orb.cpp 39.9 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
/*********************************************************************
* Software License Agreement (BSD License)
*
*  Copyright (c) 2009, Willow Garage, Inc.
*  All rights reserved.
*
*  Redistribution and use in source and binary forms, with or without
*  modification, are permitted provided that the following conditions
*  are met:
*
*   * Redistributions of source code must retain the above copyright
*     notice, this list of conditions and the following disclaimer.
*   * Redistributions in binary form must reproduce the above
*     copyright notice, this list of conditions and the following
*     disclaimer in the documentation and/or other materials provided
*     with the distribution.
*   * Neither the name of the Willow Garage nor the names of its
*     contributors may be used to endorse or promote products derived
*     from this software without specific prior written permission.
*
*  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
*  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
*  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
*  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
*  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
*  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
*  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
*  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
*  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
*  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
*  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
*  POSSIBILITY OF SUCH DAMAGE.
*********************************************************************/

/** Authors: Ethan Rublee, Vincent Rabaud, Gary Bradski */

#include "precomp.hpp"
#include <iterator>

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

namespace cv
{

const float HARRIS_K = 0.04f;

/**
 * Function that computes the Harris responses in a
wester committed
49
 * blockSize x blockSize patch at given points in an image
wester committed
50 51
 */
static void
wester committed
52
HarrisResponses(const Mat& img, vector<KeyPoint>& pts, int blockSize, float harris_k)
wester committed
53 54 55 56 57 58 59 60 61
{
    CV_Assert( img.type() == CV_8UC1 && blockSize*blockSize <= 2048 );

    size_t ptidx, ptsize = pts.size();

    const uchar* ptr00 = img.ptr<uchar>();
    int step = (int)(img.step/img.elemSize1());
    int r = blockSize/2;

wester committed
62 63
    float scale = (1 << 2) * blockSize * 255.0f;
    scale = 1.0f / scale;
wester committed
64 65 66 67 68 69 70 71 72 73
    float scale_sq_sq = scale * scale * scale * scale;

    AutoBuffer<int> ofsbuf(blockSize*blockSize);
    int* ofs = ofsbuf;
    for( int i = 0; i < blockSize; i++ )
        for( int j = 0; j < blockSize; j++ )
            ofs[i*blockSize + j] = (int)(i*step + j);

    for( ptidx = 0; ptidx < ptsize; ptidx++ )
    {
wester committed
74 75
        int x0 = cvRound(pts[ptidx].pt.x - r);
        int y0 = cvRound(pts[ptidx].pt.y - r);
wester committed
76

wester committed
77
        const uchar* ptr0 = ptr00 + y0*step + x0;
wester committed
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
        int a = 0, b = 0, c = 0;

        for( int k = 0; k < blockSize*blockSize; k++ )
        {
            const uchar* ptr = ptr0 + ofs[k];
            int Ix = (ptr[1] - ptr[-1])*2 + (ptr[-step+1] - ptr[-step-1]) + (ptr[step+1] - ptr[step-1]);
            int Iy = (ptr[step] - ptr[-step])*2 + (ptr[step-1] - ptr[-step-1]) + (ptr[step+1] - ptr[-step+1]);
            a += Ix*Ix;
            b += Iy*Iy;
            c += Ix*Iy;
        }
        pts[ptidx].response = ((float)a * b - (float)c * c -
                               harris_k * ((float)a + b) * ((float)a + b))*scale_sq_sq;
    }
}

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

wester committed
96 97
static float IC_Angle(const Mat& image, const int half_k, Point2f pt,
                      const vector<int> & u_max)
wester committed
98
{
wester committed
99
    int m_01 = 0, m_10 = 0;
wester committed
100

wester committed
101
    const uchar* center = &image.at<uchar> (cvRound(pt.y), cvRound(pt.x));
wester committed
102

wester committed
103 104 105
    // Treat the center line differently, v=0
    for (int u = -half_k; u <= half_k; ++u)
        m_10 += u * center[u];
wester committed
106

wester committed
107 108 109 110 111 112 113 114
    // Go line by line in the circular patch
    int step = (int)image.step1();
    for (int v = 1; v <= half_k; ++v)
    {
        // Proceed over the two lines
        int v_sum = 0;
        int d = u_max[v];
        for (int u = -d; u <= d; ++u)
wester committed
115
        {
wester committed
116 117 118
            int val_plus = center[u + v*step], val_minus = center[u - v*step];
            v_sum += (val_plus - val_minus);
            m_10 += u * (val_plus + val_minus);
wester committed
119
        }
wester committed
120
        m_01 += v * v_sum;
wester committed
121
    }
wester committed
122 123

    return fastAtan2((float)m_01, (float)m_10);
wester committed
124 125 126 127
}

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

wester committed
128 129 130
static void computeOrbDescriptor(const KeyPoint& kpt,
                                 const Mat& img, const Point* pattern,
                                 uchar* desc, int dsize, int WTA_K)
wester committed
131
{
wester committed
132 133 134 135 136 137 138 139 140 141 142 143 144
    float angle = kpt.angle;
    //angle = cvFloor(angle/12)*12.f;
    angle *= (float)(CV_PI/180.f);
    float a = (float)cos(angle), b = (float)sin(angle);

    const uchar* center = &img.at<uchar>(cvRound(kpt.pt.y), cvRound(kpt.pt.x));
    int step = (int)img.step;

    float x, y;
    int ix, iy;
#if 1
    #define GET_VALUE(idx) \
           (x = pattern[idx].x*a - pattern[idx].y*b, \
wester committed
145
            y = pattern[idx].x*b + pattern[idx].y*a, \
wester committed
146 147 148 149 150 151 152 153 154 155 156 157
            ix = cvRound(x), \
            iy = cvRound(y), \
            *(center + iy*step + ix) )
#else
    #define GET_VALUE(idx) \
        (x = pattern[idx].x*a - pattern[idx].y*b, \
        y = pattern[idx].x*b + pattern[idx].y*a, \
        ix = cvFloor(x), iy = cvFloor(y), \
        x -= ix, y -= iy, \
        cvRound(center[iy*step + ix]*(1-x)*(1-y) + center[(iy+1)*step + ix]*(1-x)*y + \
                center[iy*step + ix+1]*x*(1-y) + center[(iy+1)*step + ix+1]*x*y))
#endif
wester committed
158

