafeCall(cudaMemcpyToSymbol(build_warp_maps::ck_rinv, k_rinv, 9*sizeof(float)));
            cudaSafeCall(cudaMemcpyToSymbol(build_warp_maps::cr_kinv, r_kinv, 9*sizeof(float)));
            cudaSafeCall(cudaMemcpyToSymbol(build_warp_maps::ct, t, 3*sizeof(float)));
            cudaSafeCall(cudaMemcpyToSymbol(build_warp_maps::cscale, &scale, sizeof(float)));

            int cols = map_x.cols;
            int rows = map_x.rows;

            dim3 threads(32, 8);
            dim3 grid(divUp(cols, threads.x), divUp(rows, threads.y));

            buildWarpMapsKernel<PlaneMapper><<<grid,threads>>>(tl_u, tl_v, cols, rows, map_x, map_y);
            cudaSafeCall(cudaGetLastError());
            if (stream == 0)
                cudaSafeCall(cudaDeviceSynchronize());
        }


        void buildWarpCylindricalMaps(int tl_u, int tl_v, PtrStepSzf map_x, PtrStepSzf map_y,
                                      const float k_rinv[9], const float r_kinv[9], float scale,
                                      cudaStream_t stream)
        {
            cudaSafeCall(cudaMemcpyToSymbol(build_warp_maps::ck_rinv, k_rinv, 9*sizeof(float)));
            cudaSafeCall(cudaMemcpyToSymbol(build_warp_maps::cr_kinv, r_kinv, 9*sizeof(float)));
            cudaSafeCall(cudaMemcpyToSymbol(build_warp_maps::cscale, &scale, sizeof(float)));

            int cols = map_x.cols;
            int rows = map_x.rows;

            dim3 threads(32, 8);
            dim3 grid(divUp(cols, threads.x), divUp(rows, threads.y));

            buildWarpMapsKernel<CylindricalMapper><<<grid,threads>>>(tl_u, tl_v, cols, rows, map_x, map_y);
            cudaSafeCall(cudaGetLastError());
            if (stream == 0)
                cudaSafeCall(cudaDeviceSynchronize());
        }


        void buildWarpSphericalMaps(int tl_u, int tl_v, PtrStepSzf map_x, PtrStepSzf map_y,
                                    const float k_rinv[9], const float r_kinv[9], float scale,
                                    cudaStream_t stream)
        {
            cudaSafeCall(cudaMemcpyToSymbol(build_warp_maps::ck_rinv, k_rinv, 9*sizeof(float)));
            cudaSafeCall(cudaMemcpyToSymbol(build_warp_maps::cr_kinv, r_kinv, 9*sizeof(float)));
            cudaSafeCall(cudaMemcpyToSymbol(build_warp_maps::cscale, &scale, sizeof(float)));

            int cols = map_x.cols;
            int rows = map_x.rows;

            dim3 threads(32, 8);
            dim3 grid(divUp(cols, threads.x), divUp(rows, threads.y));

            buildWarpMapsKernel<SphericalMapper><<<grid,threads>>>(tl_u, tl_v, cols, rows, map_x, map_y);
            cudaSafeCall(cudaGetLastError());
            if (stream == 0)
                cudaSafeCall(cudaDeviceSynchronize());
        }

        //////////////////////////////////////////////////////////////////////////
        // filter2D

        #define FILTER2D_MAX_KERNEL_SIZE 16

        __constant__ float c_filter2DKernel[FILTER2D_MAX_KERNEL_SIZE * FILTER2D_MAX_KERNEL_SIZE];

        template <class SrcT, typename D>
        __global__ void filter2D(const SrcT src, PtrStepSz<D> dst, const int kWidth, const int kHeight, const int anchorX, const int anchorY)
        {
            typedef typename TypeVec<float, VecTraits<D>::cn>::vec_type sum_t;

            const int x = blockIdx.x * blockDim.x + threadIdx.x;
            const int y = blockIdx.y * blockDim.y + threadIdx.y;

            if (x >= dst.cols || y >= dst.rows)
                return;

            sum_t res = VecTraits<sum_t>::all(0);
            int kInd = 0;

            for (int i = 0; i < kHeight; ++i)
            {
                for (int j = 0; j < kWidth; ++j)
                    res = res + src(y - anchorY + i, x - anchorX + j) * c_filter2DKernel[kInd++];
            }

            dst(y, x) = saturate_cast<D>(res);
        }

        template <typename T, typename D, template <typename> class Brd> struct Filter2DCaller;

        #define IMPLEMENT_FILTER2D_TEX_READER(type) \
            texture< type , cudaTextureType2D, cudaReadModeElementType> tex_filter2D_ ## type (0, cudaFilterModePoint, cudaAddressModeClamp); \
            struct tex_filter2D_ ## type ## _reader \
            { \
                typedef type elem_type; \
                typedef int index_type; \
                const int xoff; \
                const int yoff; \
                tex_filter2D_ ## type ## _reader (int xoff_, int yoff_) : xoff(xoff_), yoff(yoff_) {} \
                __device__ __forceinline__ elem_type operator ()(index_type y, index_type x) const \
                { \
                    return tex2D(tex_filter2D_ ## type , x + xoff, y + yoff); \
                } \
            }; \
            template <typename D, template <typename> class Brd> struct Filter2DCaller< type , D, Brd> \
            { \
                static void call(const PtrStepSz< type > srcWhole, int xoff, int yoff, PtrStepSz<D> dst, \
                    int kWidth, int kHeight, int anchorX, int anchorY, const float* borderValue, cudaStream_t stream) \
                { \
                    typedef typename TypeVec<float, VecTraits< type >::cn>::vec_type work_type; \
                    dim3 block(16, 16); \
                    dim3 grid(divUp(dst.cols, block.x), divUp(dst.rows, block.y)); \
                    bindTexture(&tex_filter2D_ ## type , srcWhole); \
                    tex_filter2D_ ## type ##_reader texSrc(xoff, yoff); \
                    Brd<work_type> brd(dst.rows, dst.cols, VecTraits<work_type>::make(borderValue)); \
                    BorderReader< tex_filter2D_ ## type ##_reader, Brd<work_type> > brdSrc(texSrc, brd); \
                    filter2D<<<grid, block, 0, stream>>>(brdSrc, dst, kWidth, kHeight, anchorX, anchorY); \
                    cudaSafeCall( cudaGetLastError() ); \
                    if (stream == 0) \
                        cudaSafeCall( cudaDeviceSynchronize() ); \
                } \
            };

