svmsgd.cpp 16.2 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Copyright (C) 2016, Itseez Inc, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"
#include "limits"

#include <iostream>

using std::cout;
using std::endl;

/****************************************************************************************\
*                        Stochastic Gradient Descent SVM Classifier                      *
\****************************************************************************************/

namespace cv
{
namespace ml
{

class SVMSGDImpl : public SVMSGD
{

public:
    SVMSGDImpl();

    virtual ~SVMSGDImpl() {}

    virtual bool train(const Ptr<TrainData>& data, int);

    virtual float predict( InputArray samples, OutputArray results=noArray(), int flags = 0 ) const;

    virtual bool isClassifier() const;

    virtual bool isTrained() const;

    virtual void clear();

    virtual void write(FileStorage &fs) const;

    virtual void read(const FileNode &fn);

    virtual Mat getWeights(){ return weights_; }

    virtual float getShift(){ return shift_; }

    virtual int getVarCount() const { return weights_.cols; }

    virtual String getDefaultName() const {return "opencv_ml_svmsgd";}

    virtual void setOptimalParameters(int svmsgdType = ASGD, int marginType = SOFT_MARGIN);

    CV_IMPL_PROPERTY(int, SvmsgdType, params.svmsgdType)
    CV_IMPL_PROPERTY(int, MarginType, params.marginType)
    CV_IMPL_PROPERTY(float, MarginRegularization, params.marginRegularization)
    CV_IMPL_PROPERTY(float, InitialStepSize, params.initialStepSize)
    CV_IMPL_PROPERTY(float, StepDecreasingPower, params.stepDecreasingPower)
    CV_IMPL_PROPERTY_S(cv::TermCriteria, TermCriteria, params.termCrit)

private:
    void updateWeights(InputArray sample, bool positive, float stepSize, Mat &weights);

    void writeParams( FileStorage &fs ) const;

    void readParams( const FileNode &fn );

    static inline bool isPositive(float val) { return val > 0; }

    static void normalizeSamples(Mat &matrix, Mat &average, float &multiplier);

    float calcShift(InputArray _samples, InputArray _responses) const;

    static void makeExtendedTrainSamples(const Mat &trainSamples, Mat &extendedTrainSamples, Mat &average, float &multiplier);

    // Vector with SVM weights
    Mat weights_;
    float shift_;

    // Parameters for learning
    struct SVMSGDParams
    {
        float marginRegularization;
        float initialStepSize;
        float stepDecreasingPower;
        TermCriteria termCrit;
        int svmsgdType;
        int marginType;
    };

    SVMSGDParams params;
};

Ptr<SVMSGD> SVMSGD::create()
{
    return makePtr<SVMSGDImpl>();
}

Ptr<SVMSGD> SVMSGD::load(const String& filepath, const String& nodeName)
{
    return Algorithm::load<SVMSGD>(filepath, nodeName);
}


void SVMSGDImpl::normalizeSamples(Mat &samples, Mat &average, float &multiplier)
{
    int featuresCount = samples.cols;
    int samplesCount = samples.rows;

    average = Mat(1, featuresCount, samples.type());
    CV_Assert(average.type() ==  CV_32FC1);
    for (int featureIndex = 0; featureIndex < featuresCount; featureIndex++)
    {
        average.at<float>(featureIndex) = static_cast<float>(mean(samples.col(featureIndex))[0]);
    }

    for (int sampleIndex = 0; sampleIndex < samplesCount; sampleIndex++)
    {
        samples.row(sampleIndex) -= average;
    }

    double normValue = norm(samples);

    multiplier = static_cast<float>(sqrt(static_cast<double>(samples.total())) / normValue);

    samples *= multiplier;
}

void SVMSGDImpl::makeExtendedTrainSamples(const Mat &trainSamples, Mat &extendedTrainSamples, Mat &average, float &multiplier)
{
    Mat normalizedTrainSamples = trainSamples.clone();
    int samplesCount = normalizedTrainSamples.rows;

    normalizeSamples(normalizedTrainSamples, average, multiplier);

