optical_flow.cu 8.61 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#if !defined CUDA_DISABLER

wester committed
45
#include "opencv2/gpu/device/common.hpp"
wester committed
46

wester committed
47
namespace cv { namespace gpu { namespace device
wester committed
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
{
    namespace optical_flow
    {
        #define NEEDLE_MAP_SCALE 16
        #define NUM_VERTS_PER_ARROW 6

        __global__ void NeedleMapAverageKernel(const PtrStepSzf u, const PtrStepf v, PtrStepf u_avg, PtrStepf v_avg)
        {
            __shared__ float smem[2 * NEEDLE_MAP_SCALE];

            volatile float* u_col_sum = smem;
            volatile float* v_col_sum = u_col_sum + NEEDLE_MAP_SCALE;

            const int x = blockIdx.x * NEEDLE_MAP_SCALE + threadIdx.x;
            const int y = blockIdx.y * NEEDLE_MAP_SCALE;

            u_col_sum[threadIdx.x] = 0;
            v_col_sum[threadIdx.x] = 0;

            #pragma unroll
            for(int i = 0; i < NEEDLE_MAP_SCALE; ++i)
            {
                u_col_sum[threadIdx.x] += u(::min(y + i, u.rows - 1), x);
                v_col_sum[threadIdx.x] += v(::min(y + i, u.rows - 1), x);
            }

            if (threadIdx.x < 8)
            {
                // now add the column sums
                const uint X = threadIdx.x;

                if (X | 0xfe == 0xfe)  // bit 0 is 0
                {
                    u_col_sum[threadIdx.x] += u_col_sum[threadIdx.x + 1];
                    v_col_sum[threadIdx.x] += v_col_sum[threadIdx.x + 1];
                }

                if (X | 0xfe == 0xfc) // bits 0 & 1 == 0
                {
                    u_col_sum[threadIdx.x] += u_col_sum[threadIdx.x + 2];
                    v_col_sum[threadIdx.x] += v_col_sum[threadIdx.x + 2];
                }

                if (X | 0xf8 == 0xf8)
                {
                    u_col_sum[threadIdx.x] += u_col_sum[threadIdx.x + 4];
                    v_col_sum[threadIdx.x] += v_col_sum[threadIdx.x + 4];
                }

                if (X == 0)
                {
                    u_col_sum[threadIdx.x] += u_col_sum[threadIdx.x + 8];
                    v_col_sum[threadIdx.x] += v_col_sum[threadIdx.x + 8];
                }
            }

            if (threadIdx.x == 0)
            {
                const float coeff = 1.0f / (NEEDLE_MAP_SCALE * NEEDLE_MAP_SCALE);

                u_col_sum[0] *= coeff;
                v_col_sum[0] *= coeff;

                u_avg(blockIdx.y, blockIdx.x) = u_col_sum[0];
                v_avg(blockIdx.y, blockIdx.x) = v_col_sum[0];
            }
        }

        void NeedleMapAverage_gpu(PtrStepSzf u, PtrStepSzf v, PtrStepSzf u_avg, PtrStepSzf v_avg)
        {
            const dim3 block(NEEDLE_MAP_SCALE);
            const dim3 grid(u_avg.cols, u_avg.rows);

            NeedleMapAverageKernel<<<grid, block>>>(u, v, u_avg, v_avg);
            cudaSafeCall( cudaGetLastError() );

            cudaSafeCall( cudaDeviceSynchronize() );
        }

        __global__ void NeedleMapVertexKernel(const PtrStepSzf u_avg, const PtrStepf v_avg, float* vertex_data, float* color_data, float max_flow, float xscale, float yscale)
        {
            // test - just draw a triangle at each pixel
            const int x = blockIdx.x * blockDim.x + threadIdx.x;
            const int y = blockIdx.y * blockDim.y + threadIdx.y;

            const float arrow_x = x * NEEDLE_MAP_SCALE + NEEDLE_MAP_SCALE / 2.0f;
            const float arrow_y = y * NEEDLE_MAP_SCALE + NEEDLE_MAP_SCALE / 2.0f;