wester committed
159 160 161
    if( WTA_K == 2 )
    {
        for (int i = 0; i < dsize; ++i, pattern += 16)
wester committed
162
        {
wester committed
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
            int t0, t1, val;
            t0 = GET_VALUE(0); t1 = GET_VALUE(1);
            val = t0 < t1;
            t0 = GET_VALUE(2); t1 = GET_VALUE(3);
            val |= (t0 < t1) << 1;
            t0 = GET_VALUE(4); t1 = GET_VALUE(5);
            val |= (t0 < t1) << 2;
            t0 = GET_VALUE(6); t1 = GET_VALUE(7);
            val |= (t0 < t1) << 3;
            t0 = GET_VALUE(8); t1 = GET_VALUE(9);
            val |= (t0 < t1) << 4;
            t0 = GET_VALUE(10); t1 = GET_VALUE(11);
            val |= (t0 < t1) << 5;
            t0 = GET_VALUE(12); t1 = GET_VALUE(13);
            val |= (t0 < t1) << 6;
            t0 = GET_VALUE(14); t1 = GET_VALUE(15);
            val |= (t0 < t1) << 7;

            desc[i] = (uchar)val;
wester committed
182
        }
wester committed
183 184 185 186
    }
    else if( WTA_K == 3 )
    {
        for (int i = 0; i < dsize; ++i, pattern += 12)
wester committed
187
        {
wester committed
188 189 190
            int t0, t1, t2, val;
            t0 = GET_VALUE(0); t1 = GET_VALUE(1); t2 = GET_VALUE(2);
            val = t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0);
wester committed
191

wester committed
192 193
            t0 = GET_VALUE(3); t1 = GET_VALUE(4); t2 = GET_VALUE(5);
            val |= (t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0)) << 2;
wester committed
194

wester committed
195 196
            t0 = GET_VALUE(6); t1 = GET_VALUE(7); t2 = GET_VALUE(8);
            val |= (t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0)) << 4;
wester committed
197

wester committed
198 199
            t0 = GET_VALUE(9); t1 = GET_VALUE(10); t2 = GET_VALUE(11);
            val |= (t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0)) << 6;
wester committed
200

wester committed
201
            desc[i] = (uchar)val;
wester committed
202
        }
wester committed
203 204 205 206
    }
    else if( WTA_K == 4 )
    {
        for (int i = 0; i < dsize; ++i, pattern += 16)
wester committed
207
        {
wester committed
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
            int t0, t1, t2, t3, u, v, k, val;
            t0 = GET_VALUE(0); t1 = GET_VALUE(1);
            t2 = GET_VALUE(2); t3 = GET_VALUE(3);
            u = 0, v = 2;
            if( t1 > t0 ) t0 = t1, u = 1;
            if( t3 > t2 ) t2 = t3, v = 3;
            k = t0 > t2 ? u : v;
            val = k;

            t0 = GET_VALUE(4); t1 = GET_VALUE(5);
            t2 = GET_VALUE(6); t3 = GET_VALUE(7);
            u = 0, v = 2;
            if( t1 > t0 ) t0 = t1, u = 1;
            if( t3 > t2 ) t2 = t3, v = 3;
            k = t0 > t2 ? u : v;
            val |= k << 2;

            t0 = GET_VALUE(8); t1 = GET_VALUE(9);
            t2 = GET_VALUE(10); t3 = GET_VALUE(11);
            u = 0, v = 2;
            if( t1 > t0 ) t0 = t1, u = 1;
            if( t3 > t2 ) t2 = t3, v = 3;
            k = t0 > t2 ? u : v;
            val |= k << 4;

            t0 = GET_VALUE(12); t1 = GET_VALUE(13);
            t2 = GET_VALUE(14); t3 = GET_VALUE(15);
            u = 0, v = 2;
            if( t1 > t0 ) t0 = t1, u = 1;
            if( t3 > t2 ) t2 = t3, v = 3;
            k = t0 > t2 ? u : v;
            val |= k << 6;

            desc[i] = (uchar)val;
wester committed
242 243
        }
    }
wester committed
244 245 246 247
    else
        CV_Error( CV_StsBadSize, "Wrong WTA_K. It can be only 2, 3 or 4." );

    #undef GET_VALUE
wester committed
248 249 250
}


wester committed
251
static void initializeOrbPattern( const Point* pattern0, vector<Point>& pattern, int ntuples, int tupleSize, int poolSize )
wester committed
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
{
    RNG rng(0x12345678);
    int i, k, k1;
    pattern.resize(ntuples*tupleSize);

    for( i = 0; i < ntuples; i++ )
    {
        for( k = 0; k < tupleSize; k++ )
        {
            for(;;)
            {
                int idx = rng.uniform(0, poolSize);
                Point pt = pattern0[idx];
                for( k1 = 0; k1 < k; k1++ )
                    if( pattern[tupleSize*i + k1] == pt )
                        break;
                if( k1 == k )
                {
                    pattern[tupleSize*i + k] = pt;
                    break;
                }
            }
        }
    }
}