        IMPLEMENT_FILTER2D_TEX_READER(uchar);
        IMPLEMENT_FILTER2D_TEX_READER(uchar4);

        IMPLEMENT_FILTER2D_TEX_READER(ushort);
        IMPLEMENT_FILTER2D_TEX_READER(ushort4);

        IMPLEMENT_FILTER2D_TEX_READER(float);
        IMPLEMENT_FILTER2D_TEX_READER(float4);

        #undef IMPLEMENT_FILTER2D_TEX_READER

        template <typename T, typename D>
        void filter2D_gpu(PtrStepSzb srcWhole, int ofsX, int ofsY, PtrStepSzb dst,
                          int kWidth, int kHeight, int anchorX, int anchorY, const float* kernel,
                          int borderMode, const float* borderValue, cudaStream_t stream)
        {
            typedef void (*func_t)(const PtrStepSz<T> srcWhole, int xoff, int yoff, PtrStepSz<D> dst, int kWidth, int kHeight, int anchorX, int anchorY, const float* borderValue, cudaStream_t stream);
#ifdef OPENCV_TINY_GPU_MODULE
            static const func_t funcs[] =
            {
                Filter2DCaller<T, D, BrdReflect101>::call,
                Filter2DCaller<T, D, BrdReplicate>::call,
                Filter2DCaller<T, D, BrdConstant>::call,
                Filter2DCaller<T, D, BrdReflect>::call,
                0
            };
#else
            static const func_t funcs[] =
            {
                Filter2DCaller<T, D, BrdReflect101>::call,
                Filter2DCaller<T, D, BrdReplicate>::call,
                Filter2DCaller<T, D, BrdConstant>::call,
                Filter2DCaller<T, D, BrdReflect>::call,
                Filter2DCaller<T, D, BrdWrap>::call
            };
#endif

            const func_t func = funcs[borderMode];
            if (!func)
                cv::gpu::error("Unsupported input parameters for filter2D", __FILE__, __LINE__, "");

            if (stream == 0)
                cudaSafeCall( cudaMemcpyToSymbol(c_filter2DKernel, kernel, kWidth * kHeight * sizeof(float), 0, cudaMemcpyDeviceToDevice) );
            else
                cudaSafeCall( cudaMemcpyToSymbolAsync(c_filter2DKernel, kernel, kWidth * kHeight * sizeof(float), 0, cudaMemcpyDeviceToDevice, stream) );

            func(static_cast< PtrStepSz<T> >(srcWhole), ofsX, ofsY, static_cast< PtrStepSz<D> >(dst), kWidth, kHeight, anchorX, anchorY, borderValue, stream);
        }

        template void filter2D_gpu<uchar, uchar>(PtrStepSzb srcWhole, int ofsX, int ofsY, PtrStepSzb dst, int kWidth, int kHeight, int anchorX, int anchorY, const float* kernel, int borderMode, const float* borderValue, cudaStream_t stream);
        template void filter2D_gpu<uchar4, uchar4>(PtrStepSzb srcWhole, int ofsX, int ofsY, PtrStepSzb dst, int kWidth, int kHeight, int anchorX, int anchorY, const float* kernel, int borderMode, const float* borderValue, cudaStream_t stream);
#ifndef OPENCV_TINY_GPU_MODULE
        template void filter2D_gpu<ushort, ushort>(PtrStepSzb srcWhole, int ofsX, int ofsY, PtrStepSzb dst, int kWidth, int kHeight, int anchorX, int anchorY, const float* kernel, int borderMode, const float* borderValue, cudaStream_t stream);
        template void filter2D_gpu<ushort4, ushort4>(PtrStepSzb srcWhole, int ofsX, int ofsY, PtrStepSzb dst, int kWidth, int kHeight, int anchorX, int anchorY, const float* kernel, int borderMode, const float* borderValue, cudaStream_t stream);
#endif
        template void filter2D_gpu<float, float>(PtrStepSzb srcWhole, int ofsX, int ofsY, PtrStepSzb dst, int kWidth, int kHeight, int anchorX, int anchorY, const float* kernel, int borderMode, const float* borderValue, cudaStream_t stream);
        template void filter2D_gpu<float4, float4>(PtrStepSzb srcWhole, int ofsX, int ofsY, PtrStepSzb dst, int kWidth, int kHeight, int anchorX, int anchorY, const float* kernel, int borderMode, const float* borderValue, cudaStream_t stream);
    } // namespace imgproc
}}} // namespace cv { namespace gpu { namespace device {


#endif /* CUDA_DISABLER */