orb.cpp 33.4 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

wester committed
45
using namespace std;
wester committed
46
using namespace cv;
wester committed
47
using namespace cv::gpu;
wester committed
48 49 50

#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)

wester committed
51 52 53 54 55 56 57 58 59 60 61 62
cv::gpu::ORB_GPU::ORB_GPU(int, float, int, int, int, int, int, int) : fastDetector_(20) { throw_nogpu(); }
void cv::gpu::ORB_GPU::operator()(const GpuMat&, const GpuMat&, std::vector<KeyPoint>&) { throw_nogpu(); }
void cv::gpu::ORB_GPU::operator()(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
void cv::gpu::ORB_GPU::operator()(const GpuMat&, const GpuMat&, std::vector<KeyPoint>&, GpuMat&) { throw_nogpu(); }
void cv::gpu::ORB_GPU::operator()(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&) { throw_nogpu(); }
void cv::gpu::ORB_GPU::downloadKeyPoints(GpuMat&, std::vector<KeyPoint>&) { throw_nogpu(); }
void cv::gpu::ORB_GPU::convertKeyPoints(Mat&, std::vector<KeyPoint>&) { throw_nogpu(); }
void cv::gpu::ORB_GPU::release() { throw_nogpu(); }
void cv::gpu::ORB_GPU::buildScalePyramids(const GpuMat&, const GpuMat&) { throw_nogpu(); }
void cv::gpu::ORB_GPU::computeKeyPointsPyramid() { throw_nogpu(); }
void cv::gpu::ORB_GPU::computeDescriptors(GpuMat&) { throw_nogpu(); }
void cv::gpu::ORB_GPU::mergeKeyPoints(GpuMat&) { throw_nogpu(); }
wester committed
63 64 65

#else /* !defined (HAVE_CUDA) */

wester committed
66
namespace cv { namespace gpu { namespace device
wester committed
67 68 69
{
    namespace orb
    {
a  
Kai Westerkamp committed
70
        int cull_gpu(int* loc, float* response, int size, int n_points);
wester committed
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349

        void HarrisResponses_gpu(PtrStepSzb img, const short2* loc, float* response, const int npoints, int blockSize, float harris_k, cudaStream_t stream);

        void loadUMax(const int* u_max, int count);

        void IC_Angle_gpu(PtrStepSzb image, const short2* loc, float* angle, int npoints, int half_k, cudaStream_t stream);

        void computeOrbDescriptor_gpu(PtrStepb img, const short2* loc, const float* angle, const int npoints,
            const int* pattern_x, const int* pattern_y, PtrStepb desc, int dsize, int WTA_K, cudaStream_t stream);

        void mergeLocation_gpu(const short2* loc, float* x, float* y, int npoints, float scale, cudaStream_t stream);
    }
}}}

namespace
{
    const float HARRIS_K = 0.04f;
    const int DESCRIPTOR_SIZE = 32;

