vp8l.c 46.4 KB
Newer Older
a  
Kai Westerkamp committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
// Copyright 2012 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// main entry for the decoder
//
// Authors: Vikas Arora (vikaas.arora@gmail.com)
//          Jyrki Alakuijala (jyrki@google.com)

#include <stdio.h>
#include <stdlib.h>
#include "./vp8li.h"
#include "../dsp/lossless.h"
#include "../dsp/yuv.h"
#include "../utils/huffman.h"
#include "../utils/utils.h"

#if defined(__cplusplus) || defined(c_plusplus)
extern "C" {
#endif

#define NUM_ARGB_CACHE_ROWS          16

static const int kCodeLengthLiterals = 16;
static const int kCodeLengthRepeatCode = 16;
static const int kCodeLengthExtraBits[3] = { 2, 3, 7 };
static const int kCodeLengthRepeatOffsets[3] = { 3, 3, 11 };

// -----------------------------------------------------------------------------
//  Five Huffman codes are used at each meta code:
//  1. green + length prefix codes + color cache codes,
//  2. alpha,
//  3. red,
//  4. blue, and,
//  5. distance prefix codes.
typedef enum {
  GREEN = 0,
  RED   = 1,
  BLUE  = 2,
  ALPHA = 3,
  DIST  = 4
} HuffIndex;

static const uint16_t kAlphabetSize[HUFFMAN_CODES_PER_META_CODE] = {
  NUM_LITERAL_CODES + NUM_LENGTH_CODES,
  NUM_LITERAL_CODES, NUM_LITERAL_CODES, NUM_LITERAL_CODES,
  NUM_DISTANCE_CODES
};


#define NUM_CODE_LENGTH_CODES       19
static const uint8_t kCodeLengthCodeOrder[NUM_CODE_LENGTH_CODES] = {
  17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
};

#define CODE_TO_PLANE_CODES        120
static const uint8_t code_to_plane_lut[CODE_TO_PLANE_CODES] = {
  0x18, 0x07, 0x17, 0x19, 0x28, 0x06, 0x27, 0x29, 0x16, 0x1a,
  0x26, 0x2a, 0x38, 0x05, 0x37, 0x39, 0x15, 0x1b, 0x36, 0x3a,
  0x25, 0x2b, 0x48, 0x04, 0x47, 0x49, 0x14, 0x1c, 0x35, 0x3b,
  0x46, 0x4a, 0x24, 0x2c, 0x58, 0x45, 0x4b, 0x34, 0x3c, 0x03,
  0x57, 0x59, 0x13, 0x1d, 0x56, 0x5a, 0x23, 0x2d, 0x44, 0x4c,
  0x55, 0x5b, 0x33, 0x3d, 0x68, 0x02, 0x67, 0x69, 0x12, 0x1e,
  0x66, 0x6a, 0x22, 0x2e, 0x54, 0x5c, 0x43, 0x4d, 0x65, 0x6b,
  0x32, 0x3e, 0x78, 0x01, 0x77, 0x79, 0x53, 0x5d, 0x11, 0x1f,
  0x64, 0x6c, 0x42, 0x4e, 0x76, 0x7a, 0x21, 0x2f, 0x75, 0x7b,
  0x31, 0x3f, 0x63, 0x6d, 0x52, 0x5e, 0x00, 0x74, 0x7c, 0x41,
  0x4f, 0x10, 0x20, 0x62, 0x6e, 0x30, 0x73, 0x7d, 0x51, 0x5f,
  0x40, 0x72, 0x7e, 0x61, 0x6f, 0x50, 0x71, 0x7f, 0x60, 0x70
};

static int DecodeImageStream(int xsize, int ysize,
                             int is_level0,
                             VP8LDecoder* const dec,
                             uint32_t** const decoded_data);

//------------------------------------------------------------------------------

int VP8LCheckSignature(const uint8_t* const data, size_t size) {
  return (size >= 1) && (data[0] == VP8L_MAGIC_BYTE);
}

static int ReadImageInfo(VP8LBitReader* const br,
                         int* const width, int* const height,
                         int* const has_alpha) {
  const uint8_t signature = VP8LReadBits(br, 8);
  if (!VP8LCheckSignature(&signature, 1)) {
    return 0;
  }
  *width = VP8LReadBits(br, VP8L_IMAGE_SIZE_BITS) + 1;
  *height = VP8LReadBits(br, VP8L_IMAGE_SIZE_BITS) + 1;
  *has_alpha = VP8LReadBits(br, 1);
  VP8LReadBits(br, VP8L_VERSION_BITS);  // Read/ignore the version number.
  return 1;
}

int VP8LGetInfo(const uint8_t* data, size_t data_size,
                int* const width, int* const height, int* const has_alpha) {
  if (data == NULL || data_size < VP8L_FRAME_HEADER_SIZE) {
    return 0;         // not enough data
  } else {
    int w, h, a;
    VP8LBitReader br;
    VP8LInitBitReader(&br, data, data_size);
    if (!ReadImageInfo(&br, &w, &h, &a)) {
      return 0;
    }
    if (width != NULL) *width = w;
    if (height != NULL) *height = h;
    if (has_alpha != NULL) *has_alpha = a;
    return 1;
  }
}

//------------------------------------------------------------------------------

static WEBP_INLINE int GetCopyDistance(int distance_symbol,
                                       VP8LBitReader* const br) {
  int extra_bits, offset;
  if (distance_symbol < 4) {
    return distance_symbol + 1;
  }
  extra_bits = (distance_symbol - 2) >> 1;
  offset = (2 + (distance_symbol & 1)) << extra_bits;
  return offset + VP8LReadBits(br, extra_bits) + 1;
}

static WEBP_INLINE int GetCopyLength(int length_symbol,
                                     VP8LBitReader* const br) {
  // Length and distance prefixes are encoded the same way.
  return GetCopyDistance(length_symbol, br);
}

static WEBP_INLINE int PlaneCodeToDistance(int xsize, int plane_code) {
  if (plane_code > CODE_TO_PLANE_CODES) {
    return plane_code - CODE_TO_PLANE_CODES;
  } else {
    const int dist_code = code_to_plane_lut[plane_code - 1];
    const int yoffset = dist_code >> 4;
    const int xoffset = 8 - (dist_code & 0xf);
    const int dist = yoffset * xsize + xoffset;
    return (dist >= 1) ? dist : 1;
  }
}