    Mat onesCol = Mat::ones(samplesCount, 1, CV_32F);
    cv::hconcat(normalizedTrainSamples, onesCol, extendedTrainSamples);
}

void SVMSGDImpl::updateWeights(InputArray _sample, bool positive, float stepSize, Mat& weights)
{
    Mat sample = _sample.getMat();

    int response = positive ? 1 : -1; // ensure that trainResponses are -1 or 1

    if ( sample.dot(weights) * response > 1)
    {
        // Not a support vector, only apply weight decay
        weights *= (1.f - stepSize * params.marginRegularization);
    }
    else
    {
        // It's a support vector, add it to the weights
        weights -= (stepSize * params.marginRegularization) * weights - (stepSize * response) * sample;
    }
}

float SVMSGDImpl::calcShift(InputArray _samples, InputArray _responses) const
{
    float margin[2] = { std::numeric_limits<float>::max(), std::numeric_limits<float>::max() };

    Mat trainSamples = _samples.getMat();
    int trainSamplesCount = trainSamples.rows;

    Mat trainResponses = _responses.getMat();

    CV_Assert(trainResponses.type() ==  CV_32FC1);
    for (int samplesIndex = 0; samplesIndex < trainSamplesCount; samplesIndex++)
    {
        Mat currentSample = trainSamples.row(samplesIndex);
        float dotProduct = static_cast<float>(currentSample.dot(weights_));

        bool positive = isPositive(trainResponses.at<float>(samplesIndex));
        int index = positive ? 0 : 1;
        float signToMul = positive ? 1.f : -1.f;
        float curMargin = dotProduct * signToMul;

        if (curMargin < margin[index])
        {
            margin[index] = curMargin;
        }
    }

    return -(margin[0] - margin[1]) / 2.f;
}

bool SVMSGDImpl::train(const Ptr<TrainData>& data, int)
{
    clear();
    CV_Assert( isClassifier() );   //toDo: consider

    Mat trainSamples = data->getTrainSamples();

    int featureCount = trainSamples.cols;
    Mat trainResponses = data->getTrainResponses();        // (trainSamplesCount x 1) matrix

    CV_Assert(trainResponses.rows == trainSamples.rows);

    if (trainResponses.empty())
    {
        return false;
    }

    int positiveCount = countNonZero(trainResponses >= 0);
    int negativeCount = countNonZero(trainResponses < 0);

    if ( positiveCount <= 0 || negativeCount <= 0 )
    {
        weights_ = Mat::zeros(1, featureCount, CV_32F);
        shift_ = (positiveCount > 0) ? 1.f : -1.f;
        return true;
    }

    Mat extendedTrainSamples;
    Mat average;
    float multiplier = 0;
    makeExtendedTrainSamples(trainSamples, extendedTrainSamples, average, multiplier);

    int extendedTrainSamplesCount = extendedTrainSamples.rows;
    int extendedFeatureCount = extendedTrainSamples.cols;

    Mat extendedWeights = Mat::zeros(1, extendedFeatureCount, CV_32F);
    Mat previousWeights = Mat::zeros(1, extendedFeatureCount, CV_32F);
    Mat averageExtendedWeights;
    if (params.svmsgdType == ASGD)
    {
        averageExtendedWeights = Mat::zeros(1, extendedFeatureCount, CV_32F);
    }

    RNG rng(0);

    CV_Assert (params.termCrit.type & TermCriteria::COUNT || params.termCrit.type & TermCriteria::EPS);
    int maxCount = (params.termCrit.type & TermCriteria::COUNT) ? params.termCrit.maxCount : INT_MAX;
    double epsilon = (params.termCrit.type & TermCriteria::EPS) ? params.termCrit.epsilon : 0;

    double err = DBL_MAX;
    CV_Assert (trainResponses.type() == CV_32FC1);
    // Stochastic gradient descent SVM
    for (int iter = 0; (iter < maxCount) && (err > epsilon); iter++)
    {
        int randomNumber = rng.uniform(0, extendedTrainSamplesCount);             //generate sample number

