hmm.cpp 51.4 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                        Intel License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

#define LN2PI 1.837877f
#define BIG_FLT 1.e+10f


#define _CV_ERGODIC 1
#define _CV_CAUSAL 2

#define _CV_LAST_STATE 1
#define _CV_BEST_STATE 2


//*F///////////////////////////////////////////////////////////////////////////////////////
//    Name: _cvCreateObsInfo
//    Purpose: The function allocates memory for CvImgObsInfo structure
//             and its inner stuff
//    Context:
//    Parameters: obs_info - addres of pointer to CvImgObsInfo structure
//                num_hor_obs - number of horizontal observation vectors
//                num_ver_obs - number of horizontal observation vectors
//                obs_size - length of observation vector
//
//    Returns: error status
//
//    Notes:
//F*/
static CvStatus CV_STDCALL icvCreateObsInfo(  CvImgObsInfo** obs_info,
                                           CvSize num_obs, int obs_size )
{
    int total = num_obs.height * num_obs.width;

    CvImgObsInfo* obs = (CvImgObsInfo*)cvAlloc( sizeof( CvImgObsInfo) );

    obs->obs_x = num_obs.width;
    obs->obs_y = num_obs.height;

    obs->obs = (float*)cvAlloc( total * obs_size * sizeof(float) );

    obs->state = (int*)cvAlloc( 2 * total * sizeof(int) );
    obs->mix = (int*)cvAlloc( total * sizeof(int) );

    obs->obs_size = obs_size;

    obs_info[0] = obs;

    return CV_NO_ERR;
}

static CvStatus CV_STDCALL icvReleaseObsInfo( CvImgObsInfo** p_obs_info )
{
    CvImgObsInfo* obs_info = p_obs_info[0];

    cvFree( &(obs_info->obs) );
    cvFree( &(obs_info->mix) );
    cvFree( &(obs_info->state) );
    cvFree( &(obs_info) );

    p_obs_info[0] = NULL;

    return CV_NO_ERR;
}


//*F///////////////////////////////////////////////////////////////////////////////////////
//    Name: icvCreate2DHMM
//    Purpose: The function allocates memory for 2-dimensional embedded HMM model
//             and its inner stuff
//    Context:
//    Parameters: hmm - addres of pointer to CvEHMM structure
//                state_number - array of hmm sizes (size of array == state_number[0]+1 )
//                num_mix - number of gaussian mixtures in low-level HMM states
//                          size of array is defined by previous array values
//                obs_size - length of observation vectors
//
//    Returns: error status
//
//    Notes: state_number[0] - number of states in external HMM.
//           state_number[i] - number of states in embedded HMM
//
//           example for face recognition: state_number = { 5 3 6 6 6 3 },
//                                         length of num_mix array = 3+6+6+6+3 = 24//
//
//F*/
static CvStatus CV_STDCALL icvCreate2DHMM( CvEHMM** this_hmm,
                                         int* state_number, int* num_mix, int obs_size )
{
    int i;
    int real_states = 0;

    CvEHMMState* all_states;
    CvEHMM* hmm;
    int total_mix = 0;
    float* pointers;

    //compute total number of states of all level in 2d EHMM
    for( i = 1; i <= state_number[0]; i++ )
    {
        real_states += state_number[i];
    }

    /* allocate memory for all hmms (from all levels) */
    hmm = (CvEHMM*)cvAlloc( (state_number[0] + 1) * sizeof(CvEHMM) );

    /* set number of superstates */
    hmm[0].num_states = state_number[0];
    hmm[0].level = 1;

    /* allocate memory for all states */
    all_states = (CvEHMMState *)cvAlloc( real_states * sizeof( CvEHMMState ) );

    /* assign number of mixtures */
    for( i = 0; i < real_states; i++ )
    {
        all_states[i].num_mix = num_mix[i];
    }

    /* compute size of inner of all real states */
    for( i = 0; i < real_states; i++ )
    {
        total_mix += num_mix[i];
    }
    /* allocate memory for states stuff */
    pointers = (float*)cvAlloc( total_mix * (2/*for mu invvar */ * obs_size +
                                 2/*for weight and log_var_val*/ ) * sizeof( float) );

    /* organize memory */
    for( i = 0; i < real_states; i++ )
    {
        all_states[i].mu      = pointers; pointers += num_mix[i] * obs_size;
        all_states[i].inv_var = pointers; pointers += num_mix[i] * obs_size;

        all_states[i].log_var_val = pointers; pointers += num_mix[i];
        all_states[i].weight      = pointers; pointers += num_mix[i];
    }

    /* set pointer to embedded hmm array */
    hmm->u.ehmm = hmm + 1;

    for( i = 0; i < hmm[0].num_states; i++ )
    {
        hmm[i+1].u.state = all_states;
        all_states += state_number[i+1];
        hmm[i+1].num_states = state_number[i+1];
    }

    for( i = 0; i <= state_number[0]; i++ )
    {
        hmm[i].transP = icvCreateMatrix_32f( hmm[i].num_states, hmm[i].num_states );
        hmm[i].obsProb = NULL;
        hmm[i].level = i ? 0 : 1;
    }

    /* if all ok - return pointer */
    *this_hmm = hmm;
    return CV_NO_ERR;
}

static CvStatus CV_STDCALL icvRelease2DHMM( CvEHMM** phmm )
{
    CvEHMM* hmm = phmm[0];
    int i;
    for( i = 0; i < hmm[0].num_states + 1; i++ )
    {
        icvDeleteMatrix( hmm[i].transP );
    }

    if (hmm->obsProb != NULL)
    {
        int* tmp = ((int*)(hmm->obsProb)) - 3;
        cvFree( &(tmp)  );
    }

    cvFree( &(hmm->u.ehmm->u.state->mu) );
    cvFree( &(hmm->u.ehmm->u.state) );


    /* free hmm structures */
    cvFree( phmm );

    phmm[0] = NULL;

    return CV_NO_ERR;
}

/* distance between 2 vectors */
static float icvSquareDistance( CvVect32f v1, CvVect32f v2, int len )
{
    int i;
    double dist0 = 0;
    double dist1 = 0;

    for( i = 0; i <= len - 4; i += 4 )
    {
        double t0 = v1[i] - v2[i];
        double t1 = v1[i+1] - v2[i+1];
        dist0 += t0*t0;
        dist1 += t1*t1;

        t0 = v1[i+2] - v2[i+2];
        t1 = v1[i+3] - v2[i+3];
        dist0 += t0*t0;
        dist1 += t1*t1;
    }

    for( ; i < len; i++ )
    {
        double t0 = v1[i] - v2[i];
        dist0 += t0*t0;
    }

    return (float)(dist0 + dist1);
}

/*can be used in CHMM & DHMM */
static CvStatus CV_STDCALL
icvUniformImgSegm(  CvImgObsInfo* obs_info, CvEHMM* hmm )
{
#if 1
    /* implementation is very bad */
    int  i, j, counter = 0;
    CvEHMMState* first_state;
    float inv_x = 1.f/obs_info->obs_x;
    float inv_y = 1.f/obs_info->obs_y;