//------------------------------------------------------------------------------
// Decodes the next Huffman code from bit-stream.
// FillBitWindow(br) needs to be called at minimum every second call
// to ReadSymbol, in order to pre-fetch enough bits.
static WEBP_INLINE int ReadSymbol(const HuffmanTree* tree,
                                  VP8LBitReader* const br) {
  const HuffmanTreeNode* node = tree->root_;
  int num_bits = 0;
  uint32_t bits = VP8LPrefetchBits(br);
  assert(node != NULL);
  while (!HuffmanTreeNodeIsLeaf(node)) {
    node = HuffmanTreeNextNode(node, bits & 1);
    bits >>= 1;
    ++num_bits;
  }
  VP8LDiscardBits(br, num_bits);
  return node->symbol_;
}

static int ReadHuffmanCodeLengths(
    VP8LDecoder* const dec, const int* const code_length_code_lengths,
    int num_symbols, int* const code_lengths) {
  int ok = 0;
  VP8LBitReader* const br = &dec->br_;
  int symbol;
  int max_symbol;
  int prev_code_len = DEFAULT_CODE_LENGTH;
  HuffmanTree tree;

  if (!HuffmanTreeBuildImplicit(&tree, code_length_code_lengths,
                                NUM_CODE_LENGTH_CODES)) {
    dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
    return 0;
  }

  if (VP8LReadBits(br, 1)) {    // use length
    const int length_nbits = 2 + 2 * VP8LReadBits(br, 3);
    max_symbol = 2 + VP8LReadBits(br, length_nbits);
    if (max_symbol > num_symbols) {
      dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
      goto End;
    }
  } else {
    max_symbol = num_symbols;
  }

  symbol = 0;
  while (symbol < num_symbols) {
    int code_len;
    if (max_symbol-- == 0) break;
    VP8LFillBitWindow(br);
    code_len = ReadSymbol(&tree, br);
    if (code_len < kCodeLengthLiterals) {
      code_lengths[symbol++] = code_len;
      if (code_len != 0) prev_code_len = code_len;
    } else {
      const int use_prev = (code_len == kCodeLengthRepeatCode);
      const int slot = code_len - kCodeLengthLiterals;
      const int extra_bits = kCodeLengthExtraBits[slot];
      const int repeat_offset = kCodeLengthRepeatOffsets[slot];
      int repeat = VP8LReadBits(br, extra_bits) + repeat_offset;
      if (symbol + repeat > num_symbols) {
        dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
        goto End;
      } else {
        const int length = use_prev ? prev_code_len : 0;
        while (repeat-- > 0) code_lengths[symbol++] = length;
      }
    }
  }
  ok = 1;

 End:
  HuffmanTreeRelease(&tree);
  return ok;
}

static int ReadHuffmanCode(int alphabet_size, VP8LDecoder* const dec,
                           HuffmanTree* const tree) {
  int ok = 0;
  VP8LBitReader* const br = &dec->br_;
  const int simple_code = VP8LReadBits(br, 1);

  if (simple_code) {  // Read symbols, codes & code lengths directly.
    int symbols[2];
    int codes[2];
    int code_lengths[2];
    const int num_symbols = VP8LReadBits(br, 1) + 1;
    const int first_symbol_len_code = VP8LReadBits(br, 1);
    // The first code is either 1 bit or 8 bit code.
    symbols[0] = VP8LReadBits(br, (first_symbol_len_code == 0) ? 1 : 8);
    codes[0] = 0;
    code_lengths[0] = num_symbols - 1;
    // The second code (if present), is always 8 bit long.
    if (num_symbols == 2) {
      symbols[1] = VP8LReadBits(br, 8);
      codes[1] = 1;
      code_lengths[1] = num_symbols - 1;
    }
    ok = HuffmanTreeBuildExplicit(tree, code_lengths, codes, symbols,
                                  alphabet_size, num_symbols);
  } else {  // Decode Huffman-coded code lengths.
    int* code_lengths = NULL;
    int i;
    int code_length_code_lengths[NUM_CODE_LENGTH_CODES] = { 0 };
    const int num_codes = VP8LReadBits(br, 4) + 4;
    if (num_codes > NUM_CODE_LENGTH_CODES) {
      dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
      return 0;
    }

    code_lengths =
        (int*)WebPSafeCalloc((uint64_t)alphabet_size, sizeof(*code_lengths));
    if (code_lengths == NULL) {
      dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
      return 0;
    }

    for (i = 0; i < num_codes; ++i) {
      code_length_code_lengths[kCodeLengthCodeOrder[i]] = VP8LReadBits(br, 3);
    }
    ok = ReadHuffmanCodeLengths(dec, code_length_code_lengths, alphabet_size,
                                code_lengths);
    if (ok) {
      ok = HuffmanTreeBuildImplicit(tree, code_lengths, alphabet_size);
    }
    free(code_lengths);
  }
  ok = ok && !br->error_;
  if (!ok) {
    dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
    return 0;
  }
  return 1;
}

static void DeleteHtreeGroups(HTreeGroup* htree_groups, int num_htree_groups) {
  if (htree_groups != NULL) {
    int i, j;
    for (i = 0; i < num_htree_groups; ++i) {
      HuffmanTree* const htrees = htree_groups[i].htrees_;
      for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) {
        HuffmanTreeRelease(&htrees[j]);
      }
    }
    free(htree_groups);
  }
}

static int ReadHuffmanCodes(VP8LDecoder* const dec, int xsize, int ysize,
                            int color_cache_bits, int allow_recursion) {
  int i, j;
  VP8LBitReader* const br = &dec->br_;
  VP8LMetadata* const hdr = &dec->hdr_;
  uint32_t* huffman_image = NULL;
  HTreeGroup* htree_groups = NULL;
  int num_htree_groups = 1;

