stereocsbp.cpp 12.9 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

using namespace cv;
using namespace cv::gpu;
using namespace std;

#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)

void cv::gpu::StereoConstantSpaceBP::estimateRecommendedParams(int, int, int&, int&, int&, int&) { throw_nogpu(); }

cv::gpu::StereoConstantSpaceBP::StereoConstantSpaceBP(int, int, int, int, int) { throw_nogpu(); }
cv::gpu::StereoConstantSpaceBP::StereoConstantSpaceBP(int, int, int, int, float, float, float, float, int, int) { throw_nogpu(); }

void cv::gpu::StereoConstantSpaceBP::operator()(const GpuMat&, const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }

#else /* !defined (HAVE_CUDA) */

namespace cv { namespace gpu { namespace device
{
    namespace stereocsbp
    {
        void load_constants(int ndisp, float max_data_term, float data_weight, float max_disc_term, float disc_single_jump, int min_disp_th,
            const PtrStepSzb& left, const PtrStepSzb& right, const PtrStepSzb& temp);

        template<class T>
        void init_data_cost(int rows, int cols, T* disp_selected_pyr, T* data_cost_selected, size_t msg_step,
                    int h, int w, int level, int nr_plane, int ndisp, int channels, bool use_local_init_data_cost, cudaStream_t stream);

        template<class T>
        void compute_data_cost(const T* disp_selected_pyr, T* data_cost, size_t msg_step,
                               int rows, int cols, int h, int w, int h2, int level, int nr_plane, int channels, cudaStream_t stream);

        template<class T>
        void init_message(T* u_new, T* d_new, T* l_new, T* r_new,
                          const T* u_cur, const T* d_cur, const T* l_cur, const T* r_cur,
                          T* selected_disp_pyr_new, const T* selected_disp_pyr_cur,
                          T* data_cost_selected, const T* data_cost, size_t msg_step,
                          int h, int w, int nr_plane, int h2, int w2, int nr_plane2, cudaStream_t stream);

        template<class T>
        void calc_all_iterations(T* u, T* d, T* l, T* r, const T* data_cost_selected,
            const T* selected_disp_pyr_cur, size_t msg_step, int h, int w, int nr_plane, int iters, cudaStream_t stream);

        template<class T>
        void compute_disp(const T* u, const T* d, const T* l, const T* r, const T* data_cost_selected, const T* disp_selected, size_t msg_step,
            const PtrStepSz<short>& disp, int nr_plane, cudaStream_t stream);
    }
}}}

using namespace ::cv::gpu::device::stereocsbp;

namespace
{
    const float DEFAULT_MAX_DATA_TERM = 30.0f;
    const float DEFAULT_DATA_WEIGHT = 1.0f;
    const float DEFAULT_MAX_DISC_TERM = 160.0f;
    const float DEFAULT_DISC_SINGLE_JUMP = 10.0f;
}

void cv::gpu::StereoConstantSpaceBP::estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels, int& nr_plane)
{
    ndisp = (int) ((float) width / 3.14f);
    if ((ndisp & 1) != 0)
        ndisp++;

    int mm = ::max(width, height);
    iters = mm / 100 + ((mm > 1200)? - 4 : 4);

    levels = (int)::log(static_cast<double>(mm)) * 2 / 3;
    if (levels == 0) levels++;

    nr_plane = (int) ((float) ndisp / std::pow(2.0, levels + 1));
}

cv::gpu::StereoConstantSpaceBP::StereoConstantSpaceBP(int ndisp_, int iters_, int levels_, int nr_plane_,
                                                      int msg_type_)

    : ndisp(ndisp_), iters(iters_), levels(levels_), nr_plane(nr_plane_),
      max_data_term(DEFAULT_MAX_DATA_TERM), data_weight(DEFAULT_DATA_WEIGHT),
      max_disc_term(DEFAULT_MAX_DISC_TERM), disc_single_jump(DEFAULT_DISC_SINGLE_JUMP), min_disp_th(0),
      msg_type(msg_type_), use_local_init_data_cost(true)
{
    CV_Assert(msg_type_ == CV_32F || msg_type_ == CV_16S);
}

