test_distancetransform.cpp 9.1 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                        Intel License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "test_precomp.hpp"

using namespace cv;
using namespace std;

class CV_DisTransTest : public cvtest::ArrayTest
{
public:
    CV_DisTransTest();

protected:
    void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
    double get_success_error_level( int test_case_idx, int i, int j );
    void run_func();
    void prepare_to_validation( int );

    void get_minmax_bounds( int i, int j, int type, Scalar& low, Scalar& high );
    int prepare_test_case( int test_case_idx );

    int mask_size;
    int dist_type;
    int fill_labels;
    float mask[3];
};


CV_DisTransTest::CV_DisTransTest()
{
    test_array[INPUT].push_back(NULL);
    test_array[OUTPUT].push_back(NULL);
    test_array[OUTPUT].push_back(NULL);
    test_array[REF_OUTPUT].push_back(NULL);
    test_array[REF_OUTPUT].push_back(NULL);
    optional_mask = false;
    element_wise_relative_error = true;
}


void CV_DisTransTest::get_test_array_types_and_sizes( int test_case_idx,
                                                vector<vector<Size> >& sizes, vector<vector<int> >& types )
{
    RNG& rng = ts->get_rng();
    cvtest::ArrayTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );

    types[INPUT][0] = CV_8UC1;
    types[OUTPUT][0] = types[REF_OUTPUT][0] = CV_32FC1;
    types[OUTPUT][1] = types[REF_OUTPUT][1] = CV_32SC1;

    if( cvtest::randInt(rng) & 1 )
    {
        mask_size = 3;
wester committed
93 94 95
        dist_type = cvtest::randInt(rng) % 4;
        dist_type = dist_type == 0 ? CV_DIST_C : dist_type == 1 ? CV_DIST_L1 :
                    dist_type == 2 ? CV_DIST_L2 : CV_DIST_USER;
wester committed
96 97 98 99
    }
    else
    {
        mask_size = 5;
wester committed
100 101 102
        dist_type = cvtest::randInt(rng) % 10;
        dist_type = dist_type == 0 ? CV_DIST_C : dist_type == 1 ? CV_DIST_L1 :
                    dist_type < 6 ? CV_DIST_L2 : CV_DIST_USER;
wester committed
103 104 105 106 107 108 109
    }

    // for now, check only the "labeled" distance transform mode
    fill_labels = 0;

    if( !fill_labels )
        sizes[OUTPUT][1] = sizes[REF_OUTPUT][1] = cvSize(0,0);
wester committed
110 111 112 113 114 115 116

    if( dist_type == CV_DIST_USER )
    {
        mask[0] = (float)(1.1 - cvtest::randReal(rng)*0.2);
        mask[1] = (float)(1.9 - cvtest::randReal(rng)*0.8);
        mask[2] = (float)(3. - cvtest::randReal(rng));
    }
wester committed
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
}


double CV_DisTransTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ )
{
    Size sz = test_mat[INPUT][0].size();
    return dist_type == CV_DIST_C || dist_type == CV_DIST_L1 ? 0 : 0.01*MAX(sz.width, sz.height);
}


void CV_DisTransTest::get_minmax_bounds( int i, int j, int type, Scalar& low, Scalar& high )
{
    cvtest::ArrayTest::get_minmax_bounds( i, j, type, low, high );
    if( i == INPUT && CV_MAT_DEPTH(type) == CV_8U )
    {
        low = Scalar::all(0);
        high = Scalar::all(10);
    }
}

int CV_DisTransTest::prepare_test_case( int test_case_idx )
{
    int code = cvtest::ArrayTest::prepare_test_case( test_case_idx );
    if( code > 0 )
    {
        // the function's response to an "all-nonzeros" image is not determined,
        // so put at least one zero point
        Mat& mat = test_mat[INPUT][0];
        RNG& rng = ts->get_rng();
        int i = cvtest::randInt(rng) % mat.rows;
        int j = cvtest::randInt(rng) % mat.cols;
        mat.at<uchar>(i,j) = 0;
    }

    return code;
}


void CV_DisTransTest::run_func()
{
    cvDistTransform( test_array[INPUT][0], test_array[OUTPUT][0], dist_type, mask_size,
                     dist_type == CV_DIST_USER ? mask : 0, test_array[OUTPUT][1] );
}


