perf_objdetect.cpp 6.4 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "perf_precomp.hpp"
wester committed
44
#include "opencv2/ts/gpu_perf.hpp"
wester committed
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

using namespace std;
using namespace testing;
using namespace perf;

///////////////////////////////////////////////////////////////
// HOG

DEF_PARAM_TEST_1(Image, string);

PERF_TEST_P(Image, ObjDetect_HOG,
            Values<string>("gpu/hog/road.png",
                           "gpu/caltech/image_00000009_0.png",
                           "gpu/caltech/image_00000032_0.png",
                           "gpu/caltech/image_00000165_0.png",
                           "gpu/caltech/image_00000261_0.png",
                           "gpu/caltech/image_00000469_0.png",
                           "gpu/caltech/image_00000527_0.png",
                           "gpu/caltech/image_00000574_0.png"))
{
    declare.time(300.0);

    const cv::Mat img = readImage(GetParam(), cv::IMREAD_GRAYSCALE);
    ASSERT_FALSE(img.empty());

wester committed
70
    if (PERF_RUN_GPU())
wester committed
71
    {
wester committed
72
        const cv::gpu::GpuMat d_img(img);
wester committed
73 74
        std::vector<cv::Rect> gpu_found_locations;

wester committed
75 76
        cv::gpu::HOGDescriptor d_hog;
        d_hog.setSVMDetector(cv::gpu::HOGDescriptor::getDefaultPeopleDetector());
wester committed
77

wester committed
78
        TEST_CYCLE() d_hog.detectMultiScale(d_img, gpu_found_locations);
wester committed
79 80 81 82 83 84 85 86

        SANITY_CHECK(gpu_found_locations);
    }
    else
    {
        std::vector<cv::Rect> cpu_found_locations;

        cv::HOGDescriptor hog;
wester committed
87
        hog.setSVMDetector(cv::gpu::HOGDescriptor::getDefaultPeopleDetector());
wester committed
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106

        TEST_CYCLE() hog.detectMultiScale(img, cpu_found_locations);

        SANITY_CHECK(cpu_found_locations);
    }
}

///////////////////////////////////////////////////////////////
// HaarClassifier

typedef pair<string, string> pair_string;
DEF_PARAM_TEST_1(ImageAndCascade, pair_string);

PERF_TEST_P(ImageAndCascade, ObjDetect_HaarClassifier,
            Values<pair_string>(make_pair("gpu/haarcascade/group_1_640x480_VGA.pgm", "gpu/perf/haarcascade_frontalface_alt.xml")))
{
    const cv::Mat img = readImage(GetParam().first, cv::IMREAD_GRAYSCALE);
    ASSERT_FALSE(img.empty());

wester committed
107
    if (PERF_RUN_GPU())
wester committed
108
    {
wester committed
109 110
        cv::gpu::CascadeClassifier_GPU d_cascade;
        ASSERT_TRUE(d_cascade.load(perf::TestBase::getDataPath(GetParam().second)));
wester committed
111

wester committed
112 113 114
        const cv::gpu::GpuMat d_img(img);
        cv::gpu::GpuMat objects_buffer;
        int detections_num = 0;
wester committed
115

wester committed
116
        TEST_CYCLE() detections_num = d_cascade.detectMultiScale(d_img, objects_buffer);
wester committed
117

wester committed
118 119 120
        std::vector<cv::Rect> gpu_rects(detections_num);
        cv::Mat gpu_rects_mat(1, detections_num, cv::DataType<cv::Rect>::type, &gpu_rects[0]);
        objects_buffer.colRange(0, detections_num).download(gpu_rects_mat);
wester committed
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
        cv::groupRectangles(gpu_rects, 3, 0.2);
        SANITY_CHECK(gpu_rects);
    }
    else
    {
        cv::CascadeClassifier cascade;
        ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath("gpu/perf/haarcascade_frontalface_alt.xml")));

        std::vector<cv::Rect> cpu_rects;

        TEST_CYCLE() cascade.detectMultiScale(img, cpu_rects);

        SANITY_CHECK(cpu_rects);
    }
}

///////////////////////////////////////////////////////////////
// LBP cascade

PERF_TEST_P(ImageAndCascade, ObjDetect_LBPClassifier,
            Values<pair_string>(make_pair("gpu/haarcascade/group_1_640x480_VGA.pgm", "gpu/lbpcascade/lbpcascade_frontalface.xml")))
{
    const cv::Mat img = readImage(GetParam().first, cv::IMREAD_GRAYSCALE);
    ASSERT_FALSE(img.empty());

wester committed
146
    if (PERF_RUN_GPU())
wester committed
147
    {
wester committed
148 149
        cv::gpu::CascadeClassifier_GPU d_cascade;
        ASSERT_TRUE(d_cascade.load(perf::TestBase::getDataPath(GetParam().second)));
wester committed
150

wester committed
151 152 153
        const cv::gpu::GpuMat d_img(img);
        cv::gpu::GpuMat objects_buffer;
        int detections_num = 0;
wester committed
154

wester committed
155
        TEST_CYCLE() detections_num = d_cascade.detectMultiScale(d_img, objects_buffer);
wester committed
156

wester committed
157 158 159
        std::vector<cv::Rect> gpu_rects(detections_num);
        cv::Mat gpu_rects_mat(1, detections_num, cv::DataType<cv::Rect>::type, &gpu_rects[0]);
        objects_buffer.colRange(0, detections_num).download(gpu_rects_mat);
wester committed
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
        cv::groupRectangles(gpu_rects, 3, 0.2);
        SANITY_CHECK(gpu_rects);
    }
    else
    {
        cv::CascadeClassifier cascade;
        ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath("gpu/lbpcascade/lbpcascade_frontalface.xml")));

        std::vector<cv::Rect> cpu_rects;

        TEST_CYCLE() cascade.detectMultiScale(img, cpu_rects);

        SANITY_CHECK(cpu_rects);
    }
}