stereo_calib.cpp 13.4 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* This is sample from the OpenCV book. The copyright notice is below */

/* *************** License:**************************
   Oct. 3, 2008
   Right to use this code in any way you want without warranty, support or any guarantee of it working.

   BOOK: It would be nice if you cited it:
   Learning OpenCV: Computer Vision with the OpenCV Library
     by Gary Bradski and Adrian Kaehler
     Published by O'Reilly Media, October 3, 2008

   AVAILABLE AT:
     http://www.amazon.com/Learning-OpenCV-Computer-Vision-Library/dp/0596516134
     Or: http://oreilly.com/catalog/9780596516130/
     ISBN-10: 0596516134 or: ISBN-13: 978-0596516130

   OPENCV WEBSITES:
     Homepage:      http://opencv.org
     Online docs:   http://docs.opencv.org
     Q&A forum:     http://answers.opencv.org
     Issue tracker: http://code.opencv.org
wester committed
22
     GitHub:        https://github.com/opencv/opencv/
wester committed
23 24
   ************************************************** */

a  
Kai Westerkamp committed
25 26 27
#include "opencv2/calib3d/calib3d.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
wester committed
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

#include <vector>
#include <string>
#include <algorithm>
#include <iostream>
#include <iterator>
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>

using namespace cv;
using namespace std;

static int print_help()
{
    cout <<
            " Given a list of chessboard images, the number of corners (nx, ny)\n"
            " on the chessboards, and a flag: useCalibrated for \n"
            "   calibrated (0) or\n"
            "   uncalibrated \n"
            "     (1: use cvStereoCalibrate(), 2: compute fundamental\n"
            "         matrix separately) stereo. \n"
            " Calibrate the cameras and display the\n"
            " rectified results along with the computed disparity images.   \n" << endl;
wester committed
52
    cout << "Usage:\n ./stereo_calib -w board_width -h board_height [-nr /*dot not view results*/] <image list XML/YML file>\n" << endl;
wester committed
53 54 55 56 57
    return 0;
}


static void
wester committed
58
StereoCalib(const vector<string>& imagelist, Size boardSize, bool useCalibrated=true, bool showRectified=true)
wester committed
59 60 61 62 63 64 65
{
    if( imagelist.size() % 2 != 0 )
    {
        cout << "Error: the image list contains odd (non-even) number of elements\n";
        return;
    }

wester committed
66
    bool displayCorners = false;//true;
wester committed
67
    const int maxScale = 2;
a  
Kai Westerkamp committed
68
    const float squareSize = 1.f;  // Set this to your actual square size
wester committed
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
    // ARRAY AND VECTOR STORAGE:

    vector<vector<Point2f> > imagePoints[2];
    vector<vector<Point3f> > objectPoints;
    Size imageSize;

    int i, j, k, nimages = (int)imagelist.size()/2;

    imagePoints[0].resize(nimages);
    imagePoints[1].resize(nimages);
    vector<string> goodImageList;