static void
cvTsDistTransform( const CvMat* _src, CvMat* _dst, int dist_type,
                   int mask_size, float* _mask, CvMat* /*_labels*/ )
{
    int i, j, k;
    int width = _src->cols, height = _src->rows;
    const float init_val = 1e6;
wester committed
169
    float mask[3] = { 0 };
wester committed
170
    CvMat* temp;
wester committed
171 172
    int ofs[16] = { 0 };
    float delta[16] = { 0 };
wester committed
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
    int tstep, count;

    assert( mask_size == 3 || mask_size == 5 );

    if( dist_type == CV_DIST_USER )
        memcpy( mask, _mask, sizeof(mask) );
    else if( dist_type == CV_DIST_C )
    {
        mask_size = 3;
        mask[0] = mask[1] = 1.f;
    }
    else if( dist_type == CV_DIST_L1 )
    {
        mask_size = 3;
        mask[0] = 1.f;
        mask[1] = 2.f;
    }
    else if( mask_size == 3 )
    {
        mask[0] = 0.955f;
        mask[1] = 1.3693f;
    }
    else
    {
        mask[0] = 1.0f;
        mask[1] = 1.4f;
        mask[2] = 2.1969f;
    }

    temp = cvCreateMat( height + mask_size-1, width + mask_size-1, CV_32F );
    tstep = temp->step / sizeof(float);

    if( mask_size == 3 )
    {
        count = 4;
        ofs[0] = -1; delta[0] = mask[0];
        ofs[1] = -tstep-1; delta[1] = mask[1];
        ofs[2] = -tstep; delta[2] = mask[0];
        ofs[3] = -tstep+1; delta[3] = mask[1];
    }
    else
    {
        count = 8;
        ofs[0] = -1; delta[0] = mask[0];
        ofs[1] = -tstep-2; delta[1] = mask[2];
        ofs[2] = -tstep-1; delta[2] = mask[1];
        ofs[3] = -tstep; delta[3] = mask[0];
        ofs[4] = -tstep+1; delta[4] = mask[1];
        ofs[5] = -tstep+2; delta[5] = mask[2];
        ofs[6] = -tstep*2-1; delta[6] = mask[2];
        ofs[7] = -tstep*2+1; delta[7] = mask[2];
    }

    for( i = 0; i < mask_size/2; i++ )
    {
        float* t0 = (float*)(temp->data.ptr + i*temp->step);
        float* t1 = (float*)(temp->data.ptr + (temp->rows - i - 1)*temp->step);

        for( j = 0; j < width + mask_size - 1; j++ )
            t0[j] = t1[j] = init_val;
    }

    for( i = 0; i < height; i++ )
    {
        uchar* s = _src->data.ptr + i*_src->step;
        float* tmp = (float*)(temp->data.ptr + temp->step*(i + (mask_size/2))) + (mask_size/2);

        for( j = 0; j < mask_size/2; j++ )
            tmp[-j-1] = tmp[j + width] = init_val;

        for( j = 0; j < width; j++ )
        {
            if( s[j] == 0 )
                tmp[j] = 0;
            else
            {
                float min_dist = init_val;
                for( k = 0; k < count; k++ )
                {
                    float t = tmp[j+ofs[k]] + delta[k];
                    if( min_dist > t )
                        min_dist = t;
                }
                tmp[j] = min_dist;
            }
        }
    }

    for( i = height - 1; i >= 0; i-- )
    {
        float* d = (float*)(_dst->data.ptr + i*_dst->step);
        float* tmp = (float*)(temp->data.ptr + temp->step*(i + (mask_size/2))) + (mask_size/2);

        for( j = width - 1; j >= 0; j-- )
        {
            float min_dist = tmp[j];
            if( min_dist > mask[0] )
            {
                for( k = 0; k < count; k++ )
                {
                    float t = tmp[j-ofs[k]] + delta[k];
                    if( min_dist > t )
                        min_dist = t;
                }
                tmp[j] = min_dist;
            }
            d[j] = min_dist;
        }
    }

    cvReleaseMat( &temp );
}


void CV_DisTransTest::prepare_to_validation( int /*test_case_idx*/ )
{
    CvMat _input = test_mat[INPUT][0], _output = test_mat[REF_OUTPUT][0];

    cvTsDistTransform( &_input, &_output, dist_type, mask_size, mask, 0 );
}


TEST(Imgproc_DistanceTransform, accuracy) { CV_DisTransTest test; test.safe_run(); }