  if (allow_recursion && VP8LReadBits(br, 1)) {
    // use meta Huffman codes.
    const int huffman_precision = VP8LReadBits(br, 3) + 2;
    const int huffman_xsize = VP8LSubSampleSize(xsize, huffman_precision);
    const int huffman_ysize = VP8LSubSampleSize(ysize, huffman_precision);
    const int huffman_pixs = huffman_xsize * huffman_ysize;
    if (!DecodeImageStream(huffman_xsize, huffman_ysize, 0, dec,
                           &huffman_image)) {
      dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
      goto Error;
    }
    hdr->huffman_subsample_bits_ = huffman_precision;
    for (i = 0; i < huffman_pixs; ++i) {
      // The huffman data is stored in red and green bytes.
      const int group = (huffman_image[i] >> 8) & 0xffff;
      huffman_image[i] = group;
      if (group >= num_htree_groups) {
        num_htree_groups = group + 1;
      }
    }
  }

  if (br->error_) goto Error;

  assert(num_htree_groups <= 0x10000);
  htree_groups =
      (HTreeGroup*)WebPSafeCalloc((uint64_t)num_htree_groups,
                                  sizeof(*htree_groups));
  if (htree_groups == NULL) {
    dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
    goto Error;
  }

  for (i = 0; i < num_htree_groups; ++i) {
    HuffmanTree* const htrees = htree_groups[i].htrees_;
    for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) {
      int alphabet_size = kAlphabetSize[j];
      if (j == 0 && color_cache_bits > 0) {
        alphabet_size += 1 << color_cache_bits;
      }
      if (!ReadHuffmanCode(alphabet_size, dec, htrees + j)) goto Error;
    }
  }

  // All OK. Finalize pointers and return.
  hdr->huffman_image_ = huffman_image;
  hdr->num_htree_groups_ = num_htree_groups;
  hdr->htree_groups_ = htree_groups;
  return 1;

 Error:
  free(huffman_image);
  DeleteHtreeGroups(htree_groups, num_htree_groups);
  return 0;
}

//------------------------------------------------------------------------------
// Scaling.

static int AllocateAndInitRescaler(VP8LDecoder* const dec, VP8Io* const io) {
  const int num_channels = 4;
  const int in_width = io->mb_w;
  const int out_width = io->scaled_width;
  const int in_height = io->mb_h;
  const int out_height = io->scaled_height;
  const uint64_t work_size = 2 * num_channels * (uint64_t)out_width;
  int32_t* work;        // Rescaler work area.
  const uint64_t scaled_data_size = num_channels * (uint64_t)out_width;
  uint32_t* scaled_data;  // Temporary storage for scaled BGRA data.
  const uint64_t memory_size = sizeof(*dec->rescaler) +
                               work_size * sizeof(*work) +
                               scaled_data_size * sizeof(*scaled_data);
  uint8_t* memory = (uint8_t*)WebPSafeCalloc(memory_size, sizeof(*memory));
  if (memory == NULL) {
    dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
    return 0;
  }
  assert(dec->rescaler_memory == NULL);
  dec->rescaler_memory = memory;

  dec->rescaler = (WebPRescaler*)memory;
  memory += sizeof(*dec->rescaler);
  work = (int32_t*)memory;
  memory += work_size * sizeof(*work);
  scaled_data = (uint32_t*)memory;

  WebPRescalerInit(dec->rescaler, in_width, in_height, (uint8_t*)scaled_data,
                   out_width, out_height, 0, num_channels,
                   in_width, out_width, in_height, out_height, work);
  return 1;
}

//------------------------------------------------------------------------------
// Export to ARGB

// We have special "export" function since we need to convert from BGRA
static int Export(WebPRescaler* const rescaler, WEBP_CSP_MODE colorspace,
                  int rgba_stride, uint8_t* const rgba) {
  const uint32_t* const src = (const uint32_t*)rescaler->dst;
  const int dst_width = rescaler->dst_width;
  int num_lines_out = 0;
  while (WebPRescalerHasPendingOutput(rescaler)) {
    uint8_t* const dst = rgba + num_lines_out * rgba_stride;
    WebPRescalerExportRow(rescaler);
    VP8LConvertFromBGRA(src, dst_width, colorspace, dst);
    ++num_lines_out;
  }
  return num_lines_out;
}

// Emit scaled rows.
static int EmitRescaledRows(const VP8LDecoder* const dec,
                            const uint32_t* const data, int in_stride, int mb_h,
                            uint8_t* const out, int out_stride) {
  const WEBP_CSP_MODE colorspace = dec->output_->colorspace;
  const uint8_t* const in = (const uint8_t*)data;
  int num_lines_in = 0;
  int num_lines_out = 0;
  while (num_lines_in < mb_h) {
    const uint8_t* const row_in = in + num_lines_in * in_stride;
    uint8_t* const row_out = out + num_lines_out * out_stride;
    num_lines_in += WebPRescalerImport(dec->rescaler, mb_h - num_lines_in,
                                       row_in, in_stride);
    num_lines_out += Export(dec->rescaler, colorspace, out_stride, row_out);
  }
  return num_lines_out;
}

// Emit rows without any scaling.
static int EmitRows(WEBP_CSP_MODE colorspace,
                    const uint32_t* const data, int in_stride,
                    int mb_w, int mb_h,
                    uint8_t* const out, int out_stride) {
  int lines = mb_h;
  const uint8_t* row_in = (const uint8_t*)data;
  uint8_t* row_out = out;
  while (lines-- > 0) {
    VP8LConvertFromBGRA((const uint32_t*)row_in, mb_w, colorspace, row_out);
    row_in += in_stride;
    row_out += out_stride;
  }
  return mb_h;  // Num rows out == num rows in.
}

//------------------------------------------------------------------------------
// Export to YUVA

static void ConvertToYUVA(const uint32_t* const src, int width, int y_pos,
                          const WebPDecBuffer* const output) {
  const WebPYUVABuffer* const buf = &output->u.YUVA;
  // first, the luma plane
  {
    int i;
    uint8_t* const y = buf->y + y_pos * buf->y_stride;
    for (i = 0; i < width; ++i) {
      const uint32_t p = src[i];
      y[i] = VP8RGBToY((p >> 16) & 0xff, (p >> 8) & 0xff, (p >> 0) & 0xff);
    }
  }

