denoising.cpp 9.13 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                        Intel License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective icvers.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"
wester committed
43 44
#include "opencv2/photo/photo.hpp"
#include "opencv2/imgproc/imgproc.hpp"
wester committed
45 46 47 48 49 50 51
#include "fast_nlmeans_denoising_invoker.hpp"
#include "fast_nlmeans_multi_denoising_invoker.hpp"

void cv::fastNlMeansDenoising( InputArray _src, OutputArray _dst, float h,
                               int templateWindowSize, int searchWindowSize)
{
    Mat src = _src.getMat();
wester committed
52
    _dst.create(src.size(), src.type());
wester committed
53 54 55
    Mat dst = _dst.getMat();

#ifdef HAVE_TEGRA_OPTIMIZATION
wester committed
56 57
    if(tegra::fastNlMeansDenoising(src, dst, h, templateWindowSize, searchWindowSize))
        return;
wester committed
58
#endif
wester committed
59 60 61 62 63 64

    switch (src.type()) {
        case CV_8U:
            parallel_for_(cv::Range(0, src.rows),
                FastNlMeansDenoisingInvoker<uchar>(
                    src, dst, templateWindowSize, searchWindowSize, h));
wester committed
65
            break;
wester committed
66 67 68 69 70 71 72 73 74
        case CV_8UC2:
            parallel_for_(cv::Range(0, src.rows),
                FastNlMeansDenoisingInvoker<cv::Vec2b>(
                    src, dst, templateWindowSize, searchWindowSize, h));
            break;
        case CV_8UC3:
            parallel_for_(cv::Range(0, src.rows),
                FastNlMeansDenoisingInvoker<cv::Vec3b>(
                    src, dst, templateWindowSize, searchWindowSize, h));
wester committed
75 76
            break;
        default:
wester committed
77 78
            CV_Error(CV_StsBadArg,
                "Unsupported image format! Only CV_8UC1, CV_8UC2 and CV_8UC3 are supported");
wester committed
79 80 81 82 83 84 85 86
    }
}

void cv::fastNlMeansDenoisingColored( InputArray _src, OutputArray _dst,
                                      float h, float hForColorComponents,
                                      int templateWindowSize, int searchWindowSize)
{
    Mat src = _src.getMat();
wester committed
87
    _dst.create(src.size(), src.type());
wester committed
88 89
    Mat dst = _dst.getMat();

wester committed
90 91 92 93 94
    if (src.type() != CV_8UC3) {
        CV_Error(CV_StsBadArg, "Type of input image should be CV_8UC3!");
        return;
    }

wester committed
95
    Mat src_lab;
wester committed
96
    cvtColor(src, src_lab, CV_LBGR2Lab);
wester committed
97

wester committed
98 99
    Mat l(src.size(), CV_8U);
    Mat ab(src.size(), CV_8UC2);
wester committed
100 101 102 103 104 105 106 107
    Mat l_ab[] = { l, ab };
    int from_to[] = { 0,0, 1,1, 2,2 };
    mixChannels(&src_lab, 1, l_ab, 2, from_to, 3);

    fastNlMeansDenoising(l, l, h, templateWindowSize, searchWindowSize);
    fastNlMeansDenoising(ab, ab, hForColorComponents, templateWindowSize, searchWindowSize);

    Mat l_ab_denoised[] = { l, ab };
wester committed
108
    Mat dst_lab(src.size(), src.type());
wester committed
109 110
    mixChannels(l_ab_denoised, 2, &dst_lab, 1, from_to, 3);

wester committed
111
    cvtColor(dst_lab, dst, CV_Lab2LBGR);
wester committed
112 113 114 115 116 117 118
}

static void fastNlMeansDenoisingMultiCheckPreconditions(
                               const std::vector<Mat>& srcImgs,
                               int imgToDenoiseIndex, int temporalWindowSize,
                               int templateWindowSize, int searchWindowSize)
{
wester committed
119 120 121
    int src_imgs_size = (int)srcImgs.size();
    if (src_imgs_size == 0) {
        CV_Error(CV_StsBadArg, "Input images vector should not be empty!");
wester committed
122 123 124 125 126
    }

    if (temporalWindowSize % 2 == 0 ||
        searchWindowSize % 2 == 0 ||
        templateWindowSize % 2 == 0) {
wester committed
127
        CV_Error(CV_StsBadArg, "All windows sizes should be odd!");
wester committed
128 129 130 131 132 133
    }

    int temporalWindowHalfSize = temporalWindowSize / 2;
    if (imgToDenoiseIndex - temporalWindowHalfSize < 0 ||
        imgToDenoiseIndex + temporalWindowHalfSize >= src_imgs_size)
    {
wester committed
134
        CV_Error(CV_StsBadArg,
wester committed
135 136 137 138
            "imgToDenoiseIndex and temporalWindowSize "
            "should be chosen corresponding srcImgs size!");
    }