static int bit_pattern_31_[256*4] =
{
    8,-3, 9,5/*mean (0), correlation (0)*/,
    4,2, 7,-12/*mean (1.12461e-05), correlation (0.0437584)*/,
    -11,9, -8,2/*mean (3.37382e-05), correlation (0.0617409)*/,
    7,-12, 12,-13/*mean (5.62303e-05), correlation (0.0636977)*/,
    2,-13, 2,12/*mean (0.000134953), correlation (0.085099)*/,
    1,-7, 1,6/*mean (0.000528565), correlation (0.0857175)*/,
    -2,-10, -2,-4/*mean (0.0188821), correlation (0.0985774)*/,
    -13,-13, -11,-8/*mean (0.0363135), correlation (0.0899616)*/,
    -13,-3, -12,-9/*mean (0.121806), correlation (0.099849)*/,
    10,4, 11,9/*mean (0.122065), correlation (0.093285)*/,
    -13,-8, -8,-9/*mean (0.162787), correlation (0.0942748)*/,
    -11,7, -9,12/*mean (0.21561), correlation (0.0974438)*/,
    7,7, 12,6/*mean (0.160583), correlation (0.130064)*/,
    -4,-5, -3,0/*mean (0.228171), correlation (0.132998)*/,
    -13,2, -12,-3/*mean (0.00997526), correlation (0.145926)*/,
    -9,0, -7,5/*mean (0.198234), correlation (0.143636)*/,
    12,-6, 12,-1/*mean (0.0676226), correlation (0.16689)*/,
    -3,6, -2,12/*mean (0.166847), correlation (0.171682)*/,
    -6,-13, -4,-8/*mean (0.101215), correlation (0.179716)*/,
    11,-13, 12,-8/*mean (0.200641), correlation (0.192279)*/,
    4,7, 5,1/*mean (0.205106), correlation (0.186848)*/,
    5,-3, 10,-3/*mean (0.234908), correlation (0.192319)*/,
    3,-7, 6,12/*mean (0.0709964), correlation (0.210872)*/,
    -8,-7, -6,-2/*mean (0.0939834), correlation (0.212589)*/,
    -2,11, -1,-10/*mean (0.127778), correlation (0.20866)*/,
    -13,12, -8,10/*mean (0.14783), correlation (0.206356)*/,
    -7,3, -5,-3/*mean (0.182141), correlation (0.198942)*/,
    -4,2, -3,7/*mean (0.188237), correlation (0.21384)*/,
    -10,-12, -6,11/*mean (0.14865), correlation (0.23571)*/,
    5,-12, 6,-7/*mean (0.222312), correlation (0.23324)*/,
    5,-6, 7,-1/*mean (0.229082), correlation (0.23389)*/,
    1,0, 4,-5/*mean (0.241577), correlation (0.215286)*/,
    9,11, 11,-13/*mean (0.00338507), correlation (0.251373)*/,
    4,7, 4,12/*mean (0.131005), correlation (0.257622)*/,
    2,-1, 4,4/*mean (0.152755), correlation (0.255205)*/,
    -4,-12, -2,7/*mean (0.182771), correlation (0.244867)*/,
    -8,-5, -7,-10/*mean (0.186898), correlation (0.23901)*/,
    4,11, 9,12/*mean (0.226226), correlation (0.258255)*/,
    0,-8, 1,-13/*mean (0.0897886), correlation (0.274827)*/,
    -13,-2, -8,2/*mean (0.148774), correlation (0.28065)*/,
    -3,-2, -2,3/*mean (0.153048), correlation (0.283063)*/,
    -6,9, -4,-9/*mean (0.169523), correlation (0.278248)*/,
    8,12, 10,7/*mean (0.225337), correlation (0.282851)*/,
    0,9, 1,3/*mean (0.226687), correlation (0.278734)*/,
    7,-5, 11,-10/*mean (0.00693882), correlation (0.305161)*/,
    -13,-6, -11,0/*mean (0.0227283), correlation (0.300181)*/,
    10,7, 12,1/*mean (0.125517), correlation (0.31089)*/,
    -6,-3, -6,12/*mean (0.131748), correlation (0.312779)*/,
    10,-9, 12,-4/*mean (0.144827), correlation (0.292797)*/,
    -13,8, -8,-12/*mean (0.149202), correlation (0.308918)*/,
    -13,0, -8,-4/*mean (0.160909), correlation (0.310013)*/,
    3,3, 7,8/*mean (0.177755), correlation (0.309394)*/,
    5,7, 10,-7/*mean (0.212337), correlation (0.310315)*/,
    -1,7, 1,-12/*mean (0.214429), correlation (0.311933)*/,
    3,-10, 5,6/*mean (0.235807), correlation (0.313104)*/,
    2,-4, 3,-10/*mean (0.00494827), correlation (0.344948)*/,
    -13,0, -13,5/*mean (0.0549145), correlation (0.344675)*/,
    -13,-7, -12,12/*mean (0.103385), correlation (0.342715)*/,
    -13,3, -11,8/*mean (0.134222), correlation (0.322922)*/,
    -7,12, -4,7/*mean (0.153284), correlation (0.337061)*/,
    6,-10, 12,8/*mean (0.154881), correlation (0.329257)*/,
    -9,-1, -7,-6/*mean (0.200967), correlation (0.33312)*/,
    -2,-5, 0,12/*mean (0.201518), correlation (0.340635)*/,
    -12,5, -7,5/*mean (0.207805), correlation (0.335631)*/,
    3,-10, 8,-13/*mean (0.224438), correlation (0.34504)*/,
    -7,-7, -4,5/*mean (0.239361), correlation (0.338053)*/,
    -3,-2, -1,-7/*mean (0.240744), correlation (0.344322)*/,
    2,9, 5,-11/*mean (0.242949), correlation (0.34145)*/,
    -11,-13, -5,-13/*mean (0.244028), correlation (0.336861)*/,
    -1,6, 0,-1/*mean (0.247571), correlation (0.343684)*/,
    5,-3, 5,2/*mean (0.000697256), correlation (0.357265)*/,
    -4,-13, -4,12/*mean (0.00213675), correlation (0.373827)*/,
    -9,-6, -9,6/*mean (0.0126856), correlation (0.373938)*/,
    -12,-10, -8,-4/*mean (0.0152497), correlation (0.364237)*/,
    10,2, 12,-3/*mean (0.0299933), correlation (0.345292)*/,
    7,12, 12,12/*mean (0.0307242), correlation (0.366299)*/,
    -7,-13, -6,5/*mean (0.0534975), correlation (0.368357)*/,
    -4,9, -3,4/*mean (0.099865), correlation (0.372276)*/,
    7,-1, 12,2/*mean (0.117083), correlation (0.364529)*/,
    -7,6, -5,1/*mean (0.126125), correlation (0.369606)*/,
    -13,11, -12,5/*mean (0.130364), correlation (0.358502)*/,
    -3,7, -2,-6/*mean (0.131691), correlation (0.375531)*/,
    7,-8, 12,-7/*mean (0.160166), correlation (0.379508)*/,
    -13,-7, -11,-12/*mean (0.167848), correlation (0.353343)*/,
    1,-3, 12,12/*mean (0.183378), correlation (0.371916)*/,