  // then U/V planes
  {
    uint8_t* const u = buf->u + (y_pos >> 1) * buf->u_stride;
    uint8_t* const v = buf->v + (y_pos >> 1) * buf->v_stride;
    const int uv_width = width >> 1;
    int i;
    for (i = 0; i < uv_width; ++i) {
      const uint32_t v0 = src[2 * i + 0];
      const uint32_t v1 = src[2 * i + 1];
      // VP8RGBToU/V expects four accumulated pixels. Hence we need to
      // scale r/g/b value by a factor 2. We just shift v0/v1 one bit less.
      const int r = ((v0 >> 15) & 0x1fe) + ((v1 >> 15) & 0x1fe);
      const int g = ((v0 >>  7) & 0x1fe) + ((v1 >>  7) & 0x1fe);
      const int b = ((v0 <<  1) & 0x1fe) + ((v1 <<  1) & 0x1fe);
      if (!(y_pos & 1)) {  // even lines: store values
        u[i] = VP8RGBToU(r, g, b);
        v[i] = VP8RGBToV(r, g, b);
      } else {             // odd lines: average with previous values
        const int tmp_u = VP8RGBToU(r, g, b);
        const int tmp_v = VP8RGBToV(r, g, b);
        // Approximated average-of-four. But it's an acceptable diff.
        u[i] = (u[i] + tmp_u + 1) >> 1;
        v[i] = (v[i] + tmp_v + 1) >> 1;
      }
    }
    if (width & 1) {       // last pixel
      const uint32_t v0 = src[2 * i + 0];
      const int r = (v0 >> 14) & 0x3fc;
      const int g = (v0 >>  6) & 0x3fc;
      const int b = (v0 <<  2) & 0x3fc;
      if (!(y_pos & 1)) {  // even lines
        u[i] = VP8RGBToU(r, g, b);
        v[i] = VP8RGBToV(r, g, b);
      } else {             // odd lines (note: we could just skip this)
        const int tmp_u = VP8RGBToU(r, g, b);
        const int tmp_v = VP8RGBToV(r, g, b);
        u[i] = (u[i] + tmp_u + 1) >> 1;
        v[i] = (v[i] + tmp_v + 1) >> 1;
      }
    }
  }
  // Lastly, store alpha if needed.
  if (buf->a != NULL) {
    int i;
    uint8_t* const a = buf->a + y_pos * buf->a_stride;
    for (i = 0; i < width; ++i) a[i] = (src[i] >> 24);
  }
}

static int ExportYUVA(const VP8LDecoder* const dec, int y_pos) {
  WebPRescaler* const rescaler = dec->rescaler;
  const uint32_t* const src = (const uint32_t*)rescaler->dst;
  const int dst_width = rescaler->dst_width;
  int num_lines_out = 0;
  while (WebPRescalerHasPendingOutput(rescaler)) {
    WebPRescalerExportRow(rescaler);
    ConvertToYUVA(src, dst_width, y_pos, dec->output_);
    ++y_pos;
    ++num_lines_out;
  }
  return num_lines_out;
}

static int EmitRescaledRowsYUVA(const VP8LDecoder* const dec,
                                const uint32_t* const data,
                                int in_stride, int mb_h) {
  const uint8_t* const in = (const uint8_t*)data;
  int num_lines_in = 0;
  int y_pos = dec->last_out_row_;
  while (num_lines_in < mb_h) {
    const uint8_t* const row_in = in + num_lines_in * in_stride;
    num_lines_in += WebPRescalerImport(dec->rescaler, mb_h - num_lines_in,
                                       row_in, in_stride);
    y_pos += ExportYUVA(dec, y_pos);
  }
  return y_pos;
}

static int EmitRowsYUVA(const VP8LDecoder* const dec,
                        const uint32_t* const data, int in_stride,
                        int mb_w, int num_rows) {
  int y_pos = dec->last_out_row_;
  const uint8_t* row_in = (const uint8_t*)data;
  while (num_rows-- > 0) {
    ConvertToYUVA((const uint32_t*)row_in, mb_w, y_pos, dec->output_);
    row_in += in_stride;
    ++y_pos;
  }
  return y_pos;
}

//------------------------------------------------------------------------------
// Cropping.

// Sets io->mb_y, io->mb_h & io->mb_w according to start row, end row and
// crop options. Also updates the input data pointer, so that it points to the
// start of the cropped window.
// Note that 'pixel_stride' is in units of 'uint32_t' (and not 'bytes).
// Returns true if the crop window is not empty.
static int SetCropWindow(VP8Io* const io, int y_start, int y_end,
                         const uint32_t** const in_data, int pixel_stride) {
  assert(y_start < y_end);
  assert(io->crop_left < io->crop_right);
  if (y_end > io->crop_bottom) {
    y_end = io->crop_bottom;  // make sure we don't overflow on last row.
  }
  if (y_start < io->crop_top) {
    const int delta = io->crop_top - y_start;
    y_start = io->crop_top;
    *in_data += pixel_stride * delta;
  }
  if (y_start >= y_end) return 0;  // Crop window is empty.

  *in_data += io->crop_left;

  io->mb_y = y_start - io->crop_top;
  io->mb_w = io->crop_right - io->crop_left;
  io->mb_h = y_end - y_start;
  return 1;  // Non-empty crop window.
}

//------------------------------------------------------------------------------

static WEBP_INLINE int GetMetaIndex(
    const uint32_t* const image, int xsize, int bits, int x, int y) {
  if (bits == 0) return 0;
  return image[xsize * (y >> bits) + (x >> bits)];
}

static WEBP_INLINE HTreeGroup* GetHtreeGroupForPos(VP8LMetadata* const hdr,
                                                   int x, int y) {
  const int meta_index = GetMetaIndex(hdr->huffman_image_, hdr->huffman_xsize_,
                                      hdr->huffman_subsample_bits_, x, y);
  assert(meta_index < hdr->num_htree_groups_);
  return hdr->htree_groups_ + meta_index;
}

//------------------------------------------------------------------------------
// Main loop, with custom row-processing function

typedef void (*ProcessRowsFunc)(VP8LDecoder* const dec, int row);

static void ApplyInverseTransforms(VP8LDecoder* const dec, int num_rows,
                                   const uint32_t* const rows) {
  int n = dec->next_transform_;
  const int cache_pixs = dec->width_ * num_rows;
  const int start_row = dec->last_row_;
  const int end_row = start_row + num_rows;
  const uint32_t* rows_in = rows;
  uint32_t* const rows_out = dec->argb_cache_;