    /* check arguments */
    if ( !obs_info || !hmm ) return CV_NULLPTR_ERR;

    first_state = hmm->u.ehmm->u.state;

    for (i = 0; i < obs_info->obs_y; i++)
    {
        //bad line (division )
        int superstate = (int)((i * hmm->num_states)*inv_y);/* /obs_info->obs_y; */

        int index = (int)(hmm->u.ehmm[superstate].u.state - first_state);

        for (j = 0; j < obs_info->obs_x; j++, counter++)
        {
            int state = (int)((j * hmm->u.ehmm[superstate].num_states)* inv_x); /* / obs_info->obs_x; */

            obs_info->state[2 * counter] = superstate;
            obs_info->state[2 * counter + 1] = state + index;
        }
    }
#else
    //this is not ready yet

    int i,j,k,m;
    CvEHMMState* first_state = hmm->u.ehmm->u.state;

    /* check bad arguments */
    if ( hmm->num_states > obs_info->obs_y ) return CV_BADSIZE_ERR;

    //compute vertical subdivision
    float row_per_state = (float)obs_info->obs_y / hmm->num_states;
    float col_per_state[1024]; /* maximum 1024 superstates */

    //for every horizontal band compute subdivision
    for( i = 0; i < hmm->num_states; i++ )
    {
        CvEHMM* ehmm = &(hmm->u.ehmm[i]);
        col_per_state[i] = (float)obs_info->obs_x / ehmm->num_states;
    }

    //compute state bounds
    int ss_bound[1024];
    for( i = 0; i < hmm->num_states - 1; i++ )
    {
        ss_bound[i] = floor( row_per_state * ( i+1 ) );
    }
    ss_bound[hmm->num_states - 1] = obs_info->obs_y;

    //work inside every superstate

    int row = 0;

    for( i = 0; i < hmm->num_states; i++ )
    {
        CvEHMM* ehmm = &(hmm->u.ehmm[i]);
        int index = ehmm->u.state - first_state;

        //calc distribution in superstate
        int es_bound[1024];
        for( j = 0; j < ehmm->num_states - 1; j++ )
        {
            es_bound[j] = floor( col_per_state[i] * ( j+1 ) );
        }
        es_bound[ehmm->num_states - 1] = obs_info->obs_x;

        //assign states to first row of superstate
        int col = 0;
        for( j = 0; j < ehmm->num_states; j++ )
        {
            for( k = col; k < es_bound[j]; k++, col++ )
            {
                obs_info->state[row * obs_info->obs_x + 2 * k] = i;
                obs_info->state[row * obs_info->obs_x + 2 * k + 1] = j + index;
            }
            col = es_bound[j];
        }

        //copy the same to other rows of superstate
        for( m = row; m < ss_bound[i]; m++ )
        {
            memcpy( &(obs_info->state[m * obs_info->obs_x * 2]),
                    &(obs_info->state[row * obs_info->obs_x * 2]), obs_info->obs_x * 2 * sizeof(int) );
        }

        row = ss_bound[i];
    }

#endif

    return CV_NO_ERR;
}


/*F///////////////////////////////////////////////////////////////////////////////////////
//    Name: InitMixSegm
//    Purpose: The function implements the mixture segmentation of the states of the
//             embedded HMM
//    Context: used with the Viterbi training of the embedded HMM
//             Function uses K-Means algorithm for clustering
//
//    Parameters:  obs_info_array - array of pointers to image observations
//                 num_img - length of above array
//                 hmm - pointer to HMM structure
//
//    Returns: error status
//
//    Notes:
//F*/
static CvStatus CV_STDCALL
icvInitMixSegm( CvImgObsInfo** obs_info_array, int num_img, CvEHMM* hmm )
{
    int  k, i, j;
    int* num_samples; /* number of observations in every state */
    int* counter;     /* array of counters for every state */

    int**  a_class;   /* for every state - characteristic array */

    CvVect32f** samples; /* for every state - pointer to observation vectors */
    int***  samples_mix;   /* for every state - array of pointers to vectors mixtures */

    CvTermCriteria criteria = cvTermCriteria( CV_TERMCRIT_EPS|CV_TERMCRIT_ITER,
                                              1000,    /* iter */
                                              0.01f ); /* eps  */

    int total = 0;

    CvEHMMState* first_state = hmm->u.ehmm->u.state;

    for( i = 0 ; i < hmm->num_states; i++ )
    {
        total += hmm->u.ehmm[i].num_states;
    }

    /* for every state integer is allocated - number of vectors in state */
    num_samples = (int*)cvAlloc( total * sizeof(int) );

    /* integer counter is allocated for every state */
    counter = (int*)cvAlloc( total * sizeof(int) );

    samples = (CvVect32f**)cvAlloc( total * sizeof(CvVect32f*) );
    samples_mix = (int***)cvAlloc( total * sizeof(int**) );

    /* clear */
    memset( num_samples, 0 , total*sizeof(int) );
    memset( counter, 0 , total*sizeof(int) );


    /* for every state the number of vectors which belong to it is computed (smth. like histogram) */
    for (k = 0; k < num_img; k++)
    {
        CvImgObsInfo* obs = obs_info_array[k];
        int count = 0;

        for (i = 0; i < obs->obs_y; i++)
        {
            for (j = 0; j < obs->obs_x; j++, count++)
            {
                int state = obs->state[ 2 * count + 1];
                num_samples[state] += 1;
            }
        }
    }

    /* for every state int* is allocated */
    a_class = (int**)cvAlloc( total*sizeof(int*) );

    for (i = 0; i < total; i++)
    {
        a_class[i] = (int*)cvAlloc( num_samples[i] * sizeof(int) );
        samples[i] = (CvVect32f*)cvAlloc( num_samples[i] * sizeof(CvVect32f) );
        samples_mix[i] = (int**)cvAlloc( num_samples[i] * sizeof(int*) );
    }