cv::gpu::StereoConstantSpaceBP::StereoConstantSpaceBP(int ndisp_, int iters_, int levels_, int nr_plane_,
                                                      float max_data_term_, float data_weight_, float max_disc_term_, float disc_single_jump_,
                                                      int min_disp_th_, int msg_type_)
    : ndisp(ndisp_), iters(iters_), levels(levels_), nr_plane(nr_plane_),
      max_data_term(max_data_term_), data_weight(data_weight_),
      max_disc_term(max_disc_term_), disc_single_jump(disc_single_jump_), min_disp_th(min_disp_th_),
      msg_type(msg_type_), use_local_init_data_cost(true)
{
    CV_Assert(msg_type_ == CV_32F || msg_type_ == CV_16S);
}

template<class T>
static void csbp_operator(StereoConstantSpaceBP& rthis, GpuMat& mbuf, GpuMat& temp, GpuMat& out, const GpuMat& left, const GpuMat& right, GpuMat& disp, Stream& stream)
{
    CV_DbgAssert(0 < rthis.ndisp && 0 < rthis.iters && 0 < rthis.levels && 0 < rthis.nr_plane
        && left.rows == right.rows && left.cols == right.cols && left.type() == right.type());

    CV_Assert(rthis.levels <= 8 && (left.type() == CV_8UC1 || left.type() == CV_8UC3 || left.type() == CV_8UC4));

    const Scalar zero = Scalar::all(0);

    cudaStream_t cudaStream = StreamAccessor::getStream(stream);

    ////////////////////////////////////////////////////////////////////////////////////////////
    // Init

    int rows = left.rows;
    int cols = left.cols;

    rthis.levels = min(rthis.levels, int(log((double)rthis.ndisp) / log(2.0)));
    int levels = rthis.levels;

    // compute sizes
    AutoBuffer<int> buf(levels * 3);
    int* cols_pyr = buf;
    int* rows_pyr = cols_pyr + levels;
    int* nr_plane_pyr = rows_pyr + levels;

    cols_pyr[0]     = cols;
    rows_pyr[0]     = rows;
    nr_plane_pyr[0] = rthis.nr_plane;

    for (int i = 1; i < levels; i++)
    {
        cols_pyr[i]     = cols_pyr[i-1] / 2;
        rows_pyr[i]     = rows_pyr[i-1] / 2;
        nr_plane_pyr[i] = nr_plane_pyr[i-1] * 2;
    }


    GpuMat u[2], d[2], l[2], r[2], disp_selected_pyr[2], data_cost, data_cost_selected;


    //allocate buffers
    int buffers_count = 10; // (up + down + left + right + disp_selected_pyr) * 2
    buffers_count += 2; //  data_cost has twice more rows than other buffers, what's why +2, not +1;
    buffers_count += 1; //  data_cost_selected
    mbuf.create(rows * rthis.nr_plane * buffers_count, cols, DataType<T>::type);

    data_cost          = mbuf.rowRange(0, rows * rthis.nr_plane * 2);
    data_cost_selected = mbuf.rowRange(data_cost.rows, data_cost.rows + rows * rthis.nr_plane);

    for(int k = 0; k < 2; ++k) // in/out
    {
        GpuMat sub1 = mbuf.rowRange(data_cost.rows + data_cost_selected.rows, mbuf.rows);
        GpuMat sub2 = sub1.rowRange((k+0)*sub1.rows/2, (k+1)*sub1.rows/2);

        GpuMat *buf_ptrs[] = { &u[k], &d[k], &l[k], &r[k], &disp_selected_pyr[k] };
        for(int _r = 0; _r < 5; ++_r)
        {
            *buf_ptrs[_r] = sub2.rowRange(_r * sub2.rows/5, (_r+1) * sub2.rows/5);
            assert(buf_ptrs[_r]->cols == cols && buf_ptrs[_r]->rows == rows * rthis.nr_plane);
        }
    };

    size_t elem_step = mbuf.step / sizeof(T);

    Size temp_size = data_cost.size();
    if ((size_t)temp_size.area() < elem_step * rows_pyr[levels - 1] * rthis.ndisp)
        temp_size = Size(static_cast<int>(elem_step), rows_pyr[levels - 1] * rthis.ndisp);

    temp.create(temp_size, DataType<T>::type);