    const int bit_pattern_31_[256 * 4] =
    {
        8,-3, 9,5/*mean (0), correlation (0)*/,
        4,2, 7,-12/*mean (1.12461e-05), correlation (0.0437584)*/,
        -11,9, -8,2/*mean (3.37382e-05), correlation (0.0617409)*/,
        7,-12, 12,-13/*mean (5.62303e-05), correlation (0.0636977)*/,
        2,-13, 2,12/*mean (0.000134953), correlation (0.085099)*/,
        1,-7, 1,6/*mean (0.000528565), correlation (0.0857175)*/,
        -2,-10, -2,-4/*mean (0.0188821), correlation (0.0985774)*/,
        -13,-13, -11,-8/*mean (0.0363135), correlation (0.0899616)*/,
        -13,-3, -12,-9/*mean (0.121806), correlation (0.099849)*/,
        10,4, 11,9/*mean (0.122065), correlation (0.093285)*/,
        -13,-8, -8,-9/*mean (0.162787), correlation (0.0942748)*/,
        -11,7, -9,12/*mean (0.21561), correlation (0.0974438)*/,
        7,7, 12,6/*mean (0.160583), correlation (0.130064)*/,
        -4,-5, -3,0/*mean (0.228171), correlation (0.132998)*/,
        -13,2, -12,-3/*mean (0.00997526), correlation (0.145926)*/,
        -9,0, -7,5/*mean (0.198234), correlation (0.143636)*/,
        12,-6, 12,-1/*mean (0.0676226), correlation (0.16689)*/,
        -3,6, -2,12/*mean (0.166847), correlation (0.171682)*/,
        -6,-13, -4,-8/*mean (0.101215), correlation (0.179716)*/,
        11,-13, 12,-8/*mean (0.200641), correlation (0.192279)*/,
        4,7, 5,1/*mean (0.205106), correlation (0.186848)*/,
        5,-3, 10,-3/*mean (0.234908), correlation (0.192319)*/,
        3,-7, 6,12/*mean (0.0709964), correlation (0.210872)*/,
        -8,-7, -6,-2/*mean (0.0939834), correlation (0.212589)*/,
        -2,11, -1,-10/*mean (0.127778), correlation (0.20866)*/,
        -13,12, -8,10/*mean (0.14783), correlation (0.206356)*/,
        -7,3, -5,-3/*mean (0.182141), correlation (0.198942)*/,
        -4,2, -3,7/*mean (0.188237), correlation (0.21384)*/,
        -10,-12, -6,11/*mean (0.14865), correlation (0.23571)*/,
        5,-12, 6,-7/*mean (0.222312), correlation (0.23324)*/,
        5,-6, 7,-1/*mean (0.229082), correlation (0.23389)*/,
        1,0, 4,-5/*mean (0.241577), correlation (0.215286)*/,
        9,11, 11,-13/*mean (0.00338507), correlation (0.251373)*/,
        4,7, 4,12/*mean (0.131005), correlation (0.257622)*/,
        2,-1, 4,4/*mean (0.152755), correlation (0.255205)*/,
        -4,-12, -2,7/*mean (0.182771), correlation (0.244867)*/,
        -8,-5, -7,-10/*mean (0.186898), correlation (0.23901)*/,
        4,11, 9,12/*mean (0.226226), correlation (0.258255)*/,
        0,-8, 1,-13/*mean (0.0897886), correlation (0.274827)*/,
        -13,-2, -8,2/*mean (0.148774), correlation (0.28065)*/,
        -3,-2, -2,3/*mean (0.153048), correlation (0.283063)*/,
        -6,9, -4,-9/*mean (0.169523), correlation (0.278248)*/,
        8,12, 10,7/*mean (0.225337), correlation (0.282851)*/,
        0,9, 1,3/*mean (0.226687), correlation (0.278734)*/,
        7,-5, 11,-10/*mean (0.00693882), correlation (0.305161)*/,
        -13,-6, -11,0/*mean (0.0227283), correlation (0.300181)*/,
        10,7, 12,1/*mean (0.125517), correlation (0.31089)*/,
        -6,-3, -6,12/*mean (0.131748), correlation (0.312779)*/,
        10,-9, 12,-4/*mean (0.144827), correlation (0.292797)*/,