    /* for every state vectors which belong to state are gathered */
    for (k = 0; k < num_img; k++)
    {
        CvImgObsInfo* obs = obs_info_array[k];
        int num_obs = ( obs->obs_x ) * ( obs->obs_y );
        float* vector = obs->obs;

        for (i = 0; i < num_obs; i++, vector+=obs->obs_size )
        {
            int state = obs->state[2*i+1];

            samples[state][counter[state]] = vector;
            samples_mix[state][counter[state]] = &(obs->mix[i]);
            counter[state]++;
        }
    }

    /* clear counters */
    memset( counter, 0, total*sizeof(int) );

    /* do the actual clustering using the K Means algorithm */
    for (i = 0; i < total; i++)
    {
        if ( first_state[i].num_mix == 1)
        {
            for (k = 0; k < num_samples[i]; k++)
            {
                /* all vectors belong to one mixture */
                a_class[i][k] = 0;
            }
        }
        else if( num_samples[i] )
        {
            /* clusterize vectors  */
            cvKMeans( first_state[i].num_mix, samples[i], num_samples[i],
                      obs_info_array[0]->obs_size, criteria, a_class[i] );
        }
    }

    /* for every vector number of mixture is assigned */
    for( i = 0; i < total; i++ )
    {
        for (j = 0; j < num_samples[i]; j++)
        {
            samples_mix[i][j][0] = a_class[i][j];
        }
    }

    for (i = 0; i < total; i++)
    {
        cvFree( &(a_class[i]) );
        cvFree( &(samples[i]) );
        cvFree( &(samples_mix[i]) );
    }

    cvFree( &a_class );
    cvFree( &samples );
    cvFree( &samples_mix );
    cvFree( &counter );
    cvFree( &num_samples );

    return CV_NO_ERR;
}

/*F///////////////////////////////////////////////////////////////////////////////////////
//    Name: ComputeUniModeGauss
//    Purpose: The function computes the Gaussian pdf for a sample vector
//    Context:
//    Parameters:  obsVeq - pointer to the sample vector
//                 mu - pointer to the mean vector of the Gaussian pdf
//                 var - pointer to the variance vector of the Gaussian pdf
//                 VecSize - the size of sample vector
//
//    Returns: the pdf of the sample vector given the specified Gaussian
//
//    Notes:
//F*/
/*static float icvComputeUniModeGauss(CvVect32f vect, CvVect32f mu,
                              CvVect32f inv_var, float log_var_val, int vect_size)
{
    int n;
    double tmp;
    double prob;

    prob = -log_var_val;

    for (n = 0; n < vect_size; n++)
    {
        tmp = (vect[n] - mu[n]) * inv_var[n];
        prob = prob - tmp * tmp;
   }
   //prob *= 0.5f;

   return (float)prob;
}*/

/*F///////////////////////////////////////////////////////////////////////////////////////
//    Name: ComputeGaussMixture
//    Purpose: The function computes the mixture Gaussian pdf of a sample vector.
//    Context:
//    Parameters:  obsVeq - pointer to the sample vector
//                 mu  - two-dimensional pointer to the mean vector of the Gaussian pdf;
//                       the first dimension is indexed over the number of mixtures and
//                       the second dimension is indexed along the size of the mean vector
//                 var - two-dimensional pointer to the variance vector of the Gaussian pdf;
//                       the first dimension is indexed over the number of mixtures and
//                       the second dimension is indexed along the size of the variance vector
//                 VecSize - the size of sample vector
//                 weight - pointer to the wights of the Gaussian mixture
//                 NumMix - the number of Gaussian mixtures
//
//    Returns: the pdf of the sample vector given the specified Gaussian mixture.
//
//    Notes:
//F*/
/* Calculate probability of observation at state in logarithmic scale*/
/*static float
icvComputeGaussMixture( CvVect32f vect, float* mu,
                        float* inv_var, float* log_var_val,
                        int vect_size, float* weight, int num_mix )
{
    double prob, l_prob;

    prob = 0.0f;

    if (num_mix == 1)
    {
        return icvComputeUniModeGauss( vect, mu, inv_var, log_var_val[0], vect_size);
    }
    else
    {
        int m;
        for (m = 0; m < num_mix; m++)
        {
            if ( weight[m] > 0.0)
            {
                l_prob = icvComputeUniModeGauss(vect, mu + m*vect_size,
                                                        inv_var + m * vect_size,
                                                        log_var_val[m],
                                                        vect_size);

                prob = prob + weight[m]*exp((double)l_prob);
            }
        }
        prob = log(prob);
    }
    return (float)prob;
}*/


/*F///////////////////////////////////////////////////////////////////////////////////////
//    Name: EstimateObsProb
//    Purpose: The function computes the probability of every observation in every state
//    Context:
//    Parameters:  obs_info - observations
//                 hmm      - hmm
//    Returns: error status
//
//    Notes:
//F*/
static CvStatus CV_STDCALL icvEstimateObsProb( CvImgObsInfo* obs_info, CvEHMM* hmm )
{
    int i, j;
    int total_states = 0;

    /* check if matrix exist and check current size
       if not sufficient - realloc */
    int status = 0; /* 1 - not allocated, 2 - allocated but small size,
                       3 - size is enough, but distribution is bad, 0 - all ok */

    for( j = 0; j < hmm->num_states; j++ )
    {
       total_states += hmm->u.ehmm[j].num_states;
    }

    if ( hmm->obsProb == NULL )
    {
        /* allocare memory */
        int need_size = ( obs_info->obs_x * obs_info->obs_y * total_states * sizeof(float) +
                          obs_info->obs_y * hmm->num_states * sizeof( CvMatr32f) );

        int* buffer = (int*)cvAlloc( need_size + 3 * sizeof(int) );
        buffer[0] = need_size;
        buffer[1] = obs_info->obs_y;
        buffer[2] = obs_info->obs_x;
        hmm->obsProb = (float**) (buffer + 3);
        status = 3;

    }
    else
    {
        /* check current size */
        int* total= (int*)(((int*)(hmm->obsProb)) - 3);
        int need_size = ( obs_info->obs_x * obs_info->obs_y * total_states * sizeof(float) +
                          obs_info->obs_y * hmm->num_states * sizeof( CvMatr32f/*(float*)*/ ) );

        assert( sizeof(float*) == sizeof(int) );

        if ( need_size > (*total) )
        {
            int* buffer = ((int*)(hmm->obsProb)) - 3;
            cvFree( &buffer);
            buffer = (int*)cvAlloc( need_size + 3 * sizeof(int));
            buffer[0] = need_size;
            buffer[1] = obs_info->obs_y;
            buffer[2] = obs_info->obs_x;

            hmm->obsProb = (float**)(buffer + 3);

            status = 3;
        }
    }
    if (!status)
    {
        int* obsx = ((int*)(hmm->obsProb)) - 1;
        int* obsy = ((int*)(hmm->obsProb)) - 2;

        assert( (*obsx > 0) && (*obsy > 0) );

