test_calibration.py 2.31 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
#!/usr/bin/env python

'''
camera calibration for distorted images with chess board samples
reads distorted images, calculates the calibration and write undistorted images
'''

# Python 2/3 compatibility
from __future__ import print_function

import numpy as np
import cv2

from tests_common import NewOpenCVTests

class calibration_test(NewOpenCVTests):

    def test_calibration(self):

        from glob import glob
        img_names = []
        for i in range(1, 15):
            if i < 10:
wester committed
24
                img_names.append('samples/cpp/left0{}.jpg'.format(str(i)))
wester committed
25
            elif i != 10:
wester committed
26
                img_names.append('samples/cpp/left{}.jpg'.format(str(i)))
wester committed
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

        square_size = 1.0
        pattern_size = (9, 6)
        pattern_points = np.zeros((np.prod(pattern_size), 3), np.float32)
        pattern_points[:, :2] = np.indices(pattern_size).T.reshape(-1, 2)
        pattern_points *= square_size

        obj_points = []
        img_points = []
        h, w = 0, 0
        img_names_undistort = []
        for fn in img_names:
            img = self.get_sample(fn, 0)
            if img is None:
                continue

            h, w = img.shape[:2]
            found, corners = cv2.findChessboardCorners(img, pattern_size)
            if found:
                term = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_COUNT, 30, 0.1)
                cv2.cornerSubPix(img, corners, (5, 5), (-1, -1), term)

            if not found:
                continue

            img_points.append(corners.reshape(-1, 2))
            obj_points.append(pattern_points)

        # calculate camera distortion
        rms, camera_matrix, dist_coefs, rvecs, tvecs = cv2.calibrateCamera(obj_points, img_points, (w, h), None, None, flags = 0)

        eps = 0.01
        normCamEps = 10.0
wester committed
60
        normDistEps = 0.001
wester committed
61 62 63 64 65 66 67 68 69 70

        cameraMatrixTest = [[ 532.80992189,    0.,          342.4952186 ],
         [   0.,         532.93346422,  233.8879292 ],
         [   0.,            0.,            1.        ]]

        distCoeffsTest = [ -2.81325576e-01,   2.91130406e-02,
           1.21234330e-03,  -1.40825372e-04, 1.54865844e-01]

        self.assertLess(abs(rms - 0.196334638034), eps)
        self.assertLess(cv2.norm(camera_matrix - cameraMatrixTest, cv2.NORM_L1), normCamEps)
wester committed
71
        self.assertLess(cv2.norm(dist_coefs - distCoeffsTest, cv2.NORM_L1), normDistEps)