  // Inverse transforms.
  // TODO: most transforms only need to operate on the cropped region only.
  memcpy(rows_out, rows_in, cache_pixs * sizeof(*rows_out));
  while (n-- > 0) {
    VP8LTransform* const transform = &dec->transforms_[n];
    VP8LInverseTransform(transform, start_row, end_row, rows_in, rows_out);
    rows_in = rows_out;
  }
}

// Special method for paletted alpha data.
static void ApplyInverseTransformsAlpha(VP8LDecoder* const dec, int num_rows,
                                        const uint8_t* const rows) {
  const int start_row = dec->last_row_;
  const int end_row = start_row + num_rows;
  const uint8_t* rows_in = rows;
  uint8_t* rows_out = (uint8_t*)dec->io_->opaque + dec->io_->width * start_row;
  VP8LTransform* const transform = &dec->transforms_[0];
  assert(dec->next_transform_ == 1);
  assert(transform->type_ == COLOR_INDEXING_TRANSFORM);
  VP8LColorIndexInverseTransformAlpha(transform, start_row, end_row, rows_in,
                                      rows_out);
}

// Processes (transforms, scales & color-converts) the rows decoded after the
// last call.
static void ProcessRows(VP8LDecoder* const dec, int row) {
  const uint32_t* const rows = dec->pixels_ + dec->width_ * dec->last_row_;
  const int num_rows = row - dec->last_row_;

  if (num_rows <= 0) return;  // Nothing to be done.
  ApplyInverseTransforms(dec, num_rows, rows);

  // Emit output.
  {
    VP8Io* const io = dec->io_;
    const uint32_t* rows_data = dec->argb_cache_;
    if (!SetCropWindow(io, dec->last_row_, row, &rows_data, io->width)) {
      // Nothing to output (this time).
    } else {
      const WebPDecBuffer* const output = dec->output_;
      const int in_stride = io->width * sizeof(*rows_data);
      if (output->colorspace < MODE_YUV) {  // convert to RGBA
        const WebPRGBABuffer* const buf = &output->u.RGBA;
        uint8_t* const rgba = buf->rgba + dec->last_out_row_ * buf->stride;
        const int num_rows_out = io->use_scaling ?
            EmitRescaledRows(dec, rows_data, in_stride, io->mb_h,
                             rgba, buf->stride) :
            EmitRows(output->colorspace, rows_data, in_stride,
                     io->mb_w, io->mb_h, rgba, buf->stride);
        // Update 'last_out_row_'.
        dec->last_out_row_ += num_rows_out;
      } else {                              // convert to YUVA
        dec->last_out_row_ = io->use_scaling ?
            EmitRescaledRowsYUVA(dec, rows_data, in_stride, io->mb_h) :
            EmitRowsYUVA(dec, rows_data, in_stride, io->mb_w, io->mb_h);
      }
      assert(dec->last_out_row_ <= output->height);
    }
  }

  // Update 'last_row_'.
  dec->last_row_ = row;
  assert(dec->last_row_ <= dec->height_);
}

#define DECODE_DATA_FUNC(FUNC_NAME, TYPE, STORE_PIXEL)                         \
static int FUNC_NAME(VP8LDecoder* const dec, TYPE* const data, int width,      \
                     int height, ProcessRowsFunc process_func) {               \
  int ok = 1;                                                                  \
  int col = 0, row = 0;                                                        \
  VP8LBitReader* const br = &dec->br_;                                         \
  VP8LMetadata* const hdr = &dec->hdr_;                                        \
  HTreeGroup* htree_group = hdr->htree_groups_;                                \
  TYPE* src = data;                                                            \
  TYPE* last_cached = data;                                                    \
  TYPE* const src_end = data + width * height;                                 \
  const int len_code_limit = NUM_LITERAL_CODES + NUM_LENGTH_CODES;             \
  const int color_cache_limit = len_code_limit + hdr->color_cache_size_;       \
  VP8LColorCache* const color_cache =                                          \
      (hdr->color_cache_size_ > 0) ? &hdr->color_cache_ : NULL;                \
  const int mask = hdr->huffman_mask_;                                         \
  assert(htree_group != NULL);                                                 \
  while (!br->eos_ && src < src_end) {                                         \
    int code;                                                                  \
    /* Only update when changing tile. Note we could use this test:        */  \
    /* if "((((prev_col ^ col) | prev_row ^ row)) > mask)" -> tile changed */  \
    /* but that's actually slower and needs storing the previous col/row.  */  \
    if ((col & mask) == 0) {                                                   \
      htree_group = GetHtreeGroupForPos(hdr, col, row);                        \
    }                                                                          \
    VP8LFillBitWindow(br);                                                     \
    code = ReadSymbol(&htree_group->htrees_[GREEN], br);                       \
    if (code < NUM_LITERAL_CODES) {  /* Literal*/                              \
      int red, green, blue, alpha;                                             \
      red = ReadSymbol(&htree_group->htrees_[RED], br);                        \
      green = code;                                                            \
      VP8LFillBitWindow(br);                                                   \
      blue = ReadSymbol(&htree_group->htrees_[BLUE], br);                      \
      alpha = ReadSymbol(&htree_group->htrees_[ALPHA], br);                    \
      *src = STORE_PIXEL(alpha, red, green, blue);                             \
    AdvanceByOne:                                                              \
      ++src;                                                                   \
      ++col;                                                                   \
      if (col >= width) {                                                      \
        col = 0;                                                               \
        ++row;                                                                 \
        if ((process_func != NULL) && (row % NUM_ARGB_CACHE_ROWS == 0)) {      \
          process_func(dec, row);                                              \
        }                                                                      \
        if (color_cache != NULL) {                                             \
          while (last_cached < src) {                                          \
            VP8LColorCacheInsert(color_cache, *last_cached++);                 \
          }                                                                    \
        }                                                                      \
      }                                                                        \
    } else if (code < len_code_limit) {  /* Backward reference */              \
      int dist_code, dist;                                                     \
      const int length_sym = code - NUM_LITERAL_CODES;                         \
      const int length = GetCopyLength(length_sym, br);                        \
      const int dist_symbol = ReadSymbol(&htree_group->htrees_[DIST], br);     \
      VP8LFillBitWindow(br);                                                   \
      dist_code = GetCopyDistance(dist_symbol, br);                            \
      dist = PlaneCodeToDistance(width, dist_code);                            \
      if (src - data < dist || src_end - src < length) {                       \
        ok = 0;                                                                \
        goto End;                                                              \
      }                                                                        \
      {                                                                        \
        int i;                                                                 \
        for (i = 0; i < length; ++i) src[i] = src[i - dist];                   \
        src += length;                                                         \
      }                                                                        \
      col += length;                                                           \
      while (col >= width) {                                                   \
        col -= width;                                                          \
        ++row;                                                                 \
        if ((process_func != NULL) && (row % NUM_ARGB_CACHE_ROWS == 0)) {      \
          process_func(dec, row);                                              \
        }                                                                      \
      }                                                                        \
      if (src < src_end) {                                                     \
        htree_group = GetHtreeGroupForPos(hdr, col, row);                      \
        if (color_cache != NULL) {                                             \
          while (last_cached < src) {                                          \
            VP8LColorCacheInsert(color_cache, *last_cached++);                 \
          }                                                                    \
        }                                                                      \
      }                                                                        \
    } else if (code < color_cache_limit) {  /* Color cache */                  \
      const int key = code - len_code_limit;                                   \
      assert(color_cache != NULL);                                             \
      while (last_cached < src) {                                              \
        VP8LColorCacheInsert(color_cache, *last_cached++);                     \
      }                                                                        \
      *src = VP8LColorCacheLookup(color_cache, key);                           \
      goto AdvanceByOne;                                                       \
    } else {  /* Not reached */                                                \
      ok = 0;                                                                  \
      goto End;                                                                \
    }                                                                          \
    ok = !br->error_;                                                          \
    if (!ok) goto End;                                                         \
  }                                                                            \
  /* Process the remaining rows corresponding to last row-block. */            \
  if (process_func != NULL) process_func(dec, row);                            \
End:                                                                           \
  if (br->error_ || !ok || (br->eos_ && src < src_end)) {                      \
    ok = 0;                                                                    \
    dec->status_ =                                                             \
        (!br->eos_) ? VP8_STATUS_BITSTREAM_ERROR : VP8_STATUS_SUSPENDED;       \
  } else if (src == src_end) {                                                 \
    dec->state_ = READ_DATA;                                                   \
  }                                                                            \
  return ok;                                                                   \
}