    2,-6, 3,0/*mean (0.228711), correlation (0.371761)*/,
    -4,3, -2,-13/*mean (0.247211), correlation (0.364063)*/,
    -1,-13, 1,9/*mean (0.249325), correlation (0.378139)*/,
    7,1, 8,-6/*mean (0.000652272), correlation (0.411682)*/,
    1,-1, 3,12/*mean (0.00248538), correlation (0.392988)*/,
    9,1, 12,6/*mean (0.0206815), correlation (0.386106)*/,
    -1,-9, -1,3/*mean (0.0364485), correlation (0.410752)*/,
    -13,-13, -10,5/*mean (0.0376068), correlation (0.398374)*/,
    7,7, 10,12/*mean (0.0424202), correlation (0.405663)*/,
    12,-5, 12,9/*mean (0.0942645), correlation (0.410422)*/,
    6,3, 7,11/*mean (0.1074), correlation (0.413224)*/,
    5,-13, 6,10/*mean (0.109256), correlation (0.408646)*/,
    2,-12, 2,3/*mean (0.131691), correlation (0.416076)*/,
    3,8, 4,-6/*mean (0.165081), correlation (0.417569)*/,
    2,6, 12,-13/*mean (0.171874), correlation (0.408471)*/,
    9,-12, 10,3/*mean (0.175146), correlation (0.41296)*/,
    -8,4, -7,9/*mean (0.183682), correlation (0.402956)*/,
    -11,12, -4,-6/*mean (0.184672), correlation (0.416125)*/,
    1,12, 2,-8/*mean (0.191487), correlation (0.386696)*/,
    6,-9, 7,-4/*mean (0.192668), correlation (0.394771)*/,
    2,3, 3,-2/*mean (0.200157), correlation (0.408303)*/,
    6,3, 11,0/*mean (0.204588), correlation (0.411762)*/,
    3,-3, 8,-8/*mean (0.205904), correlation (0.416294)*/,
    7,8, 9,3/*mean (0.213237), correlation (0.409306)*/,
    -11,-5, -6,-4/*mean (0.243444), correlation (0.395069)*/,
    -10,11, -5,10/*mean (0.247672), correlation (0.413392)*/,
    -5,-8, -3,12/*mean (0.24774), correlation (0.411416)*/,
    -10,5, -9,0/*mean (0.00213675), correlation (0.454003)*/,
    8,-1, 12,-6/*mean (0.0293635), correlation (0.455368)*/,
    4,-6, 6,-11/*mean (0.0404971), correlation (0.457393)*/,
    -10,12, -8,7/*mean (0.0481107), correlation (0.448364)*/,
    4,-2, 6,7/*mean (0.050641), correlation (0.455019)*/,
    -2,0, -2,12/*mean (0.0525978), correlation (0.44338)*/,
    -5,-8, -5,2/*mean (0.0629667), correlation (0.457096)*/,
    7,-6, 10,12/*mean (0.0653846), correlation (0.445623)*/,
    -9,-13, -8,-8/*mean (0.0858749), correlation (0.449789)*/,
    -5,-13, -5,-2/*mean (0.122402), correlation (0.450201)*/,
    8,-8, 9,-13/*mean (0.125416), correlation (0.453224)*/,
    -9,-11, -9,0/*mean (0.130128), correlation (0.458724)*/,
    1,-8, 1,-2/*mean (0.132467), correlation (0.440133)*/,
    7,-4, 9,1/*mean (0.132692), correlation (0.454)*/,
    -2,1, -1,-4/*mean (0.135695), correlation (0.455739)*/,
    11,-6, 12,-11/*mean (0.142904), correlation (0.446114)*/,
    -12,-9, -6,4/*mean (0.146165), correlation (0.451473)*/,
    3,7, 7,12/*mean (0.147627), correlation (0.456643)*/,
    5,5, 10,8/*mean (0.152901), correlation (0.455036)*/,
    0,-4, 2,8/*mean (0.167083), correlation (0.459315)*/,
    -9,12, -5,-13/*mean (0.173234), correlation (0.454706)*/,
    0,7, 2,12/*mean (0.18312), correlation (0.433855)*/,
    -1,2, 1,7/*mean (0.185504), correlation (0.443838)*/,
    5,11, 7,-9/*mean (0.185706), correlation (0.451123)*/,
    3,5, 6,-8/*mean (0.188968), correlation (0.455808)*/,
    -13,-4, -8,9/*mean (0.191667), correlation (0.459128)*/,
    -5,9, -3,-3/*mean (0.193196), correlation (0.458364)*/,
    -4,-7, -3,-12/*mean (0.196536), correlation (0.455782)*/,
    6,5, 8,0/*mean (0.1972), correlation (0.450481)*/,
    -7,6, -6,12/*mean (0.199438), correlation (0.458156)*/,
    -13,6, -5,-2/*mean (0.211224), correlation (0.449548)*/,
    1,-10, 3,10/*mean (0.211718), correlation (0.440606)*/,
    4,1, 8,-4/*mean (0.213034), correlation (0.443177)*/,
    -2,-2, 2,-13/*mean (0.234334), correlation (0.455304)*/,
    2,-12, 12,12/*mean (0.235684), correlation (0.443436)*/,
    -2,-13, 0,-6/*mean (0.237674), correlation (0.452525)*/,
    4,1, 9,3/*mean (0.23962), correlation (0.444824)*/,
    -6,-10, -3,-5/*mean (0.248459), correlation (0.439621)*/,
    -3,-13, -1,1/*mean (0.249505), correlation (0.456666)*/,
    7,5, 12,-11/*mean (0.00119208), correlation (0.495466)*/,
    4,-2, 5,-7/*mean (0.00372245), correlation (0.484214)*/,
    -13,9, -9,-5/*mean (0.00741116), correlation (0.499854)*/,
    7,1, 8,6/*mean (0.0208952), correlation (0.499773)*/,
    7,-8, 7,6/*mean (0.0220085), correlation (0.501609)*/,
    -7,-4, -7,1/*mean (0.0233806), correlation (0.496568)*/,
    -8,11, -7,-8/*mean (0.0236505), correlation (0.489719)*/,
    -13,6, -12,-8/*mean (0.0268781), correlation (0.503487)*/,
    2,4, 3,9/*mean (0.0323324), correlation (0.501938)*/,
    10,-5, 12,3/*mean (0.0399235), correlation (0.494029)*/,
    -6,-5, -6,7/*mean (0.0420153), correlation (0.486579)*/,
    8,-3, 9,-8/*mean (0.0548021), correlation (0.484237)*/,
    2,-12, 2,8/*mean (0.0616622), correlation (0.496642)*/,
    -11,-2, -10,3/*mean (0.0627755), correlation (0.498563)*/,
    -12,-13, -7,-9/*mean (0.0829622), correlation (0.495491)*/,
    -11,0, -10,-5/*mean (0.0843342), correlation (0.487146)*/,
    5,-3, 11,8/*mean (0.0929937), correlation (0.502315)*/,
    -2,-13, -1,12/*mean (0.113327), correlation (0.48941)*/,
    -1,-8, 0,9/*mean (0.132119), correlation (0.467268)*/,