        Mat currentSample = extendedTrainSamples.row(randomNumber);

        float stepSize = params.initialStepSize * std::pow((1 + params.marginRegularization * params.initialStepSize * (float)iter), (-params.stepDecreasingPower));    //update stepSize

        updateWeights( currentSample, isPositive(trainResponses.at<float>(randomNumber)), stepSize, extendedWeights );

        //average weights (only for ASGD model)
        if (params.svmsgdType == ASGD)
        {
            averageExtendedWeights = ((float)iter/ (1 + (float)iter)) * averageExtendedWeights  + extendedWeights / (1 + (float) iter);
            err = norm(averageExtendedWeights - previousWeights);
            averageExtendedWeights.copyTo(previousWeights);
        }
        else
        {
            err = norm(extendedWeights - previousWeights);
            extendedWeights.copyTo(previousWeights);
        }
    }

    if (params.svmsgdType == ASGD)
    {
        extendedWeights = averageExtendedWeights;
    }

    Rect roi(0, 0, featureCount, 1);
    weights_ = extendedWeights(roi);
    weights_ *= multiplier;

    CV_Assert((params.marginType == SOFT_MARGIN || params.marginType == HARD_MARGIN) && (extendedWeights.type() ==  CV_32FC1));

    if (params.marginType == SOFT_MARGIN)
    {
        shift_ = extendedWeights.at<float>(featureCount) - static_cast<float>(weights_.dot(average));
    }
    else
    {
        shift_ = calcShift(trainSamples, trainResponses);
    }

    return true;
}

float SVMSGDImpl::predict( InputArray _samples, OutputArray _results, int ) const
{
    float result = 0;
    cv::Mat samples = _samples.getMat();
    int nSamples = samples.rows;
    cv::Mat results;

    CV_Assert( samples.cols == weights_.cols && samples.type() == CV_32FC1);

    if( _results.needed() )
    {
        _results.create( nSamples, 1, samples.type() );
        results = _results.getMat();
    }
    else
    {
        CV_Assert( nSamples == 1 );
        results = Mat(1, 1, CV_32FC1, &result);
    }

    for (int sampleIndex = 0; sampleIndex < nSamples; sampleIndex++)
    {
        Mat currentSample = samples.row(sampleIndex);
        float criterion = static_cast<float>(currentSample.dot(weights_)) + shift_;
        results.at<float>(sampleIndex) = (criterion >= 0) ? 1.f : -1.f;
    }

    return result;
}

bool SVMSGDImpl::isClassifier() const
{
    return (params.svmsgdType == SGD || params.svmsgdType == ASGD)
            &&
            (params.marginType == SOFT_MARGIN || params.marginType == HARD_MARGIN)
            &&
            (params.marginRegularization > 0) && (params.initialStepSize > 0) && (params.stepDecreasingPower >= 0);
}

bool SVMSGDImpl::isTrained() const
{
    return !weights_.empty();
}

void SVMSGDImpl::write(FileStorage& fs) const
{
    if( !isTrained() )
        CV_Error( CV_StsParseError, "SVMSGD model data is invalid, it hasn't been trained" );

    writeFormat(fs);
    writeParams( fs );

    fs << "weights" << weights_;
    fs << "shift" << shift_;
}

void SVMSGDImpl::writeParams( FileStorage& fs ) const
{
    String SvmsgdTypeStr;

    switch (params.svmsgdType)
    {
    case SGD:
        SvmsgdTypeStr = "SGD";
        break;
    case ASGD:
        SvmsgdTypeStr = "ASGD";
        break;
    default:
        SvmsgdTypeStr = format("Unknown_%d", params.svmsgdType);
    }

    fs << "svmsgdType" << SvmsgdTypeStr;