static WEBP_INLINE uint32_t GetARGBPixel(int alpha, int red, int green,
                                         int blue) {
  return (alpha << 24) | (red << 16) | (green << 8) | blue;
}

static WEBP_INLINE uint8_t GetAlphaPixel(int alpha, int red, int green,
                                         int blue) {
  (void)alpha;
  (void)red;
  (void)blue;
  return green;  // Alpha value is stored in green channel.
}

DECODE_DATA_FUNC(DecodeImageData, uint32_t, GetARGBPixel)
DECODE_DATA_FUNC(DecodeAlphaData, uint8_t, GetAlphaPixel)

#undef DECODE_DATA_FUNC

// -----------------------------------------------------------------------------
// VP8LTransform

static void ClearTransform(VP8LTransform* const transform) {
  free(transform->data_);
  transform->data_ = NULL;
}

// For security reason, we need to remap the color map to span
// the total possible bundled values, and not just the num_colors.
static int ExpandColorMap(int num_colors, VP8LTransform* const transform) {
  int i;
  const int final_num_colors = 1 << (8 >> transform->bits_);
  uint32_t* const new_color_map =
      (uint32_t*)WebPSafeMalloc((uint64_t)final_num_colors,
                                sizeof(*new_color_map));
  if (new_color_map == NULL) {
    return 0;
  } else {
    uint8_t* const data = (uint8_t*)transform->data_;
    uint8_t* const new_data = (uint8_t*)new_color_map;
    new_color_map[0] = transform->data_[0];
    for (i = 4; i < 4 * num_colors; ++i) {
      // Equivalent to AddPixelEq(), on a byte-basis.
      new_data[i] = (data[i] + new_data[i - 4]) & 0xff;
    }
    for (; i < 4 * final_num_colors; ++i)
      new_data[i] = 0;  // black tail.
    free(transform->data_);
    transform->data_ = new_color_map;
  }
  return 1;
}

static int ReadTransform(int* const xsize, int const* ysize,
                         VP8LDecoder* const dec) {
  int ok = 1;
  VP8LBitReader* const br = &dec->br_;
  VP8LTransform* transform = &dec->transforms_[dec->next_transform_];
  const VP8LImageTransformType type =
      (VP8LImageTransformType)VP8LReadBits(br, 2);

  // Each transform type can only be present once in the stream.
  if (dec->transforms_seen_ & (1U << type)) {
    return 0;  // Already there, let's not accept the second same transform.
  }
  dec->transforms_seen_ |= (1U << type);

  transform->type_ = type;
  transform->xsize_ = *xsize;
  transform->ysize_ = *ysize;
  transform->data_ = NULL;
  ++dec->next_transform_;
  assert(dec->next_transform_ <= NUM_TRANSFORMS);

  switch (type) {
    case PREDICTOR_TRANSFORM:
    case CROSS_COLOR_TRANSFORM:
      transform->bits_ = VP8LReadBits(br, 3) + 2;
      ok = DecodeImageStream(VP8LSubSampleSize(transform->xsize_,
                                               transform->bits_),
                             VP8LSubSampleSize(transform->ysize_,
                                               transform->bits_),
                             0, dec, &transform->data_);
      break;
    case COLOR_INDEXING_TRANSFORM: {
       const int num_colors = VP8LReadBits(br, 8) + 1;
       const int bits = (num_colors > 16) ? 0
                      : (num_colors > 4) ? 1
                      : (num_colors > 2) ? 2
                      : 3;
       *xsize = VP8LSubSampleSize(transform->xsize_, bits);
       transform->bits_ = bits;
       ok = DecodeImageStream(num_colors, 1, 0, dec, &transform->data_);
       ok = ok && ExpandColorMap(num_colors, transform);
      break;
    }
    case SUBTRACT_GREEN:
      break;
    default:
      assert(0);    // can't happen
      break;
  }

  return ok;
}

// -----------------------------------------------------------------------------
// VP8LMetadata

static void InitMetadata(VP8LMetadata* const hdr) {
  assert(hdr);
  memset(hdr, 0, sizeof(*hdr));
}

static void ClearMetadata(VP8LMetadata* const hdr) {
  assert(hdr);

  free(hdr->huffman_image_);
  DeleteHtreeGroups(hdr->htree_groups_, hdr->num_htree_groups_);
  VP8LColorCacheClear(&hdr->color_cache_);
  InitMetadata(hdr);
}