wester committed
139 140 141
    for (int i = 1; i < src_imgs_size; i++) {
        if (srcImgs[0].size() != srcImgs[i].size() || srcImgs[0].type() != srcImgs[i].type()) {
            CV_Error(CV_StsBadArg, "Input images should have the same size and type!");
wester committed
142 143 144 145 146 147 148 149
        }
    }
}

void cv::fastNlMeansDenoisingMulti( InputArrayOfArrays _srcImgs, OutputArray _dst,
                                    int imgToDenoiseIndex, int temporalWindowSize,
                                    float h, int templateWindowSize, int searchWindowSize)
{
wester committed
150
    vector<Mat> srcImgs;
wester committed
151 152 153 154
    _srcImgs.getMatVector(srcImgs);

    fastNlMeansDenoisingMultiCheckPreconditions(
        srcImgs, imgToDenoiseIndex,
wester committed
155 156
        temporalWindowSize, templateWindowSize, searchWindowSize
    );
wester committed
157 158 159
    _dst.create(srcImgs[0].size(), srcImgs[0].type());
    Mat dst = _dst.getMat();

wester committed
160 161 162 163 164 165 166 167 168 169 170 171
    switch (srcImgs[0].type()) {
        case CV_8U:
            parallel_for_(cv::Range(0, srcImgs[0].rows),
                FastNlMeansMultiDenoisingInvoker<uchar>(
                    srcImgs, imgToDenoiseIndex, temporalWindowSize,
                    dst, templateWindowSize, searchWindowSize, h));
            break;
        case CV_8UC2:
            parallel_for_(cv::Range(0, srcImgs[0].rows),
                FastNlMeansMultiDenoisingInvoker<cv::Vec2b>(
                    srcImgs, imgToDenoiseIndex, temporalWindowSize,
                    dst, templateWindowSize, searchWindowSize, h));
wester committed
172
            break;
wester committed
173 174 175 176 177
        case CV_8UC3:
            parallel_for_(cv::Range(0, srcImgs[0].rows),
                FastNlMeansMultiDenoisingInvoker<cv::Vec3b>(
                    srcImgs, imgToDenoiseIndex, temporalWindowSize,
                    dst, templateWindowSize, searchWindowSize, h));
wester committed
178 179
            break;
        default:
wester committed
180 181
            CV_Error(CV_StsBadArg,
                "Unsupported matrix format! Only uchar, Vec2b, Vec3b are supported");
wester committed
182 183 184 185 186 187 188 189
    }
}

void cv::fastNlMeansDenoisingColoredMulti( InputArrayOfArrays _srcImgs, OutputArray _dst,
                                           int imgToDenoiseIndex, int temporalWindowSize,
                                           float h, float hForColorComponents,
                                           int templateWindowSize, int searchWindowSize)
{
wester committed
190
    vector<Mat> srcImgs;
wester committed
191 192 193 194
    _srcImgs.getMatVector(srcImgs);

    fastNlMeansDenoisingMultiCheckPreconditions(
        srcImgs, imgToDenoiseIndex,
wester committed
195 196
        temporalWindowSize, templateWindowSize, searchWindowSize
    );
wester committed
197 198 199 200

    _dst.create(srcImgs[0].size(), srcImgs[0].type());
    Mat dst = _dst.getMat();

wester committed
201
    int src_imgs_size = (int)srcImgs.size();
wester committed
202

wester committed
203 204
    if (srcImgs[0].type() != CV_8UC3) {
        CV_Error(CV_StsBadArg, "Type of input images should be CV_8UC3!");
wester committed
205 206 207 208 209 210
        return;
    }

    int from_to[] = { 0,0, 1,1, 2,2 };

    // TODO convert only required images
wester committed
211 212 213 214 215 216 217 218
    vector<Mat> src_lab(src_imgs_size);
    vector<Mat> l(src_imgs_size);
    vector<Mat> ab(src_imgs_size);
    for (int i = 0; i < src_imgs_size; i++) {
        src_lab[i] = Mat::zeros(srcImgs[0].size(), CV_8UC3);
        l[i] = Mat::zeros(srcImgs[0].size(), CV_8UC1);
        ab[i] = Mat::zeros(srcImgs[0].size(), CV_8UC2);
        cvtColor(srcImgs[i], src_lab[i], CV_LBGR2Lab);
wester committed
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238

        Mat l_ab[] = { l[i], ab[i] };
        mixChannels(&src_lab[i], 1, l_ab, 2, from_to, 3);
    }

    Mat dst_l;
    Mat dst_ab;

    fastNlMeansDenoisingMulti(
        l, dst_l, imgToDenoiseIndex, temporalWindowSize,
        h, templateWindowSize, searchWindowSize);

    fastNlMeansDenoisingMulti(
        ab, dst_ab, imgToDenoiseIndex, temporalWindowSize,
        hForColorComponents, templateWindowSize, searchWindowSize);

    Mat l_ab_denoised[] = { dst_l, dst_ab };
    Mat dst_lab(srcImgs[0].size(), srcImgs[0].type());
    mixChannels(l_ab_denoised, 2, &dst_lab, 1, from_to, 3);

wester committed
239
    cvtColor(dst_lab, dst, CV_Lab2LBGR);
wester committed
240
}