    for( i = j = 0; i < nimages; i++ )
    {
        for( k = 0; k < 2; k++ )
        {
            const string& filename = imagelist[i*2+k];
            Mat img = imread(filename, 0);
            if(img.empty())
                break;
            if( imageSize == Size() )
                imageSize = img.size();
            else if( img.size() != imageSize )
            {
                cout << "The image " << filename << " has the size different from the first image size. Skipping the pair\n";
                break;
            }
            bool found = false;
            vector<Point2f>& corners = imagePoints[k][j];
            for( int scale = 1; scale <= maxScale; scale++ )
            {
                Mat timg;
                if( scale == 1 )
                    timg = img;
                else
                    resize(img, timg, Size(), scale, scale);
                found = findChessboardCorners(timg, boardSize, corners,
wester committed
106
                    CV_CALIB_CB_ADAPTIVE_THRESH | CV_CALIB_CB_NORMALIZE_IMAGE);
wester committed
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
                if( found )
                {
                    if( scale > 1 )
                    {
                        Mat cornersMat(corners);
                        cornersMat *= 1./scale;
                    }
                    break;
                }
            }
            if( displayCorners )
            {
                cout << filename << endl;
                Mat cimg, cimg1;
                cvtColor(img, cimg, COLOR_GRAY2BGR);
                drawChessboardCorners(cimg, boardSize, corners, found);
                double sf = 640./MAX(img.rows, img.cols);
                resize(cimg, cimg1, Size(), sf, sf);
                imshow("corners", cimg1);
                char c = (char)waitKey(500);
                if( c == 27 || c == 'q' || c == 'Q' ) //Allow ESC to quit
                    exit(-1);
            }
            else
                putchar('.');
            if( !found )
                break;
            cornerSubPix(img, corners, Size(11,11), Size(-1,-1),
wester committed
135
                         TermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS,
wester committed
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
                                      30, 0.01));
        }
        if( k == 2 )
        {
            goodImageList.push_back(imagelist[i*2]);
            goodImageList.push_back(imagelist[i*2+1]);
            j++;
        }
    }
    cout << j << " pairs have been successfully detected.\n";
    nimages = j;
    if( nimages < 2 )
    {
        cout << "Error: too little pairs to run the calibration\n";
        return;
    }

    imagePoints[0].resize(nimages);
    imagePoints[1].resize(nimages);
    objectPoints.resize(nimages);

    for( i = 0; i < nimages; i++ )
    {
        for( j = 0; j < boardSize.height; j++ )
            for( k = 0; k < boardSize.width; k++ )
                objectPoints[i].push_back(Point3f(k*squareSize, j*squareSize, 0));
    }

    cout << "Running stereo calibration ...\n";

    Mat cameraMatrix[2], distCoeffs[2];
wester committed
167 168
    cameraMatrix[0] = Mat::eye(3, 3, CV_64F);
    cameraMatrix[1] = Mat::eye(3, 3, CV_64F);
wester committed
169 170 171 172 173 174
    Mat R, T, E, F;

    double rms = stereoCalibrate(objectPoints, imagePoints[0], imagePoints[1],
                    cameraMatrix[0], distCoeffs[0],
                    cameraMatrix[1], distCoeffs[1],
                    imageSize, R, T, E, F,
wester committed
175 176 177 178 179 180
                    TermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, 100, 1e-5),
                    CV_CALIB_FIX_ASPECT_RATIO +
                    CV_CALIB_ZERO_TANGENT_DIST +
                    CV_CALIB_SAME_FOCAL_LENGTH +
                    CV_CALIB_RATIONAL_MODEL +
                    CV_CALIB_FIX_K3 + CV_CALIB_FIX_K4 + CV_CALIB_FIX_K5);
wester committed
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
    cout << "done with RMS error=" << rms << endl;

// CALIBRATION QUALITY CHECK
// because the output fundamental matrix implicitly
// includes all the output information,
// we can check the quality of calibration using the
// epipolar geometry constraint: m2^t*F*m1=0
    double err = 0;
    int npoints = 0;
    vector<Vec3f> lines[2];
    for( i = 0; i < nimages; i++ )
    {
        int npt = (int)imagePoints[0][i].size();
        Mat imgpt[2];
        for( k = 0; k < 2; k++ )
        {
            imgpt[k] = Mat(imagePoints[k][i]);
            undistortPoints(imgpt[k], imgpt[k], cameraMatrix[k], distCoeffs[k], Mat(), cameraMatrix[k]);
            computeCorrespondEpilines(imgpt[k], k+1, F, lines[k]);
        }
        for( j = 0; j < npt; j++ )
        {
            double errij = fabs(imagePoints[0][i][j].x*lines[1][j][0] +
                                imagePoints[0][i][j].y*lines[1][j][1] + lines[1][j][2]) +
                           fabs(imagePoints[1][i][j].x*lines[0][j][0] +
                                imagePoints[1][i][j].y*lines[0][j][1] + lines[0][j][2]);
            err += errij;
        }
        npoints += npt;
    }
wester committed
211
    cout << "average reprojection err = " <<  err/npoints << endl;
wester committed
212 213

