test2.py 3.72 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
#!/usr/bin/env python

import unittest
import random
import urllib2
import hashlib
import numpy as np
import cv2
import cv2.cv as cv

from tests_common import NewOpenCVTests

# Tests to run first; check the handful of basic operations that the later tests rely on

class Hackathon244Tests(NewOpenCVTests):

    def test_int_array(self):
        a = np.array([-1, 2, -3, 4, -5])
        absa0 = np.abs(a)
        self.assert_(cv2.norm(a, cv2.NORM_L1) == 15)
        absa1 = cv2.absdiff(a, 0)
        self.assertEqual(cv2.norm(absa1, absa0, cv2.NORM_INF), 0)

    def test_imencode(self):
        a = np.zeros((480, 640), dtype=np.uint8)
        flag, ajpg = cv2.imencode("img_q90.jpg", a, [cv2.IMWRITE_JPEG_QUALITY, 90])
        self.assertEqual(flag, True)
        self.assertEqual(ajpg.dtype, np.uint8)
        self.assertGreater(ajpg.shape[0], 1)
        self.assertEqual(ajpg.shape[1], 1)

    def test_projectPoints(self):
        objpt = np.float64([[1,2,3]])
        imgpt0, jac0 = cv2.projectPoints(objpt, np.zeros(3), np.zeros(3), np.eye(3), np.float64([]))
        imgpt1, jac1 = cv2.projectPoints(objpt, np.zeros(3), np.zeros(3), np.eye(3), None)
        self.assertEqual(imgpt0.shape, (objpt.shape[0], 1, 2))
        self.assertEqual(imgpt1.shape, imgpt0.shape)
        self.assertEqual(jac0.shape, jac1.shape)
        self.assertEqual(jac0.shape[0], 2*objpt.shape[0])

    def test_estimateAffine3D(self):
        pattern_size = (11, 8)
        pattern_points = np.zeros((np.prod(pattern_size), 3), np.float32)
        pattern_points[:,:2] = np.indices(pattern_size).T.reshape(-1, 2)
        pattern_points *= 10
        (retval, out, inliers) = cv2.estimateAffine3D(pattern_points, pattern_points)
        self.assertEqual(retval, 1)
        if cv2.norm(out[2,:]) < 1e-3:
            out[2,2]=1
        self.assertLess(cv2.norm(out, np.float64([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0]])), 1e-3)
        self.assertEqual(cv2.countNonZero(inliers), pattern_size[0]*pattern_size[1])

    def test_fast(self):
        fd = cv2.FastFeatureDetector(30, True)
        img = self.get_sample("samples/cpp/right02.jpg", 0)
        img = cv2.medianBlur(img, 3)
        imgc = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
        keypoints = fd.detect(img)
        self.assert_(600 <= len(keypoints) <= 700)
        for kpt in keypoints:
            self.assertNotEqual(kpt.response, 0)

    def check_close_angles(self, a, b, angle_delta):
        self.assert_(abs(a - b) <= angle_delta or
                     abs(360 - abs(a - b)) <= angle_delta)

    def check_close_pairs(self, a, b, delta):
        self.assertLessEqual(abs(a[0] - b[0]), delta)
        self.assertLessEqual(abs(a[1] - b[1]), delta)

    def check_close_boxes(self, a, b, delta, angle_delta):
        self.check_close_pairs(a[0], b[0], delta)
        self.check_close_pairs(a[1], b[1], delta)
        self.check_close_angles(a[2], b[2], angle_delta)

    def test_geometry(self):
        npt = 100
        np.random.seed(244)
        a = np.random.randn(npt,2).astype('float32')*50 + 150

        img = np.zeros((300, 300, 3), dtype='uint8')
        be = cv2.fitEllipse(a)
        br = cv2.minAreaRect(a)
        mc, mr = cv2.minEnclosingCircle(a)

        be0 = ((150.2511749267578, 150.77322387695312), (158.024658203125, 197.57696533203125), 37.57804489135742)
        br0 = ((161.2974090576172, 154.41793823242188), (199.2301483154297, 207.7177734375), -9.164555549621582)
        mc0, mr0 = (160.41790771484375, 144.55152893066406), 136.713500977

        self.check_close_boxes(be, be0, 5, 15)
        self.check_close_boxes(br, br0, 5, 15)
        self.check_close_pairs(mc, mc0, 5)
        self.assertLessEqual(abs(mr - mr0), 5)

if __name__ == '__main__':
    print "testing", cv2.__version__
    random.seed(0)
    unittest.main()