        /* is good distribution? */
        if ( (obs_info->obs_x > (*obsx) ) || (obs_info->obs_y > (*obsy) ) )
            status = 3;
    }

    /* if bad status - do reallocation actions */
    assert( (status == 0) || (status == 3) );

    if ( status )
    {
        float** tmp = hmm->obsProb;
        float*  tmpf;

        /* distribute pointers of ehmm->obsProb */
        for( i = 0; i < hmm->num_states; i++ )
        {
            hmm->u.ehmm[i].obsProb = tmp;
            tmp += obs_info->obs_y;
        }

        tmpf = (float*)tmp;

        /* distribute pointers of ehmm->obsProb[j] */
        for( i = 0; i < hmm->num_states; i++ )
        {
            CvEHMM* ehmm = &( hmm->u.ehmm[i] );

            for( j = 0; j < obs_info->obs_y; j++ )
            {
                ehmm->obsProb[j] = tmpf;
                tmpf += ehmm->num_states * obs_info->obs_x;
            }
        }
    }/* end of pointer distribution */

#if 1
    {
#define MAX_BUF_SIZE  1200
        float  local_log_mix_prob[MAX_BUF_SIZE];
        double local_mix_prob[MAX_BUF_SIZE];
        int    vect_size = obs_info->obs_size;
        CvStatus res = CV_NO_ERR;

        float*  log_mix_prob = local_log_mix_prob;
        double* mix_prob = local_mix_prob;

        int  max_size = 0;
        int  obs_x = obs_info->obs_x;

        /* calculate temporary buffer size */
        for( i = 0; i < hmm->num_states; i++ )
        {
            CvEHMM* ehmm = &(hmm->u.ehmm[i]);
            CvEHMMState* state = ehmm->u.state;

            int max_mix = 0;
            for( j = 0; j < ehmm->num_states; j++ )
            {
                int t = state[j].num_mix;
                if( max_mix < t ) max_mix = t;
            }
            max_mix *= ehmm->num_states;
            if( max_size < max_mix ) max_size = max_mix;
        }

        max_size *= obs_x * vect_size;

        /* allocate buffer */
        if( max_size > MAX_BUF_SIZE )
        {
            log_mix_prob = (float*)cvAlloc( max_size*(sizeof(float) + sizeof(double)));
            if( !log_mix_prob ) return CV_OUTOFMEM_ERR;
            mix_prob = (double*)(log_mix_prob + max_size);
        }

        memset( log_mix_prob, 0, max_size*sizeof(float));

        /*****************computing probabilities***********************/

        /* loop through external states */
        for( i = 0; i < hmm->num_states; i++ )
        {
            CvEHMM* ehmm = &(hmm->u.ehmm[i]);
            CvEHMMState* state = ehmm->u.state;

            int max_mix = 0;
            int n_states = ehmm->num_states;

            /* determine maximal number of mixtures (again) */
            for( j = 0; j < ehmm->num_states; j++ )
            {
                int t = state[j].num_mix;
                if( max_mix < t ) max_mix = t;
            }

            /* loop through rows of the observation matrix */
            for( j = 0; j < obs_info->obs_y; j++ )
            {
                int  m, n;

                float* obs = obs_info->obs + j * obs_x * vect_size;
                float* log_mp = max_mix > 1 ? log_mix_prob : ehmm->obsProb[j];
                double* mp = mix_prob;

                /* several passes are done below */

                /* 1. calculate logarithms of probabilities for each mixture */

                /* loop through mixtures */
                for( m = 0; m < max_mix; m++ )
                {
                    /* set pointer to first observation in the line */
                    float* vect = obs;

                    /* cycles through obseravtions in the line */
                    for( n = 0; n < obs_x; n++, vect += vect_size, log_mp += n_states )
                    {
                        int k, l;
                        for( l = 0; l < n_states; l++ )
                        {
                            if( state[l].num_mix > m )
                            {
                                float* mu = state[l].mu + m*vect_size;
                                float* inv_var = state[l].inv_var + m*vect_size;
                                double prob = -state[l].log_var_val[m];
                                for( k = 0; k < vect_size; k++ )
                                {
                                    double t = (vect[k] - mu[k])*inv_var[k];
                                    prob -= t*t;
                                }
                                log_mp[l] = MAX( (float)prob, -500 );
                            }
                        }
                    }
                }

                /* skip the rest if there is a single mixture */
                if( max_mix == 1 ) continue;

                /* 2. calculate exponent of log_mix_prob
                      (i.e. probability for each mixture) */
                cvbFastExp( log_mix_prob, mix_prob, max_mix * obs_x * n_states );

                /* 3. sum all mixtures with weights */
                /* 3a. first mixture - simply scale by weight */
                for( n = 0; n < obs_x; n++, mp += n_states )
                {
                    int l;
                    for( l = 0; l < n_states; l++ )
                    {
                        mp[l] *= state[l].weight[0];
                    }
                }

                /* 3b. add other mixtures */
                for( m = 1; m < max_mix; m++ )
                {
                    int ofs = -m*obs_x*n_states;
                    for( n = 0; n < obs_x; n++, mp += n_states )
                    {
                        int l;
                        for( l = 0; l < n_states; l++ )
                        {
                            if( m < state[l].num_mix )
                            {
                                mp[l + ofs] += mp[l] * state[l].weight[m];
                            }
                        }
                    }
                }

                /* 4. Put logarithms of summary probabilities to the destination matrix */
                cvbFastLog( mix_prob, ehmm->obsProb[j], obs_x * n_states );
            }
        }

        if( log_mix_prob != local_log_mix_prob ) cvFree( &log_mix_prob );
        return res;
#undef MAX_BUF_SIZE
    }
#else
    for( i = 0; i < hmm->num_states; i++ )
    {
        CvEHMM* ehmm = &(hmm->u.ehmm[i]);
        CvEHMMState* state = ehmm->u.state;

        for( j = 0; j < obs_info->obs_y; j++ )
        {
            int k,m;

            int obs_index = j * obs_info->obs_x;

            float* B = ehmm->obsProb[j];

            /* cycles through obs and states */
            for( k = 0; k < obs_info->obs_x; k++ )
            {
                CvVect32f vect = (obs_info->obs) + (obs_index + k) * vect_size;

                float* matr_line = B + k * ehmm->num_states;

                for( m = 0; m < ehmm->num_states; m++ )
                {
                    matr_line[m] = icvComputeGaussMixture( vect, state[m].mu, state[m].inv_var,
                                                             state[m].log_var_val, vect_size, state[m].weight,
                                                             state[m].num_mix );
                }
            }
        }
    }
#endif
}