        -13,8, -8,-12/*mean (0.149202), correlation (0.308918)*/,
        -13,0, -8,-4/*mean (0.160909), correlation (0.310013)*/,
        3,3, 7,8/*mean (0.177755), correlation (0.309394)*/,
        5,7, 10,-7/*mean (0.212337), correlation (0.310315)*/,
        -1,7, 1,-12/*mean (0.214429), correlation (0.311933)*/,
        3,-10, 5,6/*mean (0.235807), correlation (0.313104)*/,
        2,-4, 3,-10/*mean (0.00494827), correlation (0.344948)*/,
        -13,0, -13,5/*mean (0.0549145), correlation (0.344675)*/,
        -13,-7, -12,12/*mean (0.103385), correlation (0.342715)*/,
        -13,3, -11,8/*mean (0.134222), correlation (0.322922)*/,
        -7,12, -4,7/*mean (0.153284), correlation (0.337061)*/,
        6,-10, 12,8/*mean (0.154881), correlation (0.329257)*/,
        -9,-1, -7,-6/*mean (0.200967), correlation (0.33312)*/,
        -2,-5, 0,12/*mean (0.201518), correlation (0.340635)*/,
        -12,5, -7,5/*mean (0.207805), correlation (0.335631)*/,
        3,-10, 8,-13/*mean (0.224438), correlation (0.34504)*/,
        -7,-7, -4,5/*mean (0.239361), correlation (0.338053)*/,
        -3,-2, -1,-7/*mean (0.240744), correlation (0.344322)*/,
        2,9, 5,-11/*mean (0.242949), correlation (0.34145)*/,
        -11,-13, -5,-13/*mean (0.244028), correlation (0.336861)*/,
        -1,6, 0,-1/*mean (0.247571), correlation (0.343684)*/,
        5,-3, 5,2/*mean (0.000697256), correlation (0.357265)*/,
        -4,-13, -4,12/*mean (0.00213675), correlation (0.373827)*/,
        -9,-6, -9,6/*mean (0.0126856), correlation (0.373938)*/,
        -12,-10, -8,-4/*mean (0.0152497), correlation (0.364237)*/,
        10,2, 12,-3/*mean (0.0299933), correlation (0.345292)*/,
        7,12, 12,12/*mean (0.0307242), correlation (0.366299)*/,
        -7,-13, -6,5/*mean (0.0534975), correlation (0.368357)*/,
        -4,9, -3,4/*mean (0.099865), correlation (0.372276)*/,
        7,-1, 12,2/*mean (0.117083), correlation (0.364529)*/,
        -7,6, -5,1/*mean (0.126125), correlation (0.369606)*/,
        -13,11, -12,5/*mean (0.130364), correlation (0.358502)*/,
        -3,7, -2,-6/*mean (0.131691), correlation (0.375531)*/,
        7,-8, 12,-7/*mean (0.160166), correlation (0.379508)*/,
        -13,-7, -11,-12/*mean (0.167848), correlation (0.353343)*/,
        1,-3, 12,12/*mean (0.183378), correlation (0.371916)*/,
        2,-6, 3,0/*mean (0.228711), correlation (0.371761)*/,
        -4,3, -2,-13/*mean (0.247211), correlation (0.364063)*/,
        -1,-13, 1,9/*mean (0.249325), correlation (0.378139)*/,
        7,1, 8,-6/*mean (0.000652272), correlation (0.411682)*/,
        1,-1, 3,12/*mean (0.00248538), correlation (0.392988)*/,
        9,1, 12,6/*mean (0.0206815), correlation (0.386106)*/,
        -1,-9, -1,3/*mean (0.0364485), correlation (0.410752)*/,
        -13,-13, -10,5/*mean (0.0376068), correlation (0.398374)*/,
        7,7, 10,12/*mean (0.0424202), correlation (0.405663)*/,
        12,-5, 12,9/*mean (0.0942645), correlation (0.410422)*/,
        6,3, 7,11/*mean (0.1074), correlation (0.413224)*/,
        5,-13, 6,10/*mean (0.109256), correlation (0.408646)*/,
        2,-12, 2,3/*mean (0.131691), correlation (0.416076)*/,