    // save intrinsic parameters
wester committed
214
    FileStorage fs("intrinsics.yml", CV_STORAGE_WRITE);
wester committed
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
    if( fs.isOpened() )
    {
        fs << "M1" << cameraMatrix[0] << "D1" << distCoeffs[0] <<
            "M2" << cameraMatrix[1] << "D2" << distCoeffs[1];
        fs.release();
    }
    else
        cout << "Error: can not save the intrinsic parameters\n";

    Mat R1, R2, P1, P2, Q;
    Rect validRoi[2];

    stereoRectify(cameraMatrix[0], distCoeffs[0],
                  cameraMatrix[1], distCoeffs[1],
                  imageSize, R, T, R1, R2, P1, P2, Q,
                  CALIB_ZERO_DISPARITY, 1, imageSize, &validRoi[0], &validRoi[1]);

wester committed
232
    fs.open("extrinsics.yml", CV_STORAGE_WRITE);
wester committed
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
    if( fs.isOpened() )
    {
        fs << "R" << R << "T" << T << "R1" << R1 << "R2" << R2 << "P1" << P1 << "P2" << P2 << "Q" << Q;
        fs.release();
    }
    else
        cout << "Error: can not save the extrinsic parameters\n";

    // OpenCV can handle left-right
    // or up-down camera arrangements
    bool isVerticalStereo = fabs(P2.at<double>(1, 3)) > fabs(P2.at<double>(0, 3));

// COMPUTE AND DISPLAY RECTIFICATION
    if( !showRectified )
        return;

    Mat rmap[2][2];
// IF BY CALIBRATED (BOUGUET'S METHOD)
    if( useCalibrated )
    {
        // we already computed everything
    }
// OR ELSE HARTLEY'S METHOD
    else
 // use intrinsic parameters of each camera, but
 // compute the rectification transformation directly
 // from the fundamental matrix
    {
        vector<Point2f> allimgpt[2];
        for( k = 0; k < 2; k++ )
        {
            for( i = 0; i < nimages; i++ )
                std::copy(imagePoints[k][i].begin(), imagePoints[k][i].end(), back_inserter(allimgpt[k]));
        }
        F = findFundamentalMat(Mat(allimgpt[0]), Mat(allimgpt[1]), FM_8POINT, 0, 0);
        Mat H1, H2;
        stereoRectifyUncalibrated(Mat(allimgpt[0]), Mat(allimgpt[1]), F, imageSize, H1, H2, 3);

        R1 = cameraMatrix[0].inv()*H1*cameraMatrix[0];
        R2 = cameraMatrix[1].inv()*H2*cameraMatrix[1];
        P1 = cameraMatrix[0];
        P2 = cameraMatrix[1];
    }

    //Precompute maps for cv::remap()
    initUndistortRectifyMap(cameraMatrix[0], distCoeffs[0], R1, P1, imageSize, CV_16SC2, rmap[0][0], rmap[0][1]);
    initUndistortRectifyMap(cameraMatrix[1], distCoeffs[1], R2, P2, imageSize, CV_16SC2, rmap[1][0], rmap[1][1]);