/*F///////////////////////////////////////////////////////////////////////////////////////
//    Name: EstimateTransProb
//    Purpose: The function calculates the state and super state transition probabilities
//             of the model given the images,
//             the state segmentation and the input parameters
//    Context:
//    Parameters: obs_info_array - array of pointers to image observations
//                num_img - length of above array
//                hmm - pointer to HMM structure
//    Returns: void
//
//    Notes:
//F*/
static CvStatus CV_STDCALL
icvEstimateTransProb( CvImgObsInfo** obs_info_array, int num_img, CvEHMM* hmm )
{
    int  i, j, k;

    CvEHMMState* first_state = hmm->u.ehmm->u.state;
    /* as a counter we will use transP matrix */

    /* initialization */

    /* clear transP */
    icvSetZero_32f( hmm->transP, hmm->num_states, hmm->num_states );
    for (i = 0; i < hmm->num_states; i++ )
    {
        icvSetZero_32f( hmm->u.ehmm[i].transP , hmm->u.ehmm[i].num_states, hmm->u.ehmm[i].num_states );
    }

    /* compute the counters */
    for (i = 0; i < num_img; i++)
    {
        int counter = 0;
        CvImgObsInfo* info = obs_info_array[i];

        for (j = 0; j < info->obs_y; j++)
        {
            for (k = 0; k < info->obs_x; k++, counter++)
            {
                /* compute how many transitions from state to state
                   occured both in horizontal and vertical direction */
                int superstate, state;
                int nextsuperstate, nextstate;
                int begin_ind;

                superstate = info->state[2 * counter];
                begin_ind = (int)(hmm->u.ehmm[superstate].u.state - first_state);
                state = info->state[ 2 * counter + 1] - begin_ind;

                if (j < info->obs_y - 1)
                {
                    int transP_size = hmm->num_states;

                    nextsuperstate = info->state[ 2*(counter + info->obs_x) ];

                    hmm->transP[superstate * transP_size + nextsuperstate] += 1;
                }

                if (k < info->obs_x - 1)
                {
                    int transP_size = hmm->u.ehmm[superstate].num_states;

                    nextstate = info->state[2*(counter+1) + 1] - begin_ind;
                    hmm->u.ehmm[superstate].transP[ state * transP_size + nextstate] += 1;
                }
            }
        }
    }
    /* estimate superstate matrix */
    for( i = 0; i < hmm->num_states; i++)
    {
        float total = 0;
        float inv_total;
        for( j = 0; j < hmm->num_states; j++)
        {
            total += hmm->transP[i * hmm->num_states + j];
        }
        //assert( total );

        inv_total = total ? 1.f/total : 0;

        for( j = 0; j < hmm->num_states; j++)
        {
            hmm->transP[i * hmm->num_states + j] =
                hmm->transP[i * hmm->num_states + j] ?
                (float)log( hmm->transP[i * hmm->num_states + j] * inv_total ) : -BIG_FLT;
        }
    }

    /* estimate other matrices */
    for( k = 0; k < hmm->num_states; k++ )
    {
        CvEHMM* ehmm = &(hmm->u.ehmm[k]);

        for( i = 0; i < ehmm->num_states; i++)
        {
            float total = 0;
            float inv_total;
            for( j = 0; j < ehmm->num_states; j++)
            {
                total += ehmm->transP[i*ehmm->num_states + j];
            }
            //assert( total );
            inv_total = total ? 1.f/total :  0;

            for( j = 0; j < ehmm->num_states; j++)
            {
                ehmm->transP[i * ehmm->num_states + j] =
                    (ehmm->transP[i * ehmm->num_states + j]) ?
                    (float)log( ehmm->transP[i * ehmm->num_states + j] * inv_total) : -BIG_FLT ;
            }
        }
    }
    return CV_NO_ERR;
}


/*F///////////////////////////////////////////////////////////////////////////////////////
//    Name: MixSegmL2
//    Purpose: The function implements the mixture segmentation of the states of the
//             embedded HMM
//    Context: used with the Viterbi training of the embedded HMM
//
//    Parameters:
//             obs_info_array
//             num_img
//             hmm
//    Returns: void
//
//    Notes:
//F*/
static CvStatus CV_STDCALL
icvMixSegmL2( CvImgObsInfo** obs_info_array, int num_img, CvEHMM* hmm )
{
    int     k, i, j, m;

    CvEHMMState* state = hmm->u.ehmm[0].u.state;


    for (k = 0; k < num_img; k++)
    {
        int counter = 0;
        CvImgObsInfo* info = obs_info_array[k];

        for (i = 0; i < info->obs_y; i++)
        {
            for (j = 0; j < info->obs_x; j++, counter++)
            {
                int e_state = info->state[2 * counter + 1];
                float min_dist;

                min_dist = icvSquareDistance((info->obs) + (counter * info->obs_size),
                                               state[e_state].mu, info->obs_size);
                info->mix[counter] = 0;

                for (m = 1; m < state[e_state].num_mix; m++)
                {
                    float dist=icvSquareDistance( (info->obs) + (counter * info->obs_size),
                                                    state[e_state].mu + m * info->obs_size,
                                                    info->obs_size);
                    if (dist < min_dist)
                    {
                        min_dist = dist;
                        /* assign mixture with smallest distance */
                        info->mix[counter] = m;
                    }
                }
            }
        }
    }
    return CV_NO_ERR;
}

/*
CvStatus icvMixSegmProb(CvImgObsInfo* obs_info, int num_img, CvEHMM* hmm )
{
    int     k, i, j, m;