        3,8, 4,-6/*mean (0.165081), correlation (0.417569)*/,
        2,6, 12,-13/*mean (0.171874), correlation (0.408471)*/,
        9,-12, 10,3/*mean (0.175146), correlation (0.41296)*/,
        -8,4, -7,9/*mean (0.183682), correlation (0.402956)*/,
        -11,12, -4,-6/*mean (0.184672), correlation (0.416125)*/,
        1,12, 2,-8/*mean (0.191487), correlation (0.386696)*/,
        6,-9, 7,-4/*mean (0.192668), correlation (0.394771)*/,
        2,3, 3,-2/*mean (0.200157), correlation (0.408303)*/,
        6,3, 11,0/*mean (0.204588), correlation (0.411762)*/,
        3,-3, 8,-8/*mean (0.205904), correlation (0.416294)*/,
        7,8, 9,3/*mean (0.213237), correlation (0.409306)*/,
        -11,-5, -6,-4/*mean (0.243444), correlation (0.395069)*/,
        -10,11, -5,10/*mean (0.247672), correlation (0.413392)*/,
        -5,-8, -3,12/*mean (0.24774), correlation (0.411416)*/,
        -10,5, -9,0/*mean (0.00213675), correlation (0.454003)*/,
        8,-1, 12,-6/*mean (0.0293635), correlation (0.455368)*/,
        4,-6, 6,-11/*mean (0.0404971), correlation (0.457393)*/,
        -10,12, -8,7/*mean (0.0481107), correlation (0.448364)*/,
        4,-2, 6,7/*mean (0.050641), correlation (0.455019)*/,
        -2,0, -2,12/*mean (0.0525978), correlation (0.44338)*/,
        -5,-8, -5,2/*mean (0.0629667), correlation (0.457096)*/,
        7,-6, 10,12/*mean (0.0653846), correlation (0.445623)*/,
        -9,-13, -8,-8/*mean (0.0858749), correlation (0.449789)*/,
        -5,-13, -5,-2/*mean (0.122402), correlation (0.450201)*/,
        8,-8, 9,-13/*mean (0.125416), correlation (0.453224)*/,
        -9,-11, -9,0/*mean (0.130128), correlation (0.458724)*/,
        1,-8, 1,-2/*mean (0.132467), correlation (0.440133)*/,
        7,-4, 9,1/*mean (0.132692), correlation (0.454)*/,
        -2,1, -1,-4/*mean (0.135695), correlation (0.455739)*/,
        11,-6, 12,-11/*mean (0.142904), correlation (0.446114)*/,
        -12,-9, -6,4/*mean (0.146165), correlation (0.451473)*/,
        3,7, 7,12/*mean (0.147627), correlation (0.456643)*/,
        5,5, 10,8/*mean (0.152901), correlation (0.455036)*/,
        0,-4, 2,8/*mean (0.167083), correlation (0.459315)*/,
        -9,12, -5,-13/*mean (0.173234), correlation (0.454706)*/,
        0,7, 2,12/*mean (0.18312), correlation (0.433855)*/,
        -1,2, 1,7/*mean (0.185504), correlation (0.443838)*/,
        5,11, 7,-9/*mean (0.185706), correlation (0.451123)*/,
        3,5, 6,-8/*mean (0.188968), correlation (0.455808)*/,
        -13,-4, -8,9/*mean (0.191667), correlation (0.459128)*/,
        -5,9, -3,-3/*mean (0.193196), correlation (0.458364)*/,
        -4,-7, -3,-12/*mean (0.196536), correlation (0.455782)*/,
        6,5, 8,0/*mean (0.1972), correlation (0.450481)*/,
        -7,6, -6,12/*mean (0.199438), correlation (0.458156)*/,
        -13,6, -5,-2/*mean (0.211224), correlation (0.449548)*/,
        1,-10, 3,10/*mean (0.211718), correlation (0.440606)*/,
        4,1, 8,-4/*mean (0.213034), correlation (0.443177)*/,
        -2,-2, 2,-13/*mean (0.234334), correlation (0.455304)*/,
        2,-12, 12,12/*mean (0.235684), correlation (0.443436)*/,
        -2,-13, 0,-6/*mean (0.237674), correlation (0.452525)*/,