    String marginTypeStr;

    switch (params.marginType)
    {
    case SOFT_MARGIN:
        marginTypeStr = "SOFT_MARGIN";
        break;
    case HARD_MARGIN:
        marginTypeStr = "HARD_MARGIN";
        break;
    default:
        marginTypeStr = format("Unknown_%d", params.marginType);
    }

    fs << "marginType" << marginTypeStr;

    fs << "marginRegularization" << params.marginRegularization;
    fs << "initialStepSize" << params.initialStepSize;
    fs << "stepDecreasingPower" << params.stepDecreasingPower;

    fs << "term_criteria" << "{:";
    if( params.termCrit.type & TermCriteria::EPS )
        fs << "epsilon" << params.termCrit.epsilon;
    if( params.termCrit.type & TermCriteria::COUNT )
        fs << "iterations" << params.termCrit.maxCount;
    fs << "}";
}
void SVMSGDImpl::readParams( const FileNode& fn )
{
    String svmsgdTypeStr = (String)fn["svmsgdType"];
    int svmsgdType =
            svmsgdTypeStr == "SGD" ? SGD :
                                     svmsgdTypeStr == "ASGD" ? ASGD : -1;

    if( svmsgdType < 0 )
        CV_Error( CV_StsParseError, "Missing or invalid SVMSGD type" );

    params.svmsgdType = svmsgdType;

    String marginTypeStr = (String)fn["marginType"];
    int marginType =
            marginTypeStr == "SOFT_MARGIN" ? SOFT_MARGIN :
                                             marginTypeStr == "HARD_MARGIN" ? HARD_MARGIN : -1;

    if( marginType < 0 )
        CV_Error( CV_StsParseError, "Missing or invalid margin type" );

    params.marginType = marginType;

    CV_Assert ( fn["marginRegularization"].isReal() );
    params.marginRegularization = (float)fn["marginRegularization"];

    CV_Assert ( fn["initialStepSize"].isReal() );
    params.initialStepSize = (float)fn["initialStepSize"];

    CV_Assert ( fn["stepDecreasingPower"].isReal() );
    params.stepDecreasingPower = (float)fn["stepDecreasingPower"];

    FileNode tcnode = fn["term_criteria"];
    CV_Assert(!tcnode.empty());
    params.termCrit.epsilon = (double)tcnode["epsilon"];
    params.termCrit.maxCount = (int)tcnode["iterations"];
    params.termCrit.type = (params.termCrit.epsilon > 0 ? TermCriteria::EPS : 0) +
            (params.termCrit.maxCount > 0 ? TermCriteria::COUNT : 0);
    CV_Assert ((params.termCrit.type & TermCriteria::COUNT || params.termCrit.type & TermCriteria::EPS));
}

void SVMSGDImpl::read(const FileNode& fn)
{
    clear();

    readParams(fn);

    fn["weights"] >> weights_;
    fn["shift"] >> shift_;
}

void SVMSGDImpl::clear()
{
    weights_.release();
    shift_ = 0;
}


SVMSGDImpl::SVMSGDImpl()
{
    clear();
    setOptimalParameters();
}

void SVMSGDImpl::setOptimalParameters(int svmsgdType, int marginType)
{
    switch (svmsgdType)
    {
    case SGD:
        params.svmsgdType = SGD;
        params.marginType = (marginType == SOFT_MARGIN) ? SOFT_MARGIN :
                                                          (marginType == HARD_MARGIN) ? HARD_MARGIN : -1;
        params.marginRegularization = 0.0001f;
        params.initialStepSize = 0.05f;
        params.stepDecreasingPower = 1.f;
        params.termCrit = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100000, 0.00001);
        break;

    case ASGD:
        params.svmsgdType = ASGD;
        params.marginType = (marginType == SOFT_MARGIN) ? SOFT_MARGIN :
                                                          (marginType == HARD_MARGIN) ? HARD_MARGIN : -1;
        params.marginRegularization = 0.00001f;
        params.initialStepSize = 0.05f;
        params.stepDecreasingPower = 0.75f;
        params.termCrit = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100000, 0.00001);
        break;

    default:
        CV_Error( CV_StsParseError, "SVMSGD model data is invalid" );
    }
}
}   //ml
}   //cv