    CvEHMMState* state = hmm->ehmm[0].state_info;


    for (k = 0; k < num_img; k++)
    {
        int counter = 0;
        CvImgObsInfo* info = obs_info + k;

        for (i = 0; i < info->obs_y; i++)
        {
            for (j = 0; j < info->obs_x; j++, counter++)
            {
                int e_state = info->in_state[counter];
                float max_prob;

                max_prob = icvComputeUniModeGauss( info->obs[counter], state[e_state].mu[0],
                                                    state[e_state].inv_var[0],
                                                    state[e_state].log_var[0],
                                                    info->obs_size );
                info->mix[counter] = 0;

                for (m = 1; m < state[e_state].num_mix; m++)
                {
                    float prob=icvComputeUniModeGauss(info->obs[counter], state[e_state].mu[m],
                                                       state[e_state].inv_var[m],
                                                       state[e_state].log_var[m],
                                                       info->obs_size);
                    if (prob > max_prob)
                    {
                        max_prob = prob;
                        // assign mixture with greatest probability.
                        info->mix[counter] = m;
                    }
                }
            }
        }
    }

    return CV_NO_ERR;
}
*/
static CvStatus CV_STDCALL
icvViterbiSegmentation( int num_states, int /*num_obs*/, CvMatr32f transP,
                        CvMatr32f B, int start_obs, int prob_type,
                        int** q, int min_num_obs, int max_num_obs,
                        float* prob )
{
    // memory allocation
    int i, j, last_obs;
    int m_HMMType = _CV_ERGODIC; /* _CV_CAUSAL or _CV_ERGODIC */

    int m_ProbType   = prob_type; /* _CV_LAST_STATE or _CV_BEST_STATE */

    int m_minNumObs  = min_num_obs; /*??*/
    int m_maxNumObs  = max_num_obs; /*??*/

    int m_numStates  = num_states;

    float* m_pi = (float*)cvAlloc( num_states* sizeof(float) );
    CvMatr32f m_a = transP;

    // offset brobability matrix to starting observation
    CvMatr32f m_b = B + start_obs * num_states;
    //so m_xl will not be used more

    //m_xl = start_obs;

    /*     if (muDur != NULL){
    m_d = new int[m_numStates];
    m_l = new double[m_numStates];
    for (i = 0; i < m_numStates; i++){
    m_l[i] = muDur[i];
    }
    }
    else{
    m_d = NULL;
    m_l = NULL;
    }
    */

    CvMatr32f m_Gamma = icvCreateMatrix_32f( num_states, m_maxNumObs );
    int* m_csi = (int*)cvAlloc( num_states * m_maxNumObs * sizeof(int) );

    //stores maximal result for every ending observation */
    CvVect32f   m_MaxGamma = prob;


//    assert( m_xl + max_num_obs <= num_obs );

    /*??m_q          = new int*[m_maxNumObs - m_minNumObs];
      ??for (i = 0; i < m_maxNumObs - m_minNumObs; i++)
      ??     m_q[i] = new int[m_minNumObs + i + 1];
    */

    /******************************************************************/
    /*    Viterbi initialization                                      */
    /* set initial state probabilities, in logarithmic scale */
    for (i = 0; i < m_numStates; i++)
    {
        m_pi[i] = -BIG_FLT;
    }
    m_pi[0] = 0.0f;

    for  (i = 0; i < num_states; i++)
    {
        m_Gamma[0 * num_states + i] = m_pi[i] + m_b[0 * num_states + i];
        m_csi[0 * num_states + i] = 0;
    }

    /******************************************************************/
    /*    Viterbi recursion                                           */

    if ( m_HMMType == _CV_CAUSAL ) //causal model
    {
        int t;

        for (t = 1 ; t < m_maxNumObs; t++)
        {
            // evaluate self-to-self transition for state 0
            m_Gamma[t * num_states + 0] = m_Gamma[(t-1) * num_states + 0] + m_a[0];
            m_csi[t * num_states + 0] = 0;

            for (j = 1; j < num_states; j++)
            {
                float self = m_Gamma[ (t-1) * num_states + j] + m_a[ j * num_states + j];
                float prev = m_Gamma[ (t-1) * num_states +(j-1)] + m_a[ (j-1) * num_states + j];

                if ( prev > self )
                {
                    m_csi[t * num_states + j] = j-1;
                    m_Gamma[t * num_states + j] = prev;
                }
                else
                {
                    m_csi[t * num_states + j] = j;
                    m_Gamma[t * num_states + j] = self;
                }

                m_Gamma[t * num_states + j] = m_Gamma[t * num_states + j] + m_b[t * num_states + j];
            }
        }
    }
    else if ( m_HMMType == _CV_ERGODIC ) //ergodic model
    {
        int t;
        for (t = 1 ; t < m_maxNumObs; t++)
        {
            for (j = 0; j < num_states; j++)
            {
                m_Gamma[ t*num_states + j] = m_Gamma[(t-1) * num_states + 0] + m_a[0*num_states+j];
                m_csi[t *num_states + j] = 0;

                for (i = 1; i < num_states; i++)
                {
                    float currGamma = m_Gamma[(t-1) *num_states + i] + m_a[i *num_states + j];
                    if (currGamma > m_Gamma[t *num_states + j])
                    {
                        m_Gamma[t * num_states + j] = currGamma;
                        m_csi[t * num_states + j] = i;
                    }
                }
                m_Gamma[t *num_states + j] = m_Gamma[t *num_states + j] + m_b[t * num_states + j];
            }
        }
    }

    for( last_obs = m_minNumObs-1, i = 0; last_obs < m_maxNumObs; last_obs++, i++ )
    {
        int t;

        /******************************************************************/
        /*    Viterbi termination                                         */

        if ( m_ProbType == _CV_LAST_STATE )
        {
            m_MaxGamma[i] = m_Gamma[last_obs * num_states + num_states - 1];
            q[i][last_obs] = num_states - 1;
        }
        else if( m_ProbType == _CV_BEST_STATE )
        {
            int k;
            q[i][last_obs] = 0;
            m_MaxGamma[i] = m_Gamma[last_obs * num_states + 0];

            for(k = 1; k < num_states; k++)
            {
                if ( m_Gamma[last_obs * num_states + k] > m_MaxGamma[i] )
                {
                    m_MaxGamma[i] = m_Gamma[last_obs * num_states + k];
                    q[i][last_obs] = k;
                }
            }
        }

        /******************************************************************/
        /*    Viterbi backtracking                                        */
        for  (t = last_obs-1; t >= 0; t--)
        {
            q[i][t] = m_csi[(t+1) * num_states + q[i][t+1] ];
        }
    }

    /* memory free */
    cvFree( &m_pi );
    cvFree( &m_csi );
    icvDeleteMatrix( m_Gamma );

    return CV_NO_ERR;
}

/*F///////////////////////////////////////////////////////////////////////////////////////
//    Name: icvEViterbi
//    Purpose: The function calculates the embedded Viterbi algorithm
//             for 1 image
//    Context:
//    Parameters:
//             obs_info - observations
//             hmm      - HMM
//
//    Returns: the Embedded Viterbi probability (float)
//             and do state segmentation of observations
//
//    Notes:
//F*/
static float CV_STDCALL icvEViterbi( CvImgObsInfo* obs_info, CvEHMM* hmm )
{
    int    i, j, counter;
    float  log_likelihood;

    float inv_obs_x = 1.f / obs_info->obs_x;

