selfsimilarity.cpp 9.64 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
// This is based on Rainer Lienhart contribution. Below is the original copyright:
//
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                University of Augsburg License Agreement
//                For Open Source MultiMedia Computing (MMC) Library
//
// Copyright (C) 2007, University of Augsburg, Germany, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of University of Augsburg, Germany may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the University of Augsburg, Germany or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
//   Author:    Rainer Lienhart
//              email: Rainer.Lienhart@informatik.uni-augsburg.de
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

// Please cite the following two papers:
// 1. Shechtman, E., Irani, M.:
//		Matching local self-similarities across images and videos.
// 		CVPR, (2007)
// 2. Eva Horster, Thomas Greif, Rainer Lienhart, Malcolm Slaney.
//		Comparing Local Feature Descriptors in pLSA-Based Image Models.
//		30th Annual Symposium of the German Association for
//      Pattern Recognition (DAGM) 2008, Munich, Germany, June 2008.

#include "precomp.hpp"

namespace cv
{

SelfSimDescriptor::SelfSimDescriptor()
{
    smallSize = DEFAULT_SMALL_SIZE;
    largeSize = DEFAULT_LARGE_SIZE;
    numberOfAngles = DEFAULT_NUM_ANGLES;
    startDistanceBucket = DEFAULT_START_DISTANCE_BUCKET;
    numberOfDistanceBuckets = DEFAULT_NUM_DISTANCE_BUCKETS;
}

SelfSimDescriptor::SelfSimDescriptor(int _ssize, int _lsize,
                                     int _startDistanceBucket,
                                     int _numberOfDistanceBuckets, int _numberOfAngles)
{
    smallSize = _ssize;
    largeSize = _lsize;
    startDistanceBucket = _startDistanceBucket;
    numberOfDistanceBuckets = _numberOfDistanceBuckets;
    numberOfAngles = _numberOfAngles;
}

SelfSimDescriptor::SelfSimDescriptor(const SelfSimDescriptor& ss)
{
    smallSize = ss.smallSize;
    largeSize = ss.largeSize;
    startDistanceBucket = ss.startDistanceBucket;
    numberOfDistanceBuckets = ss.numberOfDistanceBuckets;
    numberOfAngles = ss.numberOfAngles;
}

SelfSimDescriptor::~SelfSimDescriptor()
{
}

SelfSimDescriptor& SelfSimDescriptor::operator = (const SelfSimDescriptor& ss)
{
    if( this != &ss )
    {
        smallSize = ss.smallSize;
        largeSize = ss.largeSize;
        startDistanceBucket = ss.startDistanceBucket;
        numberOfDistanceBuckets = ss.numberOfDistanceBuckets;
        numberOfAngles = ss.numberOfAngles;
    }
    return *this;
}

size_t SelfSimDescriptor::getDescriptorSize() const
{
    return numberOfAngles*(numberOfDistanceBuckets - startDistanceBucket);
}

Size SelfSimDescriptor::getGridSize( Size imgSize, Size winStride ) const
{
    winStride.width = std::max(winStride.width, 1);
    winStride.height = std::max(winStride.height, 1);
    int border = largeSize/2 + smallSize/2;
    return Size(std::max(imgSize.width - border*2 + winStride.width - 1, 0)/winStride.width,
                std::max(imgSize.height - border*2 + winStride.height - 1, 0)/winStride.height);
}

// TODO: optimized with SSE2
void SelfSimDescriptor::SSD(const Mat& img, Point pt, Mat& ssd) const
{
    int x, y, dx, dy, r0 = largeSize/2, r1 = smallSize/2;
    int step = (int)img.step;
    for( y = -r0; y <= r0; y++ )
    {
        float* sptr = ssd.ptr<float>(y+r0) + r0;
        for( x = -r0; x <= r0; x++ )
        {
            int sum = 0;
            const uchar* src0 = img.ptr<uchar>(y + pt.y - r1) + x + pt.x;
            const uchar* src1 = img.ptr<uchar>(pt.y - r1) + pt.x;
            for( dy = -r1; dy <= r1; dy++, src0 += step, src1 += step )
                for( dx = -r1; dx <= r1; dx++ )
                {
                    int t = src0[dx] - src1[dx];
                    sum += t*t;
                }
            sptr[x] = (float)sum;
        }
    }
}


void SelfSimDescriptor::compute(const Mat& img, vector<float>& descriptors, Size winStride,
                                const vector<Point>& locations) const
{
    CV_Assert( img.depth() == CV_8U );

    winStride.width = std::max(winStride.width, 1);
    winStride.height = std::max(winStride.height, 1);
    Size gridSize = getGridSize(img.size(), winStride);
    int i, nwindows = locations.empty() ? gridSize.width*gridSize.height : (int)locations.size();
    int border = largeSize/2 + smallSize/2;
    int fsize = (int)getDescriptorSize();
    vector<float> tempFeature(fsize+1);
    descriptors.resize(fsize*nwindows + 1);
    Mat ssd(largeSize, largeSize, CV_32F), mappingMask;
    computeLogPolarMapping(mappingMask);

