fft.cpp 7.36 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
#include "precomp.hpp"
#include "_lsvm_fft.h"

// static int getEntireRes(int number, int divisor, int *entire, int *res)
// {
//     *entire = number / divisor;
//     *res = number % divisor;
//     return FFT_OK;
// }

static int getMultipliers(int n, int *n1, int *n2)
{
    int multiplier, i;
    if (n == 1)
    {
        *n1 = 1;
        *n2 = 1;
        return FFT_ERROR; // n = 1
    }
    multiplier = n / 2;
    for (i = multiplier; i >= 2; i--)
    {
        if (n % i == 0)
        {
            *n1 = i;
            *n2 = n / i;
            return FFT_OK; // n = n1 * n2
        }
    }
    *n1 = 1;
    *n2 = n;
    return FFT_ERROR; // n - prime number
}

/*
// 1-dimensional FFT
//
// API
// int fft(float *x_in, float *x_out, int n, int shift);
// INPUT
// x_in              - input signal
// n                 - number of elements for searching Fourier image
// shift             - shift between input elements
// OUTPUT
// x_out             - output signal (contains 2n elements in order
                       Re(x_in[0]), Im(x_in[0]), Re(x_in[1]), Im(x_in[1]) and etc.)
// RESULT
// Error status
*/
int fft(float *x_in, float *x_out, int n, int shift)
{
    int n1, n2, res, k1, k2, m1, m2, index, idx;
    float alpha, beta, gamma, angle, cosAngle, sinAngle;
    float tmpGamma, tmpAlpha, tmpBeta;
    float tmpRe, tmpIm, phaseRe, phaseIm;
    res = getMultipliers(n, &n1, &n2);
    if (res == FFT_OK)
    {
        fft(x_in, x_out, n1, shift);
        fft(x_in, x_out, n2, shift);
    }
    alpha = (float)(2.0 * PI / ((float)n));
    beta = (float)(2.0 * PI / ((float)n1));
    gamma = (float)(2.0 * PI / ((float)n2));
    for (k1 = 0; k1 < n1; k1++)
    {
        tmpBeta = beta * k1;
        for (k2 = 0; k2 < n2; k2++)
        {
            idx = shift * (n2 * k1 + k2);
            x_out[idx] = 0.0;
            x_out[idx + 1] = 0.0;
            tmpGamma = gamma * k2;
            tmpAlpha = alpha * k2;
            for (m1 = 0; m1 < n1; m1++)
            {
                tmpRe = 0.0;
                tmpIm = 0.0;
                for (m2 = 0; m2 < n2; m2++)
                {
                    angle = tmpGamma * m2;
                    index = shift * (n1 * m2 + m1);
                    cosAngle = cosf(angle);
                    sinAngle = sinf(angle);
                    tmpRe += x_in[index] * cosAngle + x_in[index + 1] * sinAngle;
                    tmpIm += x_in[index + 1] * cosAngle - x_in[index] * sinAngle;
                }
                angle = tmpAlpha * m1;
                cosAngle = cosf(angle);
                sinAngle = sinf(angle);
                phaseRe = cosAngle * tmpRe + sinAngle * tmpIm;
                phaseIm = cosAngle * tmpIm - sinAngle * tmpRe;
                angle = tmpBeta * m1;
                cosAngle = cosf(angle);
                sinAngle = sinf(angle);
                x_out[idx] += (cosAngle * phaseRe + sinAngle * phaseIm);
                x_out[idx + 1] += (cosAngle * phaseIm - sinAngle * phaseRe);
            }
        }
    }
    return FFT_OK;
}