    -13,-11, -12,-5/*mean (0.136269), correlation (0.498771)*/,
    -10,-2, -10,11/*mean (0.142173), correlation (0.498714)*/,
    -3,9, -2,-13/*mean (0.144141), correlation (0.491973)*/,
    2,-3, 3,2/*mean (0.14892), correlation (0.500782)*/,
    -9,-13, -4,0/*mean (0.150371), correlation (0.498211)*/,
    -4,6, -3,-10/*mean (0.152159), correlation (0.495547)*/,
    -4,12, -2,-7/*mean (0.156152), correlation (0.496925)*/,
    -6,-11, -4,9/*mean (0.15749), correlation (0.499222)*/,
    6,-3, 6,11/*mean (0.159211), correlation (0.503821)*/,
    -13,11, -5,5/*mean (0.162427), correlation (0.501907)*/,
    11,11, 12,6/*mean (0.16652), correlation (0.497632)*/,
    7,-5, 12,-2/*mean (0.169141), correlation (0.484474)*/,
    -1,12, 0,7/*mean (0.169456), correlation (0.495339)*/,
    -4,-8, -3,-2/*mean (0.171457), correlation (0.487251)*/,
    -7,1, -6,7/*mean (0.175), correlation (0.500024)*/,
    -13,-12, -8,-13/*mean (0.175866), correlation (0.497523)*/,
    -7,-2, -6,-8/*mean (0.178273), correlation (0.501854)*/,
    -8,5, -6,-9/*mean (0.181107), correlation (0.494888)*/,
    -5,-1, -4,5/*mean (0.190227), correlation (0.482557)*/,
    -13,7, -8,10/*mean (0.196739), correlation (0.496503)*/,
    1,5, 5,-13/*mean (0.19973), correlation (0.499759)*/,
    1,0, 10,-13/*mean (0.204465), correlation (0.49873)*/,
    9,12, 10,-1/*mean (0.209334), correlation (0.49063)*/,
    5,-8, 10,-9/*mean (0.211134), correlation (0.503011)*/,
    -1,11, 1,-13/*mean (0.212), correlation (0.499414)*/,
    -9,-3, -6,2/*mean (0.212168), correlation (0.480739)*/,
    -1,-10, 1,12/*mean (0.212731), correlation (0.502523)*/,
    -13,1, -8,-10/*mean (0.21327), correlation (0.489786)*/,
    8,-11, 10,-6/*mean (0.214159), correlation (0.488246)*/,
    2,-13, 3,-6/*mean (0.216993), correlation (0.50287)*/,
    7,-13, 12,-9/*mean (0.223639), correlation (0.470502)*/,
    -10,-10, -5,-7/*mean (0.224089), correlation (0.500852)*/,
    -10,-8, -8,-13/*mean (0.228666), correlation (0.502629)*/,
    4,-6, 8,5/*mean (0.22906), correlation (0.498305)*/,
    3,12, 8,-13/*mean (0.233378), correlation (0.503825)*/,
    -4,2, -3,-3/*mean (0.234323), correlation (0.476692)*/,
    5,-13, 10,-12/*mean (0.236392), correlation (0.475462)*/,
    4,-13, 5,-1/*mean (0.236842), correlation (0.504132)*/,
    -9,9, -4,3/*mean (0.236977), correlation (0.497739)*/,
    0,3, 3,-9/*mean (0.24314), correlation (0.499398)*/,
    -12,1, -6,1/*mean (0.243297), correlation (0.489447)*/,
    3,2, 4,-8/*mean (0.00155196), correlation (0.553496)*/,
    -10,-10, -10,9/*mean (0.00239541), correlation (0.54297)*/,
    8,-13, 12,12/*mean (0.0034413), correlation (0.544361)*/,
    -8,-12, -6,-5/*mean (0.003565), correlation (0.551225)*/,
    2,2, 3,7/*mean (0.00835583), correlation (0.55285)*/,
    10,6, 11,-8/*mean (0.00885065), correlation (0.540913)*/,
    6,8, 8,-12/*mean (0.0101552), correlation (0.551085)*/,
    -7,10, -6,5/*mean (0.0102227), correlation (0.533635)*/,
    -3,-9, -3,9/*mean (0.0110211), correlation (0.543121)*/,
    -1,-13, -1,5/*mean (0.0113473), correlation (0.550173)*/,
    -3,-7, -3,4/*mean (0.0140913), correlation (0.554774)*/,
    -8,-2, -8,3/*mean (0.017049), correlation (0.55461)*/,
    4,2, 12,12/*mean (0.01778), correlation (0.546921)*/,
    2,-5, 3,11/*mean (0.0224022), correlation (0.549667)*/,
    6,-9, 11,-13/*mean (0.029161), correlation (0.546295)*/,
    3,-1, 7,12/*mean (0.0303081), correlation (0.548599)*/,
    11,-1, 12,4/*mean (0.0355151), correlation (0.523943)*/,
    -3,0, -3,6/*mean (0.0417904), correlation (0.543395)*/,
    4,-11, 4,12/*mean (0.0487292), correlation (0.542818)*/,
    2,-4, 2,1/*mean (0.0575124), correlation (0.554888)*/,
    -10,-6, -8,1/*mean (0.0594242), correlation (0.544026)*/,
    -13,7, -11,1/*mean (0.0597391), correlation (0.550524)*/,
    -13,12, -11,-13/*mean (0.0608974), correlation (0.55383)*/,
    6,0, 11,-13/*mean (0.065126), correlation (0.552006)*/,
    0,-1, 1,4/*mean (0.074224), correlation (0.546372)*/,
    -13,3, -9,-2/*mean (0.0808592), correlation (0.554875)*/,
    -9,8, -6,-3/*mean (0.0883378), correlation (0.551178)*/,
    -13,-6, -8,-2/*mean (0.0901035), correlation (0.548446)*/,
    5,-9, 8,10/*mean (0.0949843), correlation (0.554694)*/,
    2,7, 3,-9/*mean (0.0994152), correlation (0.550979)*/,
    -1,-6, -1,-1/*mean (0.10045), correlation (0.552714)*/,
    9,5, 11,-2/*mean (0.100686), correlation (0.552594)*/,
    11,-3, 12,-8/*mean (0.101091), correlation (0.532394)*/,
    3,0, 3,5/*mean (0.101147), correlation (0.525576)*/,
    -1,4, 0,10/*mean (0.105263), correlation (0.531498)*/,
    3,-6, 4,5/*mean (0.110785), correlation (0.540491)*/,
    -13,0, -10,5/*mean (0.112798), correlation (0.536582)*/,
    5,8, 12,11/*mean (0.114181), correlation (0.555793)*/,
    8,9, 9,-6/*mean (0.117431), correlation (0.553763)*/,
    7,-4, 8,-12/*mean (0.118522), correlation (0.553452)*/,
    -10,4, -10,9/*mean (0.12094), correlation (0.554785)*/,
    7,3, 12,4/*mean (0.122582), correlation (0.555825)*/,
    9,-7, 10,-2/*mean (0.124978), correlation (0.549846)*/,
    7,0, 12,-2/*mean (0.127002), correlation (0.537452)*/,
    -1,-6, 0,-11/*mean (0.127148), correlation (0.547401)*/
};