// -----------------------------------------------------------------------------
// VP8LDecoder

VP8LDecoder* VP8LNew(void) {
  VP8LDecoder* const dec = (VP8LDecoder*)calloc(1, sizeof(*dec));
  if (dec == NULL) return NULL;
  dec->status_ = VP8_STATUS_OK;
  dec->action_ = READ_DIM;
  dec->state_ = READ_DIM;
  return dec;
}

void VP8LClear(VP8LDecoder* const dec) {
  int i;
  if (dec == NULL) return;
  ClearMetadata(&dec->hdr_);

  free(dec->pixels_);
  dec->pixels_ = NULL;
  for (i = 0; i < dec->next_transform_; ++i) {
    ClearTransform(&dec->transforms_[i]);
  }
  dec->next_transform_ = 0;
  dec->transforms_seen_ = 0;

  free(dec->rescaler_memory);
  dec->rescaler_memory = NULL;

  dec->output_ = NULL;   // leave no trace behind
}

void VP8LDelete(VP8LDecoder* const dec) {
  if (dec != NULL) {
    VP8LClear(dec);
    free(dec);
  }
}

static void UpdateDecoder(VP8LDecoder* const dec, int width, int height) {
  VP8LMetadata* const hdr = &dec->hdr_;
  const int num_bits = hdr->huffman_subsample_bits_;
  dec->width_ = width;
  dec->height_ = height;

  hdr->huffman_xsize_ = VP8LSubSampleSize(width, num_bits);
  hdr->huffman_mask_ = (num_bits == 0) ? ~0 : (1 << num_bits) - 1;
}

static int DecodeImageStream(int xsize, int ysize,
                             int is_level0,
                             VP8LDecoder* const dec,
                             uint32_t** const decoded_data) {
  int ok = 1;
  int transform_xsize = xsize;
  int transform_ysize = ysize;
  VP8LBitReader* const br = &dec->br_;
  VP8LMetadata* const hdr = &dec->hdr_;
  uint32_t* data = NULL;
  int color_cache_bits = 0;

  // Read the transforms (may recurse).
  if (is_level0) {
    while (ok && VP8LReadBits(br, 1)) {
      ok = ReadTransform(&transform_xsize, &transform_ysize, dec);
    }
  }

  // Color cache
  if (ok && VP8LReadBits(br, 1)) {
    color_cache_bits = VP8LReadBits(br, 4);
    ok = (color_cache_bits >= 1 && color_cache_bits <= MAX_CACHE_BITS);
    if (!ok) {
      dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
      goto End;
    }
  }

  // Read the Huffman codes (may recurse).
  ok = ok && ReadHuffmanCodes(dec, transform_xsize, transform_ysize,
                              color_cache_bits, is_level0);
  if (!ok) {
    dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
    goto End;
  }

  // Finish setting up the color-cache
  if (color_cache_bits > 0) {
    hdr->color_cache_size_ = 1 << color_cache_bits;
    if (!VP8LColorCacheInit(&hdr->color_cache_, color_cache_bits)) {
      dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
      ok = 0;
      goto End;
    }
  } else {
    hdr->color_cache_size_ = 0;
  }
  UpdateDecoder(dec, transform_xsize, transform_ysize);

  if (is_level0) {   // level 0 complete
    dec->state_ = READ_HDR;
    goto End;
  }

  {
    const uint64_t total_size = (uint64_t)transform_xsize * transform_ysize;
    data = (uint32_t*)WebPSafeMalloc(total_size, sizeof(*data));
    if (data == NULL) {
      dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
      ok = 0;
      goto End;
    }
  }

  // Use the Huffman trees to decode the LZ77 encoded data.
  ok = DecodeImageData(dec, data, transform_xsize, transform_ysize, NULL);
  ok = ok && !br->error_;

 End:

  if (!ok) {
    free(data);
    ClearMetadata(hdr);
    // If not enough data (br.eos_) resulted in BIT_STREAM_ERROR, update the
    // status appropriately.
    if (dec->status_ == VP8_STATUS_BITSTREAM_ERROR && dec->br_.eos_) {
      dec->status_ = VP8_STATUS_SUSPENDED;
    }
  } else {
    if (decoded_data != NULL) {
      *decoded_data = data;
    } else {
      // We allocate image data in this function only for transforms. At level 0
      // (that is: not the transforms), we shouldn't have allocated anything.
      assert(data == NULL);
      assert(is_level0);
    }
    if (!is_level0) ClearMetadata(hdr);  // Clean up temporary data behind.
  }
  return ok;
}

//------------------------------------------------------------------------------
// Allocate internal buffers dec->pixels_ and dec->argb_cache_.
static int AllocateInternalBuffers(VP8LDecoder* const dec, int final_width,
                                   size_t bytes_per_pixel) {
  const int argb_cache_needed = (bytes_per_pixel == sizeof(uint32_t));
  const uint64_t num_pixels = (uint64_t)dec->width_ * dec->height_;
  // Scratch buffer corresponding to top-prediction row for transforming the
  // first row in the row-blocks. Not needed for paletted alpha.
  const uint64_t cache_top_pixels =
      argb_cache_needed ? (uint16_t)final_width : 0ULL;
  // Scratch buffer for temporary BGRA storage. Not needed for paletted alpha.
  const uint64_t cache_pixels =
      argb_cache_needed ? (uint64_t)final_width * NUM_ARGB_CACHE_ROWS : 0ULL;
  const uint64_t total_num_pixels =
      num_pixels + cache_top_pixels + cache_pixels;

  assert(dec->width_ <= final_width);
  dec->pixels_ = (uint32_t*)WebPSafeMalloc(total_num_pixels, bytes_per_pixel);
  if (dec->pixels_ == NULL) {
    dec->argb_cache_ = NULL;    // for sanity check
    dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
    return 0;
  }
  dec->argb_cache_ =
      argb_cache_needed ? dec->pixels_ + num_pixels + cache_top_pixels : NULL;
  return 1;
}