    CvEHMMState* first_state = hmm->u.ehmm->u.state;

    /* memory allocation for superB */
    CvMatr32f superB = icvCreateMatrix_32f(hmm->num_states, obs_info->obs_y );

    /* memory allocation for q */
    int*** q = (int***)cvAlloc( hmm->num_states * sizeof(int**) );
    int* super_q = (int*)cvAlloc( obs_info->obs_y * sizeof(int) );

    for (i = 0; i < hmm->num_states; i++)
    {
        q[i] = (int**)cvAlloc( obs_info->obs_y * sizeof(int*) );

        for (j = 0; j < obs_info->obs_y ; j++)
        {
            q[i][j] = (int*)cvAlloc( obs_info->obs_x * sizeof(int) );
        }
    }

    /* start Viterbi segmentation */
    for (i = 0; i < hmm->num_states; i++)
    {
        CvEHMM* ehmm = &(hmm->u.ehmm[i]);

        for (j = 0; j < obs_info->obs_y; j++)
        {
            float max_gamma;

            /* 1D HMM Viterbi segmentation */
            icvViterbiSegmentation( ehmm->num_states, obs_info->obs_x,
                ehmm->transP, ehmm->obsProb[j], 0,
                _CV_LAST_STATE, &q[i][j], obs_info->obs_x,
                obs_info->obs_x, &max_gamma);

            superB[j * hmm->num_states + i] = max_gamma * inv_obs_x;
        }
    }

    /* perform global Viterbi segmentation (i.e. process higher-level HMM) */

    icvViterbiSegmentation( hmm->num_states, obs_info->obs_y,
                             hmm->transP, superB, 0,
                             _CV_LAST_STATE, &super_q, obs_info->obs_y,
                             obs_info->obs_y, &log_likelihood );

    log_likelihood /= obs_info->obs_y ;


    counter = 0;
    /* assign new state to observation vectors */
    for (i = 0; i < obs_info->obs_y; i++)
    {
        for (j = 0; j < obs_info->obs_x; j++, counter++)
        {
            int superstate = super_q[i];
            int state = (int)(hmm->u.ehmm[superstate].u.state - first_state);

            obs_info->state[2 * counter] = superstate;
            obs_info->state[2 * counter + 1] = state + q[superstate][i][j];
        }
    }

    /* memory deallocation for superB */
    icvDeleteMatrix( superB );

    /*memory deallocation for q */
    for (i = 0; i < hmm->num_states; i++)
    {
        for (j = 0; j < obs_info->obs_y ; j++)
        {
            cvFree( &q[i][j] );
        }
        cvFree( &q[i] );
    }

    cvFree( &q );
    cvFree( &super_q );

    return log_likelihood;
}

static CvStatus CV_STDCALL
icvEstimateHMMStateParams( CvImgObsInfo** obs_info_array, int num_img, CvEHMM* hmm )
{
    /* compute gamma, weights, means, vars */
    int k, i, j, m;
    int total = 0;
    int vect_len = obs_info_array[0]->obs_size;

    float start_log_var_val = LN2PI * vect_len;

    CvVect32f tmp_vect = icvCreateVector_32f( vect_len );

    CvEHMMState* first_state = hmm->u.ehmm[0].u.state;

    assert( sizeof(float) == sizeof(int) );

    for(i = 0; i < hmm->num_states; i++ )
    {
        total+= hmm->u.ehmm[i].num_states;
    }

    /***************Gamma***********************/
    /* initialize gamma */
    for( i = 0; i < total; i++ )
    {
        for (m = 0; m < first_state[i].num_mix; m++)
        {
            ((int*)(first_state[i].weight))[m] = 0;
        }
    }

    /* maybe gamma must be computed in mixsegm process ?? */

    /* compute gamma */
    for (k = 0; k < num_img; k++)
    {
        CvImgObsInfo* info = obs_info_array[k];
        int num_obs = info->obs_y * info->obs_x;

        for (i = 0; i < num_obs; i++)
        {
            int state, mixture;
            state = info->state[2*i + 1];
            mixture = info->mix[i];
            /* computes gamma - number of observations corresponding
               to every mixture of every state */
            ((int*)(first_state[state].weight))[mixture] += 1;
        }
    }
    /***************Mean and Var***********************/
    /* compute means and variances of every item */
    /* initially variance placed to inv_var */
    /* zero mean and variance */
    for (i = 0; i < total; i++)
    {
        memset( (void*)first_state[i].mu, 0, first_state[i].num_mix * vect_len *
                                                                         sizeof(float) );
        memset( (void*)first_state[i].inv_var, 0, first_state[i].num_mix * vect_len *
                                                                         sizeof(float) );
    }

    /* compute sums */
    for (i = 0; i < num_img; i++)
    {
        CvImgObsInfo* info = obs_info_array[i];
        int total_obs = info->obs_x * info->obs_y;

        float* vector = info->obs;

        for (j = 0; j < total_obs; j++, vector+=vect_len )
        {
            int state = info->state[2 * j + 1];
            int mixture = info->mix[j];

            CvVect32f mean  = first_state[state].mu + mixture * vect_len;
            CvVect32f mean2 = first_state[state].inv_var + mixture * vect_len;

            icvAddVector_32f( mean, vector, mean, vect_len );
            for( k = 0; k < vect_len; k++ )
                mean2[k] += vector[k]*vector[k];
        }
    }

    /*compute the means and variances */
    /* assume gamma already computed */
    for (i = 0; i < total; i++)
    {
        CvEHMMState* state = &(first_state[i]);

        for (m = 0; m < state->num_mix; m++)
        {
            CvVect32f mu  = state->mu + m * vect_len;
            CvVect32f invar = state->inv_var + m * vect_len;

            if ( ((int*)state->weight)[m] > 1)
            {
                float inv_gamma = 1.f/((int*)(state->weight))[m];

                icvScaleVector_32f( mu, mu, vect_len, inv_gamma);
                icvScaleVector_32f( invar, invar, vect_len, inv_gamma);
            }

            icvMulVectors_32f(mu, mu, tmp_vect, vect_len);
            icvSubVector_32f( invar, tmp_vect, invar, vect_len);

            /* low bound of variance - 100 (Ara's experimental result) */
            for( k = 0; k < vect_len; k++ )
            {
                invar[k] = (invar[k] > 100.f) ? invar[k] : 100.f;
            }

            /* compute log_var */
            state->log_var_val[m] = start_log_var_val;
            for( k = 0; k < vect_len; k++ )
            {
                state->log_var_val[m] += (float)log( invar[k] );
            }

            /* SMOLI 27.10.2000 */
            state->log_var_val[m] *= 0.5;