static void makeRandomPattern(int patchSize, Point* pattern, int npoints)
{
    RNG rng(0x34985739); // we always start with a fixed seed,
                         // to make patterns the same on each run
    for( int i = 0; i < npoints; i++ )
    {
        pattern[i].x = rng.uniform(-patchSize/2, patchSize/2+1);
        pattern[i].y = rng.uniform(-patchSize/2, patchSize/2+1);
    }
}


static inline float getScale(int level, int firstLevel, double scaleFactor)
{
    return (float)std::pow(scaleFactor, (double)(level - firstLevel));
}

wester committed
556 557 558 559 560 561 562 563 564
/** Constructor
 * @param detector_params parameters to use
 */
ORB::ORB(int _nfeatures, float _scaleFactor, int _nlevels, int _edgeThreshold,
         int _firstLevel, int _WTA_K, int _scoreType, int _patchSize) :
    nfeatures(_nfeatures), scaleFactor(_scaleFactor), nlevels(_nlevels),
    edgeThreshold(_edgeThreshold), firstLevel(_firstLevel), WTA_K(_WTA_K),
    scoreType(_scoreType), patchSize(_patchSize)
{}
wester committed
565 566


wester committed
567
int ORB::descriptorSize() const
wester committed
568 569 570 571
{
    return kBytes;
}

wester committed
572
int ORB::descriptorType() const
wester committed
573 574 575 576
{
    return CV_8U;
}

wester committed
577 578 579 580 581 582
/** Compute the ORB features and descriptors on an image
 * @param img the image to compute the features and descriptors on
 * @param mask the mask to apply
 * @param keypoints the resulting keypoints
 */
void ORB::operator()(InputArray image, InputArray mask, vector<KeyPoint>& keypoints) const
wester committed
583
{
wester committed
584
    (*this)(image, mask, keypoints, noArray(), false);
wester committed
585 586 587
}


wester committed
588 589 590 591 592 593 594 595
/** Compute the ORB keypoint orientations
 * @param image the image to compute the features and descriptors on
 * @param integral_image the integral image of the iamge (can be empty, but the computation will be slower)
 * @param scale the scale at which we compute the orientation
 * @param keypoints the resulting keypoints
 */
static void computeOrientation(const Mat& image, vector<KeyPoint>& keypoints,
                               int halfPatchSize, const vector<int>& umax)
wester committed
596
{
wester committed
597 598 599
    // Process each keypoint
    for (vector<KeyPoint>::iterator keypoint = keypoints.begin(),
         keypointEnd = keypoints.end(); keypoint != keypointEnd; ++keypoint)
wester committed
600
    {
wester committed
601
        keypoint->angle = IC_Angle(image, halfPatchSize, keypoint->pt, umax);
wester committed
602 603 604
    }
}

wester committed
605 606

/** Compute the ORB keypoints on an image
wester committed
607 608 609 610
 * @param image_pyramid the image pyramid to compute the features and descriptors on
 * @param mask_pyramid the masks to apply at every level
 * @param keypoints the resulting keypoints, clustered per level
 */
wester committed
611 612 613 614 615
static void computeKeyPoints(const vector<Mat>& imagePyramid,
                             const vector<Mat>& maskPyramid,
                             vector<vector<KeyPoint> >& allKeypoints,
                             int nfeatures, int firstLevel, double scaleFactor,
                             int edgeThreshold, int patchSize, int scoreType )
wester committed
616
{
wester committed
617 618
    int nlevels = (int)imagePyramid.size();
    vector<int> nfeaturesPerLevel(nlevels);
wester committed
619 620 621

    // fill the extractors and descriptors for the corresponding scales
    float factor = (float)(1.0 / scaleFactor);
wester committed
622
    float ndesiredFeaturesPerScale = nfeatures*(1 - factor)/(1 - (float)pow((double)factor, (double)nlevels));
wester committed
623 624

    int sumFeatures = 0;
wester committed
625
    for( int level = 0; level < nlevels-1; level++ )
wester committed
626 627 628 629 630 631 632 633 634 635 636 637
    {
        nfeaturesPerLevel[level] = cvRound(ndesiredFeaturesPerScale);
        sumFeatures += nfeaturesPerLevel[level];
        ndesiredFeaturesPerScale *= factor;
    }
    nfeaturesPerLevel[nlevels-1] = std::max(nfeatures - sumFeatures, 0);

    // Make sure we forget about what is too close to the boundary
    //edge_threshold_ = std::max(edge_threshold_, patch_size_/2 + kKernelWidth / 2 + 2);

    // pre-compute the end of a row in a circular patch
    int halfPatchSize = patchSize / 2;
wester committed
638
    vector<int> umax(halfPatchSize + 2);
wester committed
639

wester committed
640 641
    int v, v0, vmax = cvFloor(halfPatchSize * sqrt(2.f) / 2 + 1);
    int vmin = cvCeil(halfPatchSize * sqrt(2.f) / 2);
wester committed
642
    for (v = 0; v <= vmax; ++v)
wester committed
643
        umax[v] = cvRound(sqrt((double)halfPatchSize * halfPatchSize - v * v));
wester committed
644 645 646 647 648 649 650 651 652 653

    // Make sure we are symmetric
    for (v = halfPatchSize, v0 = 0; v >= vmin; --v)
    {
        while (umax[v0] == umax[v0 + 1])
            ++v0;
        umax[v] = v0;
        ++v0;
    }

wester committed
654
    allKeypoints.resize(nlevels);
wester committed
655

wester committed
656
    for (int level = 0; level < nlevels; ++level)
wester committed
657 658
    {
        int featuresNum = nfeaturesPerLevel[level];
wester committed
659 660 661
        allKeypoints[level].reserve(featuresNum*2);

        vector<KeyPoint> & keypoints = allKeypoints[level];
wester committed
662 663

        // Detect FAST features, 20 is a good threshold
wester committed
664 665
        FastFeatureDetector fd(20, true);
        fd.detect(imagePyramid[level], keypoints, maskPyramid[level]);
wester committed
666 667