    ////////////////////////////////////////////////////////////////////////////
    // Compute

    load_constants(rthis.ndisp, rthis.max_data_term, rthis.data_weight, rthis.max_disc_term, rthis.disc_single_jump, rthis.min_disp_th, left, right, temp);

    if (stream)
    {
        stream.enqueueMemSet(l[0], zero);
        stream.enqueueMemSet(d[0], zero);
        stream.enqueueMemSet(r[0], zero);
        stream.enqueueMemSet(u[0], zero);

        stream.enqueueMemSet(l[1], zero);
        stream.enqueueMemSet(d[1], zero);
        stream.enqueueMemSet(r[1], zero);
        stream.enqueueMemSet(u[1], zero);

        stream.enqueueMemSet(data_cost, zero);
        stream.enqueueMemSet(data_cost_selected, zero);
    }
    else
    {
        l[0].setTo(zero);
        d[0].setTo(zero);
        r[0].setTo(zero);
        u[0].setTo(zero);

        l[1].setTo(zero);
        d[1].setTo(zero);
        r[1].setTo(zero);
        u[1].setTo(zero);

        data_cost.setTo(zero);
        data_cost_selected.setTo(zero);
    }

    int cur_idx = 0;

    for (int i = levels - 1; i >= 0; i--)
    {
        if (i == levels - 1)
        {
            init_data_cost(left.rows, left.cols, disp_selected_pyr[cur_idx].ptr<T>(), data_cost_selected.ptr<T>(),
                elem_step, rows_pyr[i], cols_pyr[i], i, nr_plane_pyr[i], rthis.ndisp, left.channels(), rthis.use_local_init_data_cost, cudaStream);
        }
        else
        {
            compute_data_cost(disp_selected_pyr[cur_idx].ptr<T>(), data_cost.ptr<T>(), elem_step,
                left.rows, left.cols, rows_pyr[i], cols_pyr[i], rows_pyr[i+1], i, nr_plane_pyr[i+1], left.channels(), cudaStream);

            int new_idx = (cur_idx + 1) & 1;

            init_message(u[new_idx].ptr<T>(), d[new_idx].ptr<T>(), l[new_idx].ptr<T>(), r[new_idx].ptr<T>(),
                         u[cur_idx].ptr<T>(), d[cur_idx].ptr<T>(), l[cur_idx].ptr<T>(), r[cur_idx].ptr<T>(),
                         disp_selected_pyr[new_idx].ptr<T>(), disp_selected_pyr[cur_idx].ptr<T>(),
                         data_cost_selected.ptr<T>(), data_cost.ptr<T>(), elem_step, rows_pyr[i],
                         cols_pyr[i], nr_plane_pyr[i], rows_pyr[i+1], cols_pyr[i+1], nr_plane_pyr[i+1], cudaStream);

            cur_idx = new_idx;
        }

        calc_all_iterations(u[cur_idx].ptr<T>(), d[cur_idx].ptr<T>(), l[cur_idx].ptr<T>(), r[cur_idx].ptr<T>(),
                            data_cost_selected.ptr<T>(), disp_selected_pyr[cur_idx].ptr<T>(), elem_step,
                            rows_pyr[i], cols_pyr[i], nr_plane_pyr[i], rthis.iters, cudaStream);
    }

    if (disp.empty())
        disp.create(rows, cols, CV_16S);

    out = ((disp.type() == CV_16S) ? disp : (out.create(rows, cols, CV_16S), out));

    if (stream)
        stream.enqueueMemSet(out, zero);
    else
        out.setTo(zero);

    compute_disp(u[cur_idx].ptr<T>(), d[cur_idx].ptr<T>(), l[cur_idx].ptr<T>(), r[cur_idx].ptr<T>(),
                 data_cost_selected.ptr<T>(), disp_selected_pyr[cur_idx].ptr<T>(), elem_step, out, nr_plane_pyr[0], cudaStream);

    if (disp.type() != CV_16S)
    {
        if (stream)
            stream.enqueueConvert(out, disp, disp.type());
        else
            out.convertTo(disp, disp.type());
    }
}


typedef void (*csbp_operator_t)(StereoConstantSpaceBP& rthis, GpuMat& mbuf,
                                     GpuMat& temp, GpuMat& out, const GpuMat& left, const GpuMat& right, GpuMat& disp, Stream& stream);

const static csbp_operator_t operators[] = {0, 0, 0, csbp_operator<short>, 0, csbp_operator<float>, 0, 0};

void cv::gpu::StereoConstantSpaceBP::operator()(const GpuMat& left, const GpuMat& right, GpuMat& disp, Stream& stream)
{
    CV_Assert(msg_type == CV_32F || msg_type == CV_16S);
    operators[msg_type](*this, messages_buffers, temp, out, left, right, disp, stream);
}

#endif /* !defined (HAVE_CUDA) */