    Mat canvas;
    double sf;
    int w, h;
    if( !isVerticalStereo )
    {
        sf = 600./MAX(imageSize.width, imageSize.height);
        w = cvRound(imageSize.width*sf);
        h = cvRound(imageSize.height*sf);
        canvas.create(h, w*2, CV_8UC3);
    }
    else
    {
        sf = 300./MAX(imageSize.width, imageSize.height);
        w = cvRound(imageSize.width*sf);
        h = cvRound(imageSize.height*sf);
        canvas.create(h*2, w, CV_8UC3);
    }

    for( i = 0; i < nimages; i++ )
    {
        for( k = 0; k < 2; k++ )
        {
            Mat img = imread(goodImageList[i*2+k], 0), rimg, cimg;
wester committed
304
            remap(img, rimg, rmap[k][0], rmap[k][1], CV_INTER_LINEAR);
wester committed
305 306
            cvtColor(rimg, cimg, COLOR_GRAY2BGR);
            Mat canvasPart = !isVerticalStereo ? canvas(Rect(w*k, 0, w, h)) : canvas(Rect(0, h*k, w, h));
wester committed
307
            resize(cimg, canvasPart, canvasPart.size(), 0, 0, CV_INTER_AREA);
wester committed
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
            if( useCalibrated )
            {
                Rect vroi(cvRound(validRoi[k].x*sf), cvRound(validRoi[k].y*sf),
                          cvRound(validRoi[k].width*sf), cvRound(validRoi[k].height*sf));
                rectangle(canvasPart, vroi, Scalar(0,0,255), 3, 8);
            }
        }

        if( !isVerticalStereo )
            for( j = 0; j < canvas.rows; j += 16 )
                line(canvas, Point(0, j), Point(canvas.cols, j), Scalar(0, 255, 0), 1, 8);
        else
            for( j = 0; j < canvas.cols; j += 16 )
                line(canvas, Point(j, 0), Point(j, canvas.rows), Scalar(0, 255, 0), 1, 8);
        imshow("rectified", canvas);
        char c = (char)waitKey();
        if( c == 27 || c == 'q' || c == 'Q' )
            break;
    }
}


static bool readStringList( const string& filename, vector<string>& l )
{
    l.resize(0);
    FileStorage fs(filename, FileStorage::READ);
    if( !fs.isOpened() )
        return false;
    FileNode n = fs.getFirstTopLevelNode();
    if( n.type() != FileNode::SEQ )
        return false;
    FileNodeIterator it = n.begin(), it_end = n.end();
    for( ; it != it_end; ++it )
        l.push_back((string)*it);
    return true;
}

int main(int argc, char** argv)
{
    Size boardSize;
    string imagelistfn;
wester committed
349 350 351
    bool showRectified = true;

    for( int i = 1; i < argc; i++ )
wester committed
352
    {
wester committed
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
        if( string(argv[i]) == "-w" )
        {
            if( sscanf(argv[++i], "%d", &boardSize.width) != 1 || boardSize.width <= 0 )
            {
                cout << "invalid board width" << endl;
                return print_help();
            }
        }
        else if( string(argv[i]) == "-h" )
        {
            if( sscanf(argv[++i], "%d", &boardSize.height) != 1 || boardSize.height <= 0 )
            {
                cout << "invalid board height" << endl;
                return print_help();
            }
        }
        else if( string(argv[i]) == "-nr" )
            showRectified = false;
        else if( string(argv[i]) == "--help" )
            return print_help();
        else if( argv[i][0] == '-' )
        {
            cout << "invalid option " << argv[i] << endl;
            return 0;
        }
        else
            imagelistfn = argv[i];
wester committed
380
    }
wester committed
381 382 383 384 385 386 387 388 389 390 391 392

    if( imagelistfn == "" )
    {
        imagelistfn = "stereo_calib.xml";
        boardSize = Size(9, 6);
    }
    else if( boardSize.width <= 0 || boardSize.height <= 0 )
    {
        cout << "if you specified XML file with chessboards, you should also specify the board width and height (-w and -h options)" << endl;
        return 0;
    }

wester committed
393 394 395 396 397 398 399 400
    vector<string> imagelist;
    bool ok = readStringList(imagelistfn, imagelist);
    if(!ok || imagelist.empty())
    {
        cout << "can not open " << imagelistfn << " or the string list is empty" << endl;
        return print_help();
    }

wester committed
401
    StereoCalib(imagelist, boardSize, true, showRectified);
wester committed
402 403
    return 0;
}