        // Remove keypoints very close to the border
wester committed
668
        KeyPointsFilter::runByImageBorder(keypoints, imagePyramid[level].size(), edgeThreshold);
wester committed
669

wester committed
670
        if( scoreType == ORB::HARRIS_SCORE )
wester committed
671
        {
wester committed
672 673
            // Keep more points than necessary as FAST does not give amazing corners
            KeyPointsFilter::retainBest(keypoints, 2 * featuresNum);
wester committed
674

wester committed
675 676
            // Compute the Harris cornerness (better scoring than FAST)
            HarrisResponses(imagePyramid[level], keypoints, 7, HARRIS_K);
wester committed
677 678
        }

wester committed
679 680
        //cull to the final desired level, using the new Harris scores or the original FAST scores.
        KeyPointsFilter::retainBest(keypoints, featuresNum);
wester committed
681

wester committed
682
        float sf = getScale(level, firstLevel, scaleFactor);
wester committed
683

wester committed
684 685 686
        // Set the level of the coordinates
        for (vector<KeyPoint>::iterator keypoint = keypoints.begin(),
             keypointEnd = keypoints.end(); keypoint != keypointEnd; ++keypoint)
wester committed
687
        {
wester committed
688 689
            keypoint->octave = level;
            keypoint->size = patchSize*sf;
wester committed
690 691
        }

wester committed
692
        computeOrientation(imagePyramid[level], keypoints, halfPatchSize, umax);
wester committed
693
    }
wester committed
694
}
wester committed
695 696


wester committed
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
/** Compute the ORB decriptors
 * @param image the image to compute the features and descriptors on
 * @param integral_image the integral image of the image (can be empty, but the computation will be slower)
 * @param level the scale at which we compute the orientation
 * @param keypoints the keypoints to use
 * @param descriptors the resulting descriptors
 */
static void computeDescriptors(const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors,
                               const vector<Point>& pattern, int dsize, int WTA_K)
{
    //convert to grayscale if more than one color
    CV_Assert(image.type() == CV_8UC1);
    //create the descriptor mat, keypoints.size() rows, BYTES cols
    descriptors = Mat::zeros((int)keypoints.size(), dsize, CV_8UC1);

    for (size_t i = 0; i < keypoints.size(); i++)
        computeOrbDescriptor(keypoints[i], image, &pattern[0], descriptors.ptr((int)i), dsize, WTA_K);
wester committed
714 715 716
}


wester committed
717
/** Compute the ORB features and descriptors on an image
wester committed
718 719 720 721 722 723 724
 * @param img the image to compute the features and descriptors on
 * @param mask the mask to apply
 * @param keypoints the resulting keypoints
 * @param descriptors the resulting descriptors
 * @param do_keypoints if true, the keypoints are computed, otherwise used as an input
 * @param do_descriptors if true, also computes the descriptors
 */
wester committed
725 726
void ORB::operator()( InputArray _image, InputArray _mask, vector<KeyPoint>& _keypoints,
                      OutputArray _descriptors, bool useProvidedKeypoints) const
wester committed
727 728 729 730 731 732 733 734 735 736 737 738
{
    CV_Assert(patchSize >= 2);

    bool do_keypoints = !useProvidedKeypoints;
    bool do_descriptors = _descriptors.needed();

    if( (!do_keypoints && !do_descriptors) || _image.empty() )
        return;

    //ROI handling
    const int HARRIS_BLOCK_SIZE = 9;
    int halfPatchSize = patchSize / 2;
wester committed
739 740 741
    // sqrt(2.0) is for handling patch rotation
    int descPatchSize = cvCeil(halfPatchSize*sqrt(2.0));
    int border = std::max(edgeThreshold, std::max(descPatchSize, HARRIS_BLOCK_SIZE/2))+1;
wester committed
742 743 744

    Mat image = _image.getMat(), mask = _mask.getMat();
    if( image.type() != CV_8UC1 )
wester committed
745
        cvtColor(_image, image, CV_BGR2GRAY);
wester committed
746

wester committed
747
    int levelsNum = this->nlevels;
wester committed
748 749 750 751 752 753 754 755 756 757 758 759

    if( !do_keypoints )
    {
        // if we have pre-computed keypoints, they may use more levels than it is set in parameters
        // !!!TODO!!! implement more correct method, independent from the used keypoint detector.
        // Namely, the detector should provide correct size of each keypoint. Based on the keypoint size
        // and the algorithm used (i.e. BRIEF, running on 31x31 patches) we should compute the approximate
        // scale-factor that we need to apply. Then we should cluster all the computed scale-factors and
        // for each cluster compute the corresponding image.
        //
        // In short, ultimately the descriptor should
        // ignore octave parameter and deal only with the keypoint size.
wester committed
760 761 762 763
        levelsNum = 0;
        for( size_t i = 0; i < _keypoints.size(); i++ )
            levelsNum = std::max(levelsNum, std::max(_keypoints[i].octave, 0));
        levelsNum++;
wester committed
764 765 766
    }

    // Pre-compute the scale pyramids
wester committed
767 768
    vector<Mat> imagePyramid(levelsNum), maskPyramid(levelsNum);
    for (int level = 0; level < levelsNum; ++level)
wester committed
769
    {
wester committed
770 771
        float scale = 1/getScale(level, firstLevel, scaleFactor);
        Size sz(cvRound(image.cols*scale), cvRound(image.rows*scale));
wester committed
772
        Size wholeSize(sz.width + border*2, sz.height + border*2);
wester committed
773 774
        Mat temp(wholeSize, image.type()), masktemp;
        imagePyramid[level] = temp(Rect(border, border, sz.width, sz.height));
wester committed
775 776 777

        if( !mask.empty() )
        {
wester committed
778 779
            masktemp = Mat(wholeSize, mask.type());
            maskPyramid[level] = masktemp(Rect(border, border, sz.width, sz.height));
wester committed
780 781 782 783 784
        }

        // Compute the resized image
        if( level != firstLevel )
        {
wester committed
785 786 787 788 789 790 791
            if( level < firstLevel )
            {
                resize(image, imagePyramid[level], sz, 0, 0, INTER_LINEAR);
                if (!mask.empty())
                    resize(mask, maskPyramid[level], sz, 0, 0, INTER_LINEAR);
            }
            else
wester committed
792
            {
wester committed
793 794 795 796 797 798
                resize(imagePyramid[level-1], imagePyramid[level], sz, 0, 0, INTER_LINEAR);
                if (!mask.empty())
                {
                    resize(maskPyramid[level-1], maskPyramid[level], sz, 0, 0, INTER_LINEAR);
                    threshold(maskPyramid[level], maskPyramid[level], 254, 0, THRESH_TOZERO);
                }
wester committed
799 800
            }

