pca.cpp 5.71 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
/*
* pca.cpp
*
*  Author:
*  Kevin Hughes <kevinhughes27[at]gmail[dot]com>
*
*  Special Thanks to:
*  Philipp Wagner <bytefish[at]gmx[dot]de>
*
* This program demonstrates how to use OpenCV PCA with a
* specified amount of variance to retain. The effect
* is illustrated further by using a trackbar to
* change the value for retained varaince.
*
* The program takes as input a text file with each line
* begin the full path to an image. PCA will be performed
* on this list of images. The author recommends using
* the first 15 faces of the AT&T face data set:
* http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
*
* so for example your input text file would look like this:
*
*        <path_to_at&t_faces>/orl_faces/s1/1.pgm
*        <path_to_at&t_faces>/orl_faces/s2/1.pgm
*        <path_to_at&t_faces>/orl_faces/s3/1.pgm
*        <path_to_at&t_faces>/orl_faces/s4/1.pgm
*        <path_to_at&t_faces>/orl_faces/s5/1.pgm
*        <path_to_at&t_faces>/orl_faces/s6/1.pgm
*        <path_to_at&t_faces>/orl_faces/s7/1.pgm
*        <path_to_at&t_faces>/orl_faces/s8/1.pgm
*        <path_to_at&t_faces>/orl_faces/s9/1.pgm
*        <path_to_at&t_faces>/orl_faces/s10/1.pgm
*        <path_to_at&t_faces>/orl_faces/s11/1.pgm
*        <path_to_at&t_faces>/orl_faces/s12/1.pgm
*        <path_to_at&t_faces>/orl_faces/s13/1.pgm
*        <path_to_at&t_faces>/orl_faces/s14/1.pgm
*        <path_to_at&t_faces>/orl_faces/s15/1.pgm
*
*/

#include <iostream>
#include <fstream>
#include <sstream>

#include <opencv2/core/core.hpp>
#include "opencv2/imgcodecs.hpp"
#include <opencv2/highgui/highgui.hpp>

using namespace cv;
using namespace std;

///////////////////////
// Functions
static void read_imgList(const string& filename, vector<Mat>& images) {
    std::ifstream file(filename.c_str(), ifstream::in);
    if (!file) {
        string error_message = "No valid input file was given, please check the given filename.";
        CV_Error(Error::StsBadArg, error_message);
    }
    string line;
    while (getline(file, line)) {
        images.push_back(imread(line, 0));
    }
}

static  Mat formatImagesForPCA(const vector<Mat> &data)
{
    Mat dst(static_cast<int>(data.size()), data[0].rows*data[0].cols, CV_32F);
    for(unsigned int i = 0; i < data.size(); i++)
    {
        Mat image_row = data[i].clone().reshape(1,1);
        Mat row_i = dst.row(i);
        image_row.convertTo(row_i,CV_32F);
    }
    return dst;
}

static Mat toGrayscale(InputArray _src) {
    Mat src = _src.getMat();
    // only allow one channel
    if(src.channels() != 1) {
        CV_Error(Error::StsBadArg, "Only Matrices with one channel are supported");
    }
    // create and return normalized image
    Mat dst;
    cv::normalize(_src, dst, 0, 255, NORM_MINMAX, CV_8UC1);
    return dst;
}

struct params
{
    Mat data;
    int ch;
    int rows;
    PCA pca;
    string winName;
};

static void onTrackbar(int pos, void* ptr)
{
    cout << "Retained Variance = " << pos << "%   ";
    cout << "re-calculating PCA..." << std::flush;

    double var = pos / 100.0;

    struct params *p = (struct params *)ptr;

    p->pca = PCA(p->data, cv::Mat(), PCA::DATA_AS_ROW, var);

    Mat point = p->pca.project(p->data.row(0));
    Mat reconstruction = p->pca.backProject(point);
    reconstruction = reconstruction.reshape(p->ch, p->rows);
    reconstruction = toGrayscale(reconstruction);

    imshow(p->winName, reconstruction);
    cout << "done!   # of principal components: " << p->pca.eigenvectors.rows << endl;
}


///////////////////////
// Main
int main(int argc, char** argv)
{
    cv::CommandLineParser parser(argc, argv, "{@input||image list}{help h||show help message}");
    if (parser.has("help"))
    {
        parser.printMessage();
        exit(0);
    }
    // Get the path to your CSV.
    string imgList = parser.get<string>("@input");
    if (imgList.empty())
    {
        parser.printMessage();
        exit(1);
    }

    // vector to hold the images
    vector<Mat> images;

    // Read in the data. This can fail if not valid
    try {
        read_imgList(imgList, images);
    } catch (cv::Exception& e) {
        cerr << "Error opening file \"" << imgList << "\". Reason: " << e.msg << endl;
        exit(1);
    }

    // Quit if there are not enough images for this demo.
    if(images.size() <= 1) {
        string error_message = "This demo needs at least 2 images to work. Please add more images to your data set!";
        CV_Error(Error::StsError, error_message);
    }

    // Reshape and stack images into a rowMatrix
    Mat data = formatImagesForPCA(images);

    // perform PCA
    PCA pca(data, cv::Mat(), PCA::DATA_AS_ROW, 0.95); // trackbar is initially set here, also this is a common value for retainedVariance

    // Demonstration of the effect of retainedVariance on the first image
    Mat point = pca.project(data.row(0)); // project into the eigenspace, thus the image becomes a "point"
    Mat reconstruction = pca.backProject(point); // re-create the image from the "point"
    reconstruction = reconstruction.reshape(images[0].channels(), images[0].rows); // reshape from a row vector into image shape
    reconstruction = toGrayscale(reconstruction); // re-scale for displaying purposes

    // init highgui window
    string winName = "Reconstruction | press 'q' to quit";
    namedWindow(winName, WINDOW_NORMAL);

    // params struct to pass to the trackbar handler
    params p;
    p.data = data;
    p.ch = images[0].channels();
    p.rows = images[0].rows;
    p.pca = pca;
    p.winName = winName;

    // create the tracbar
    int pos = 95;
    createTrackbar("Retained Variance (%)", winName, &pos, 100, onTrackbar, (void*)&p);

    // display until user presses q
    imshow(winName, reconstruction);

    int key = 0;
    while(key != 'q')
        key = waitKey();

   return 0;
}