            float3 v[NUM_VERTS_PER_ARROW];

            if (x < u_avg.cols && y < u_avg.rows)
            {
                const float u_avg_val = u_avg(y, x);
                const float v_avg_val = v_avg(y, x);

wester committed
143
                const float theta = ::atan2f(v_avg_val, u_avg_val);// + CV_PI;
wester committed
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220

                float r = ::sqrtf(v_avg_val * v_avg_val + u_avg_val * u_avg_val);
                r = fmin(14.0f * (r / max_flow), 14.0f);

                v[0].z = 1.0f;
                v[1].z = 0.7f;
                v[2].z = 0.7f;
                v[3].z = 0.7f;
                v[4].z = 0.7f;
                v[5].z = 1.0f;

                v[0].x = arrow_x;
                v[0].y = arrow_y;
                v[5].x = arrow_x;
                v[5].y = arrow_y;

                v[2].x = arrow_x + r * ::cosf(theta);
                v[2].y = arrow_y + r * ::sinf(theta);
                v[3].x = v[2].x;
                v[3].y = v[2].y;

                r = ::fmin(r, 2.5f);

                v[1].x = arrow_x + r * ::cosf(theta - CV_PI_F / 2.0f);
                v[1].y = arrow_y + r * ::sinf(theta - CV_PI_F / 2.0f);

                v[4].x = arrow_x + r * ::cosf(theta + CV_PI_F / 2.0f);
                v[4].y = arrow_y + r * ::sinf(theta + CV_PI_F / 2.0f);

                int indx = (y * u_avg.cols + x) * NUM_VERTS_PER_ARROW * 3;

                color_data[indx] = (theta - CV_PI_F) / CV_PI_F * 180.0f;
                vertex_data[indx++] = v[0].x * xscale;
                vertex_data[indx++] = v[0].y * yscale;
                vertex_data[indx++] = v[0].z;

                color_data[indx] = (theta - CV_PI_F) / CV_PI_F * 180.0f;
                vertex_data[indx++] = v[1].x * xscale;
                vertex_data[indx++] = v[1].y * yscale;
                vertex_data[indx++] = v[1].z;

                color_data[indx] = (theta - CV_PI_F) / CV_PI_F * 180.0f;
                vertex_data[indx++] = v[2].x * xscale;
                vertex_data[indx++] = v[2].y * yscale;
                vertex_data[indx++] = v[2].z;

                color_data[indx] = (theta - CV_PI_F) / CV_PI_F * 180.0f;
                vertex_data[indx++] = v[3].x * xscale;
                vertex_data[indx++] = v[3].y * yscale;
                vertex_data[indx++] = v[3].z;

                color_data[indx] = (theta - CV_PI_F) / CV_PI_F * 180.0f;
                vertex_data[indx++] = v[4].x * xscale;
                vertex_data[indx++] = v[4].y * yscale;
                vertex_data[indx++] = v[4].z;

                color_data[indx] = (theta - CV_PI_F) / CV_PI_F * 180.0f;
                vertex_data[indx++] = v[5].x * xscale;
                vertex_data[indx++] = v[5].y * yscale;
                vertex_data[indx++] = v[5].z;
            }
        }

        void CreateOpticalFlowNeedleMap_gpu(PtrStepSzf u_avg, PtrStepSzf v_avg, float* vertex_buffer, float* color_data, float max_flow, float xscale, float yscale)
        {
            const dim3 block(16);
            const dim3 grid(divUp(u_avg.cols, block.x), divUp(u_avg.rows, block.y));

            NeedleMapVertexKernel<<<grid, block>>>(u_avg, v_avg, vertex_buffer, color_data, max_flow, xscale, yscale);
            cudaSafeCall( cudaGetLastError() );

            cudaSafeCall( cudaDeviceSynchronize() );
        }
    }
}}}

#endif /* CUDA_DISABLER */