wester committed
801
            copyMakeBorder(imagePyramid[level], temp, border, border, border, border,
wester committed
802 803
                           BORDER_REFLECT_101+BORDER_ISOLATED);
            if (!mask.empty())
wester committed
804
                copyMakeBorder(maskPyramid[level], masktemp, border, border, border, border,
wester committed
805 806 807 808
                               BORDER_CONSTANT+BORDER_ISOLATED);
        }
        else
        {
wester committed
809
            copyMakeBorder(image, temp, border, border, border, border,
wester committed
810 811
                           BORDER_REFLECT_101);
            if( !mask.empty() )
wester committed
812
                copyMakeBorder(mask, masktemp, border, border, border, border,
wester committed
813 814 815 816
                               BORDER_CONSTANT+BORDER_ISOLATED);
        }
    }

wester committed
817 818
    // Pre-compute the keypoints (we keep the best over all scales, so this has to be done beforehand
    vector < vector<KeyPoint> > allKeypoints;
wester committed
819 820 821
    if( do_keypoints )
    {
        // Get keypoints, those will be far enough from the border that no check will be required for the descriptor
wester committed
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
        computeKeyPoints(imagePyramid, maskPyramid, allKeypoints,
                         nfeatures, firstLevel, scaleFactor,
                         edgeThreshold, patchSize, scoreType);

        // make sure we have the right number of keypoints keypoints
        /*vector<KeyPoint> temp;

        for (int level = 0; level < n_levels; ++level)
        {
            vector<KeyPoint>& keypoints = all_keypoints[level];
            temp.insert(temp.end(), keypoints.begin(), keypoints.end());
            keypoints.clear();
        }

        KeyPoint::retainBest(temp, n_features_);

        for (vector<KeyPoint>::iterator keypoint = temp.begin(),
             keypoint_end = temp.end(); keypoint != keypoint_end; ++keypoint)
            all_keypoints[keypoint->octave].push_back(*keypoint);*/
wester committed
841 842 843
    }
    else
    {
wester committed
844 845
        // Remove keypoints very close to the border
        KeyPointsFilter::runByImageBorder(_keypoints, image.size(), edgeThreshold);
wester committed
846

wester committed
847 848 849 850 851 852 853 854
        // Cluster the input keypoints depending on the level they were computed at
        allKeypoints.resize(levelsNum);
        for (vector<KeyPoint>::iterator keypoint = _keypoints.begin(),
             keypointEnd = _keypoints.end(); keypoint != keypointEnd; ++keypoint)
            allKeypoints[keypoint->octave].push_back(*keypoint);

        // Make sure we rescale the coordinates
        for (int level = 0; level < levelsNum; ++level)
wester committed
855
        {
wester committed
856 857 858 859 860 861 862 863
            if (level == firstLevel)
                continue;

            vector<KeyPoint> & keypoints = allKeypoints[level];
            float scale = 1/getScale(level, firstLevel, scaleFactor);
            for (vector<KeyPoint>::iterator keypoint = keypoints.begin(),
                 keypointEnd = keypoints.end(); keypoint != keypointEnd; ++keypoint)
                keypoint->pt *= scale;
wester committed
864 865 866
        }
    }

wester committed
867 868 869
    Mat descriptors;
    vector<Point> pattern;

wester committed
870 871
    if( do_descriptors )
    {
wester committed
872 873 874
        int nkeypoints = 0;
        for (int level = 0; level < levelsNum; ++level)
            nkeypoints += (int)allKeypoints[level].size();
wester committed
875 876
        if( nkeypoints == 0 )
            _descriptors.release();
wester committed
877 878 879 880
        else
        {
            _descriptors.create(nkeypoints, descriptorSize(), CV_8U);
            descriptors = _descriptors.getMat();
wester committed
881 882 883 884 885 886 887 888 889 890 891 892
        }

        const int npoints = 512;
        Point patternbuf[npoints];
        const Point* pattern0 = (const Point*)bit_pattern_31_;

        if( patchSize != 31 )
        {
            pattern0 = patternbuf;
            makeRandomPattern(patchSize, patternbuf, npoints);
        }

wester committed
893
        CV_Assert( WTA_K == 2 || WTA_K == 3 || WTA_K == 4 );
wester committed
894

wester committed
895
        if( WTA_K == 2 )
wester committed
896 897 898 899
            std::copy(pattern0, pattern0 + npoints, std::back_inserter(pattern));
        else
        {
            int ntuples = descriptorSize()*4;
wester committed
900
            initializeOrbPattern(pattern0, pattern, ntuples, WTA_K, npoints);
wester committed
901
        }
wester committed
902
    }
wester committed
903

wester committed
904 905 906 907 908 909 910
    _keypoints.clear();
    int offset = 0;
    for (int level = 0; level < levelsNum; ++level)
    {
        // Get the features and compute their orientation
        vector<KeyPoint>& keypoints = allKeypoints[level];
        int nkeypoints = (int)keypoints.size();
wester committed
911

wester committed
912 913
        // Compute the descriptors
        if (do_descriptors)
wester committed
914
        {
wester committed
915 916
            Mat desc;
            if (!descriptors.empty())
wester committed
917
            {
wester committed
918
                desc = descriptors.rowRange(offset, offset + nkeypoints);
wester committed
919
            }
wester committed
920 921 922 923 924 925 926

            offset += nkeypoints;
            // preprocess the resized image
            Mat& workingMat = imagePyramid[level];
            //boxFilter(working_mat, working_mat, working_mat.depth(), Size(5,5), Point(-1,-1), true, BORDER_REFLECT_101);
            GaussianBlur(workingMat, workingMat, Size(7, 7), 2, 2, BORDER_REFLECT_101);
            computeDescriptors(workingMat, keypoints, desc, pattern, descriptorSize(), WTA_K);
wester committed
927 928
        }

wester committed
929 930
        // Copy to the output data
        if (level != firstLevel)
wester committed
931
        {
wester committed
932 933 934 935
            float scale = getScale(level, firstLevel, scaleFactor);
            for (vector<KeyPoint>::iterator keypoint = keypoints.begin(),
                 keypointEnd = keypoints.end(); keypoint != keypointEnd; ++keypoint)
                keypoint->pt *= scale;
wester committed
936
        }
wester committed
937 938
        // And add the keypoints to the output
        _keypoints.insert(_keypoints.end(), keypoints.begin(), keypoints.end());
wester committed
939 940 941
    }
}

wester committed
942 943 944 945 946 947
void ORB::detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask) const
{
    (*this)(image, mask, keypoints, noArray(), false);
}

void ORB::computeImpl( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors) const
wester committed
948
{
wester committed
949
    (*this)(image, Mat(), keypoints, descriptors, true);
wester committed
950 951 952
}

}