//------------------------------------------------------------------------------

// Special row-processing that only stores the alpha data.
static void ExtractAlphaRows(VP8LDecoder* const dec, int row) {
  const int num_rows = row - dec->last_row_;
  const uint32_t* const in = dec->pixels_ + dec->width_ * dec->last_row_;

  if (num_rows <= 0) return;  // Nothing to be done.
  ApplyInverseTransforms(dec, num_rows, in);

  // Extract alpha (which is stored in the green plane).
  {
    const int width = dec->io_->width;      // the final width (!= dec->width_)
    const int cache_pixs = width * num_rows;
    uint8_t* const dst = (uint8_t*)dec->io_->opaque + width * dec->last_row_;
    const uint32_t* const src = dec->argb_cache_;
    int i;
    for (i = 0; i < cache_pixs; ++i) dst[i] = (src[i] >> 8) & 0xff;
  }
  dec->last_row_ = dec->last_out_row_ = row;
}

// Row-processing for the special case when alpha data contains only one
// transform: color indexing.
static void ExtractPalettedAlphaRows(VP8LDecoder* const dec, int row) {
  const int num_rows = row - dec->last_row_;
  const uint8_t* const in =
      (uint8_t*)dec->pixels_ + dec->width_ * dec->last_row_;
  if (num_rows <= 0) return;  // Nothing to be done.
  ApplyInverseTransformsAlpha(dec, num_rows, in);
  dec->last_row_ = dec->last_out_row_ = row;
}

int VP8LDecodeAlphaImageStream(int width, int height, const uint8_t* const data,
                               size_t data_size, uint8_t* const output) {
  VP8Io io;
  int ok = 0;
  VP8LDecoder* const dec = VP8LNew();
  size_t bytes_per_pixel = sizeof(uint32_t);  // Default: BGRA mode.
  if (dec == NULL) return 0;

  dec->width_ = width;
  dec->height_ = height;
  dec->io_ = &io;

  VP8InitIo(&io);
  WebPInitCustomIo(NULL, &io);    // Just a sanity Init. io won't be used.
  io.opaque = output;
  io.width = width;
  io.height = height;

  dec->status_ = VP8_STATUS_OK;
  VP8LInitBitReader(&dec->br_, data, data_size);

  dec->action_ = READ_HDR;
  if (!DecodeImageStream(width, height, 1, dec, NULL)) goto Err;

  // Special case: if alpha data uses only the color indexing transform and
  // doesn't use color cache (a frequent case), we will use DecodeAlphaData()
  // method that only needs allocation of 1 byte per pixel (alpha channel).
  if (dec->next_transform_ == 1 &&
      dec->transforms_[0].type_ == COLOR_INDEXING_TRANSFORM &&
      dec->hdr_.color_cache_size_ == 0) {
    bytes_per_pixel = sizeof(uint8_t);
  }

  // Allocate internal buffers (note that dec->width_ may have changed here).
  if (!AllocateInternalBuffers(dec, width, bytes_per_pixel)) goto Err;

  // Decode (with special row processing).
  dec->action_ = READ_DATA;
  ok = (bytes_per_pixel == sizeof(uint8_t)) ?
      DecodeAlphaData(dec, (uint8_t*)dec->pixels_, dec->width_, dec->height_,
                      ExtractPalettedAlphaRows) :
      DecodeImageData(dec, dec->pixels_, dec->width_, dec->height_,
                      ExtractAlphaRows);

 Err:
  VP8LDelete(dec);
  return ok;
}

//------------------------------------------------------------------------------

int VP8LDecodeHeader(VP8LDecoder* const dec, VP8Io* const io) {
  int width, height, has_alpha;

  if (dec == NULL) return 0;
  if (io == NULL) {
    dec->status_ = VP8_STATUS_INVALID_PARAM;
    return 0;
  }

  dec->io_ = io;
  dec->status_ = VP8_STATUS_OK;
  VP8LInitBitReader(&dec->br_, io->data, io->data_size);
  if (!ReadImageInfo(&dec->br_, &width, &height, &has_alpha)) {
    dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
    goto Error;
  }
  dec->state_ = READ_DIM;
  io->width = width;
  io->height = height;

  dec->action_ = READ_HDR;
  if (!DecodeImageStream(width, height, 1, dec, NULL)) goto Error;
  return 1;

 Error:
  VP8LClear(dec);
  assert(dec->status_ != VP8_STATUS_OK);
  return 0;
}

int VP8LDecodeImage(VP8LDecoder* const dec) {
  const size_t bytes_per_pixel = sizeof(uint32_t);
  VP8Io* io = NULL;
  WebPDecParams* params = NULL;

  // Sanity checks.
  if (dec == NULL) return 0;

  io = dec->io_;
  assert(io != NULL);
  params = (WebPDecParams*)io->opaque;
  assert(params != NULL);
  dec->output_ = params->output;
  assert(dec->output_ != NULL);

  // Initialization.
  if (!WebPIoInitFromOptions(params->options, io, MODE_BGRA)) {
    dec->status_ = VP8_STATUS_INVALID_PARAM;
    goto Err;
  }

  if (!AllocateInternalBuffers(dec, io->width, bytes_per_pixel)) goto Err;

  if (io->use_scaling && !AllocateAndInitRescaler(dec, io)) goto Err;

  // Decode.
  dec->action_ = READ_DATA;
  if (!DecodeImageData(dec, dec->pixels_, dec->width_, dec->height_,
                       ProcessRows)) {
    goto Err;
  }

  // Cleanup.
  params->last_y = dec->last_out_row_;
  VP8LClear(dec);
  return 1;

 Err:
  VP8LClear(dec);
  assert(dec->status_ != VP8_STATUS_OK);
  return 0;
}

//------------------------------------------------------------------------------

#if defined(__cplusplus) || defined(c_plusplus)
}    // extern "C"
#endif