test_denoising.cpp 4.34 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.

// Copyright (C) 2014, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.

#include "../test_precomp.hpp"
#include "opencv2/ts/ocl_test.hpp"

#ifdef HAVE_OPENCL

namespace cvtest {
namespace ocl {

PARAM_TEST_CASE(FastNlMeansDenoisingTestBase, Channels, int, bool, bool)
{
    int cn, normType, templateWindowSize, searchWindowSize;
    std::vector<float> h;
    bool use_roi, use_image;

    TEST_DECLARE_INPUT_PARAMETER(src);
    TEST_DECLARE_OUTPUT_PARAMETER(dst);

    virtual void SetUp()
    {
        cn = GET_PARAM(0);
        normType = GET_PARAM(1);
        use_roi = GET_PARAM(2);
        use_image = GET_PARAM(3);

        templateWindowSize = 7;
        searchWindowSize = 21;

        h.resize(cn);
        for (int i=0; i<cn; i++)
            h[i] = 3.0f + 0.5f*i;
    }

a  
Kai Westerkamp committed
40
    virtual void generateTestData()
wester committed
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
    {
        const int type = CV_8UC(cn);
        Mat image;

        if (use_image) {
            image = readImage("denoising/lena_noised_gaussian_sigma=10.png",
                                  cn == 1 ? IMREAD_GRAYSCALE : IMREAD_COLOR);
            ASSERT_FALSE(image.empty());
        }

        Size roiSize = use_image ? image.size() : randomSize(1, MAX_VALUE);
        Border srcBorder = randomBorder(0, use_roi ? MAX_VALUE : 0);
        randomSubMat(src, src_roi, roiSize, srcBorder, type, 0, 255);
        if (use_image) {
            ASSERT_TRUE(cn > 0 && cn <= 4);
            if (cn == 2) {
                int from_to[] = { 0,0, 1,1 };
                src_roi.create(roiSize, type);
                mixChannels(&image, 1, &src_roi, 1, from_to, 2);
            }
            else if (cn == 4) {
                int from_to[] = { 0,0, 1,1, 2,2, 1,3};
                src_roi.create(roiSize, type);
                mixChannels(&image, 1, &src_roi, 1, from_to, 4);
            }
            else image.copyTo(src_roi);
        }

        Border dstBorder = randomBorder(0, use_roi ? MAX_VALUE : 0);
        randomSubMat(dst, dst_roi, roiSize, dstBorder, type, 0, 255);

        UMAT_UPLOAD_INPUT_PARAMETER(src);
        UMAT_UPLOAD_OUTPUT_PARAMETER(dst);
    }
};

typedef FastNlMeansDenoisingTestBase FastNlMeansDenoising;

OCL_TEST_P(FastNlMeansDenoising, Mat)
{
    for (int j = 0; j < test_loop_times; j++)
    {
        generateTestData();

        OCL_OFF(cv::fastNlMeansDenoising(src_roi, dst_roi, std::vector<float>(1, h[0]), templateWindowSize, searchWindowSize, normType));
        OCL_ON(cv::fastNlMeansDenoising(usrc_roi, udst_roi, std::vector<float>(1, h[0]), templateWindowSize, searchWindowSize, normType));

        OCL_EXPECT_MATS_NEAR(dst, 1);
    }
}

typedef FastNlMeansDenoisingTestBase FastNlMeansDenoising_hsep;

OCL_TEST_P(FastNlMeansDenoising_hsep, Mat)
{
    for (int j = 0; j < test_loop_times; j++)
    {
        generateTestData();

        OCL_OFF(cv::fastNlMeansDenoising(src_roi, dst_roi, h, templateWindowSize, searchWindowSize, normType));
        OCL_ON(cv::fastNlMeansDenoising(usrc_roi, udst_roi, h, templateWindowSize, searchWindowSize, normType));

        OCL_EXPECT_MATS_NEAR(dst, 1);
    }
}

typedef FastNlMeansDenoisingTestBase FastNlMeansDenoisingColored;

OCL_TEST_P(FastNlMeansDenoisingColored, Mat)
{
    for (int j = 0; j < test_loop_times; j++)
    {
        generateTestData();

        OCL_OFF(cv::fastNlMeansDenoisingColored(src_roi, dst_roi, h[0], h[0], templateWindowSize, searchWindowSize));
        OCL_ON(cv::fastNlMeansDenoisingColored(usrc_roi, udst_roi, h[0], h[0], templateWindowSize, searchWindowSize));

        OCL_EXPECT_MATS_NEAR(dst, 1);
    }
}

OCL_INSTANTIATE_TEST_CASE_P(Photo, FastNlMeansDenoising,
                            Combine(Values(1, 2, 3, 4), Values((int)NORM_L2, (int)NORM_L1),
                                    Bool(), Values(true)));
OCL_INSTANTIATE_TEST_CASE_P(Photo, FastNlMeansDenoising_hsep,
                            Combine(Values(1, 2, 3, 4), Values((int)NORM_L2, (int)NORM_L1),
                                    Bool(), Values(true)));
OCL_INSTANTIATE_TEST_CASE_P(Photo, FastNlMeansDenoisingColored,
                            Combine(Values(3, 4), Values((int)NORM_L2), Bool(), Values(false)));

} } // namespace cvtest::ocl

#endif // HAVE_OPENCL