            /* compute inv_var = 1/sqrt(2*variance) */
            icvScaleVector_32f(invar, invar, vect_len, 2.f );
            cvbInvSqrt( invar, invar, vect_len );
        }
    }

    /***************Weights***********************/
    /* normilize gammas - i.e. compute mixture weights */

    //compute weights
    for (i = 0; i < total; i++)
    {
        int gamma_total = 0;
        float norm;

        for (m = 0; m < first_state[i].num_mix; m++)
        {
            gamma_total += ((int*)(first_state[i].weight))[m];
        }

        norm = gamma_total ? (1.f/(float)gamma_total) : 0.f;

        for (m = 0; m < first_state[i].num_mix; m++)
        {
            first_state[i].weight[m] = ((int*)(first_state[i].weight))[m] * norm;
        }
    }

    icvDeleteVector( tmp_vect);
    return CV_NO_ERR;
}

/*
CvStatus icvLightingCorrection8uC1R( uchar* img, CvSize roi, int src_step )
{
    int i, j;
    int width = roi.width;
    int height = roi.height;

    float x1, x2, y1, y2;
    int f[3] = {0, 0, 0};
    float a[3] = {0, 0, 0};

    float h1;
    float h2;

    float c1,c2;

    float min = FLT_MAX;
    float max = -FLT_MAX;
    float correction;

    float* float_img = icvAlloc( width * height * sizeof(float) );

    x1 = width * (width + 1) / 2.0f; // Sum (1, ... , width)
    x2 = width * (width + 1 ) * (2 * width + 1) / 6.0f; // Sum (1^2, ... , width^2)
    y1 = height * (height + 1)/2.0f; // Sum (1, ... , width)
    y2 = height * (height + 1 ) * (2 * height + 1) / 6.0f; // Sum (1^2, ... , width^2)


    // extract grayvalues
    for (i = 0; i < height; i++)
    {
        for (j = 0; j < width; j++)
        {
            f[2] = f[2] + j * img[i*src_step + j];
            f[1] = f[1] + i * img[i*src_step + j];
            f[0] = f[0] +     img[i*src_step + j];
        }
    }

    h1 = (float)f[0] * (float)x1 / (float)width;
    h2 = (float)f[0] * (float)y1 / (float)height;

    a[2] = ((float)f[2] - h1) / (float)(x2*height - x1*x1*height/(float)width);
    a[1] = ((float)f[1] - h2) / (float)(y2*width - y1*y1*width/(float)height);
    a[0] = (float)f[0]/(float)(width*height) - (float)y1*a[1]/(float)height -
        (float)x1*a[2]/(float)width;

    for (i = 0; i < height; i++)
    {
        for (j = 0; j < width; j++)
        {

            correction = a[0] + a[1]*(float)i + a[2]*(float)j;

            float_img[i*width + j] = img[i*src_step + j] - correction;

            if (float_img[i*width + j] < min) min = float_img[i*width+j];
            if (float_img[i*width + j] > max) max = float_img[i*width+j];
        }
    }

    //rescaling to the range 0:255
    c2 = 0;
    if (max == min)
        c2 = 255.0f;
    else
        c2 = 255.0f/(float)(max - min);

    c1 = (-(float)min)*c2;

    for (i = 0; i < height; i++)
    {
        for (j = 0; j < width; j++)
        {
            int value = (int)floor(c2*float_img[i*width + j] + c1);
            if (value < 0) value = 0;
            if (value > 255) value = 255;
            img[i*src_step + j] = (uchar)value;
        }
    }

    cvFree( &float_img );
    return CV_NO_ERR;
}


CvStatus icvLightingCorrection( icvImage* img )
{
    CvSize roi;
    if ( img->type != IPL_DEPTH_8U || img->channels != 1 )
    return CV_BADFACTOR_ERR;

    roi = _cvSize( img->roi.width, img->roi.height );

    return _cvLightingCorrection8uC1R( img->data + img->roi.y * img->step + img->roi.x,
                                        roi, img->step );

}

*/

CV_IMPL CvEHMM*
cvCreate2DHMM( int *state_number, int *num_mix, int obs_size )
{
    CvEHMM* hmm = 0;

    IPPI_CALL( icvCreate2DHMM( &hmm, state_number, num_mix, obs_size ));

    return hmm;
}

CV_IMPL void
cvRelease2DHMM( CvEHMM ** hmm )
{
    IPPI_CALL( icvRelease2DHMM( hmm ));
}

CV_IMPL CvImgObsInfo*
cvCreateObsInfo( CvSize num_obs, int obs_size )
{
    CvImgObsInfo *obs_info = 0;

    IPPI_CALL( icvCreateObsInfo( &obs_info, num_obs, obs_size ));

    return obs_info;
}

CV_IMPL void
cvReleaseObsInfo( CvImgObsInfo ** obs_info )
{
    IPPI_CALL( icvReleaseObsInfo( obs_info ));
}


CV_IMPL void
cvUniformImgSegm( CvImgObsInfo * obs_info, CvEHMM * hmm )
{
    IPPI_CALL( icvUniformImgSegm( obs_info, hmm ));
}

CV_IMPL void
cvInitMixSegm( CvImgObsInfo ** obs_info_array, int num_img, CvEHMM * hmm )
{
    IPPI_CALL( icvInitMixSegm( obs_info_array, num_img, hmm ));
}

CV_IMPL void
cvEstimateHMMStateParams( CvImgObsInfo ** obs_info_array, int num_img, CvEHMM * hmm )
{
    IPPI_CALL( icvEstimateHMMStateParams( obs_info_array, num_img, hmm ));
}

CV_IMPL void
cvEstimateTransProb( CvImgObsInfo ** obs_info_array, int num_img, CvEHMM * hmm )
{
    IPPI_CALL( icvEstimateTransProb( obs_info_array, num_img, hmm ));
}

CV_IMPL void
cvEstimateObsProb( CvImgObsInfo * obs_info, CvEHMM * hmm )
{
    IPPI_CALL( icvEstimateObsProb( obs_info, hmm ));
}

CV_IMPL float
cvEViterbi( CvImgObsInfo * obs_info, CvEHMM * hmm )
{
    if( (obs_info == NULL) || (hmm == NULL) )
        CV_Error( CV_BadDataPtr, "Null pointer." );

    return icvEViterbi( obs_info, hmm );
}

CV_IMPL void
cvMixSegmL2( CvImgObsInfo ** obs_info_array, int num_img, CvEHMM * hmm )
{
    IPPI_CALL( icvMixSegmL2( obs_info_array, num_img, hmm ));
}

/* End of file */