#if 0 //def _OPENMP
    int nthreads = cvGetNumThreads();
    #pragma omp parallel for num_threads(nthreads)
#endif
    for( i = 0; i < nwindows; i++ )
    {
        Point pt;
        float* feature0 = &descriptors[fsize*i];
        float* feature = &tempFeature[0];
        int x, y, j;

        if( !locations.empty() )
        {
            pt = locations[i];
            if( pt.x < border || pt.x >= img.cols - border ||
                pt.y < border || pt.y >= img.rows - border )
            {
                for( j = 0; j < fsize; j++ )
                    feature0[j] = 0.f;
                continue;
            }
        }
        else
            pt = Point((i % gridSize.width)*winStride.width + border,
                       (i / gridSize.width)*winStride.height + border);

        SSD(img, pt, ssd);

        // Determine in the local neighborhood the largest difference and use for normalization
        float var_noise = 1000.f;
        for( y = -1; y <= 1 ; y++ )
            for( x = -1 ; x <= 1 ; x++ )
                var_noise = std::max(var_noise, ssd.at<float>(largeSize/2+y, largeSize/2+x));

        for( j = 0; j <= fsize; j++ )
            feature[j] = FLT_MAX;

        // Derive feature vector before exp(-x) computation
        // Idea: for all  x,a >= 0, a=const.   we have:
        //       max [ exp( -x / a) ] = exp ( -min(x) / a )
        // Thus, determine min(ssd) and store in feature[...]
        for( y = 0; y < ssd.rows; y++ )
        {
            const schar *mappingMaskPtr = mappingMask.ptr<schar>(y);
            const float *ssdPtr = ssd.ptr<float>(y);
            for( x = 0 ; x < ssd.cols; x++ )
            {
                int index = mappingMaskPtr[x];
                feature[index] = std::min(feature[index], ssdPtr[x]);
            }
        }

        var_noise = -1.f/var_noise;
        for( j = 0; j < fsize; j++ )
            feature0[j] = feature[j]*var_noise;
        Mat _f(1, fsize, CV_32F, feature0);
        cv::exp(_f, _f);
    }
}

void SelfSimDescriptor::computeLogPolarMapping(Mat& mappingMask) const
{
    mappingMask.create(largeSize, largeSize, CV_8S);

    // What we want is
    //		 log_m (radius) = numberOfDistanceBuckets
    //	<==> log_10 (radius) / log_10 (m) = numberOfDistanceBuckets
    //	<==> log_10 (radius) / numberOfDistanceBuckets = log_10 (m)
    //	<==> m = 10 ^ log_10(m) = 10 ^ [log_10 (radius) / numberOfDistanceBuckets]
    //
    int radius = largeSize/2, angleBucketSize = 360 / numberOfAngles;
    int fsize = (int)getDescriptorSize();
    double inv_log10m = (double)numberOfDistanceBuckets/log10((double)radius);

    for (int y=-radius ; y<=radius ; y++)
    {
        schar* mrow = mappingMask.ptr<schar>(y+radius);
        for (int x=-radius ; x<=radius ; x++)
        {
            int index = fsize;
            float dist = (float)std::sqrt((float)x*x + (float)y*y);
            int distNo = dist > 0 ? cvRound(log10(dist)*inv_log10m) : 0;
            if( startDistanceBucket <= distNo && distNo < numberOfDistanceBuckets )
            {
                float angle = std::atan2( (float)y, (float)x ) / (float)CV_PI * 180.0f;
                if (angle < 0) angle += 360.0f;
                int angleInt = (cvRound(angle) + angleBucketSize/2) % 360;
                int angleIndex = angleInt / angleBucketSize;
                index = (distNo-startDistanceBucket)*numberOfAngles + angleIndex;
            }
            mrow[x + radius] = saturate_cast<schar>(index);
        }
    }
}

}