/*
// Inverse 1-dimensional FFT
//
// API
// int fftInverse(float *x_in, float *x_out, int n, int shift);
// INPUT
// x_in              - Fourier image of 1d input signal(contains 2n elements
                       in order Re(x_in[0]), Im(x_in[0]),
                       Re(x_in[1]), Im(x_in[1]) and etc.)
// n                 - number of elements for searching counter FFT image
// shift             - shift between input elements
// OUTPUT
// x_in              - input signal (contains n elements)
// RESULT
// Error status
*/
int fftInverse(float *x_in, float *x_out, int n, int shift)
{
    int n1, n2, res, k1, k2, m1, m2, index, idx;
    float alpha, beta, gamma, angle, cosAngle, sinAngle;
    float tmpRe, tmpIm, phaseRe, phaseIm;
    res = getMultipliers(n, &n1, &n2);
    if (res == FFT_OK)
    {
        fftInverse(x_in, x_out, n1, shift);
        fftInverse(x_in, x_out, n2, shift);
    }
    alpha = (float)(2.0f * PI / ((float)n));
    beta = (float)(2.0f * PI / ((float)n1));
    gamma = (float)(2.0f * PI / ((float)n2));
    for (m1 = 0; m1 < n1; m1++)
    {
        for (m2 = 0; m2 < n2; m2++)
        {
            idx = (n1 * m2 + m1) * shift;
            x_out[idx] = 0.0;
            x_out[idx + 1] = 0.0;
            for (k2 = 0; k2 < n2; k2++)
            {
                tmpRe = 0.0;
                tmpIm = 0.0;
                for (k1 = 0; k1 < n1; k1++)
                {
                    angle = beta * k1 * m1;
                    index = shift *(n2 * k1 + k2);
                    sinAngle = sinf(angle);
                    cosAngle = cosf(angle);
                    tmpRe += x_in[index] * cosAngle - x_in[index + 1] * sinAngle;
                    tmpIm += x_in[index] * sinAngle + x_in[index + 1] * cosAngle;
                }
                angle = alpha * m1 * k2;
                sinAngle = sinf(angle);
                cosAngle = cosf(angle);
                phaseRe = cosAngle * tmpRe - sinAngle * tmpIm;
                phaseIm = cosAngle * tmpIm + sinAngle * tmpRe;
                angle = gamma * k2 * m2;
                sinAngle = sinf(angle);
                cosAngle = cosf(angle);
                x_out[idx] += cosAngle * phaseRe - sinAngle * phaseIm;
                x_out[idx + 1] += cosAngle * phaseIm + sinAngle * phaseRe;
            }
            x_out[idx] /= n;
            x_out[idx + 1] /= n;
        }
    }
    return FFT_OK;
}

/*
// 2-dimensional FFT
//
// API
// int fft2d(float *x_in, float *x_out, int numRows, int numColls);
// INPUT
// x_in              - input signal (matrix, launched by rows)
// numRows           - number of rows
// numColls          - number of collumns
// OUTPUT
// x_out             - output signal (contains (2 * numRows * numColls) elements
                       in order Re(x_in[0][0]), Im(x_in[0][0]),
                       Re(x_in[0][1]), Im(x_in[0][1]) and etc.)
// RESULT
// Error status
*/
int fft2d(float *x_in, float *x_out, int numRows, int numColls)
{
    int i, size;
    float *x_outTmp;
    size = numRows * numColls;
    x_outTmp = (float *)malloc(sizeof(float) * (2 * size));
    for (i = 0; i < numRows; i++)
    {
        fft(x_in + i * 2 * numColls,
            x_outTmp + i * 2 * numColls,
            numColls, 2);
    }
    for (i = 0; i < numColls; i++)
    {
        fft(x_outTmp + 2 * i,
            x_out + 2 * i,
            numRows, 2 * numColls);
    }
    free(x_outTmp);
    return FFT_OK;
}

/*
// Inverse 2-dimensional FFT
//
// API
// int fftInverse2d(float *x_in, float *x_out, int numRows, int numColls);
// INPUT
// x_in              - Fourier image of matrix (contains (2 * numRows * numColls)
                       elements in order Re(x_in[0][0]), Im(x_in[0][0]),
                       Re(x_in[0][1]), Im(x_in[0][1]) and etc.)
// numRows           - number of rows
// numColls          - number of collumns
// OUTPUT
// x_out             - initial signal (matrix, launched by rows)
// RESULT
// Error status
*/
int fftInverse2d(float *x_in, float *x_out, int numRows, int numColls)
{
    int i, size;
    float *x_outTmp;
    size = numRows * numColls;
    x_outTmp = (float *)malloc(sizeof(float) * (2 * size));
    for (i = 0; i < numRows; i++)
    {
        fftInverse(x_in + i * 2 * numColls,
            x_outTmp + i * 2 * numColls,
            numColls, 2);
    }
    for (i = 0; i < numColls; i++)
    {
        fftInverse(x_outTmp + 2 * i,
            x_out + 2 * i,
            numRows, 2 * numColls);
    }
    free(x_outTmp);
    return FFT_OK;
}