        4,1, 9,3/*mean (0.23962), correlation (0.444824)*/,
        -6,-10, -3,-5/*mean (0.248459), correlation (0.439621)*/,
        -3,-13, -1,1/*mean (0.249505), correlation (0.456666)*/,
        7,5, 12,-11/*mean (0.00119208), correlation (0.495466)*/,
        4,-2, 5,-7/*mean (0.00372245), correlation (0.484214)*/,
        -13,9, -9,-5/*mean (0.00741116), correlation (0.499854)*/,
        7,1, 8,6/*mean (0.0208952), correlation (0.499773)*/,
        7,-8, 7,6/*mean (0.0220085), correlation (0.501609)*/,
        -7,-4, -7,1/*mean (0.0233806), correlation (0.496568)*/,
        -8,11, -7,-8/*mean (0.0236505), correlation (0.489719)*/,
        -13,6, -12,-8/*mean (0.0268781), correlation (0.503487)*/,
        2,4, 3,9/*mean (0.0323324), correlation (0.501938)*/,
        10,-5, 12,3/*mean (0.0399235), correlation (0.494029)*/,
        -6,-5, -6,7/*mean (0.0420153), correlation (0.486579)*/,
        8,-3, 9,-8/*mean (0.0548021), correlation (0.484237)*/,
        2,-12, 2,8/*mean (0.0616622), correlation (0.496642)*/,
        -11,-2, -10,3/*mean (0.0627755), correlation (0.498563)*/,
        -12,-13, -7,-9/*mean (0.0829622), correlation (0.495491)*/,
        -11,0, -10,-5/*mean (0.0843342), correlation (0.487146)*/,
        5,-3, 11,8/*mean (0.0929937), correlation (0.502315)*/,
        -2,-13, -1,12/*mean (0.113327), correlation (0.48941)*/,
        -1,-8, 0,9/*mean (0.132119), correlation (0.467268)*/,
        -13,-11, -12,-5/*mean (0.136269), correlation (0.498771)*/,
        -10,-2, -10,11/*mean (0.142173), correlation (0.498714)*/,
        -3,9, -2,-13/*mean (0.144141), correlation (0.491973)*/,
        2,-3, 3,2/*mean (0.14892), correlation (0.500782)*/,
        -9,-13, -4,0/*mean (0.150371), correlation (0.498211)*/,
        -4,6, -3,-10/*mean (0.152159), correlation (0.495547)*/,
        -4,12, -2,-7/*mean (0.156152), correlation (0.496925)*/,
        -6,-11, -4,9/*mean (0.15749), correlation (0.499222)*/,
        6,-3, 6,11/*mean (0.159211), correlation (0.503821)*/,
        -13,11, -5,5/*mean (0.162427), correlation (0.501907)*/,
        11,11, 12,6/*mean (0.16652), correlation (0.497632)*/,
        7,-5, 12,-2/*mean (0.169141), correlation (0.484474)*/,
        -1,12, 0,7/*mean (0.169456), correlation (0.495339)*/,
        -4,-8, -3,-2/*mean (0.171457), correlation (0.487251)*/,
        -7,1, -6,7/*mean (0.175), correlation (0.500024)*/,
        -13,-12, -8,-13/*mean (0.175866), correlation (0.497523)*/,
        -7,-2, -6,-8/*mean (0.178273), correlation (0.501854)*/,
        -8,5, -6,-9/*mean (0.181107), correlation (0.494888)*/,
        -5,-1, -4,5/*mean (0.190227), correlation (0.482557)*/,
        -13,7, -8,10/*mean (0.196739), correlation (0.496503)*/,
        1,5, 5,-13/*mean (0.19973), correlation (0.499759)*/,
        1,0, 10,-13/*mean (0.204465), correlation (0.49873)*/,
        9,12, 10,-1/*mean (0.209334), correlation (0.49063)*/,
        5,-8, 10,-9/*mean (0.211134), correlation (0.503011)*/,
        -1,11, 1,-13/*mean (0.212), correlation (0.499414)*/,
        -9,-3, -6,2/*mean (0.212168), correlation (0.480739)*/,
        -1,-10, 1,12/*mean (0.212731), correlation (0.502523)*/,
        -13,1, -8,-10/*mean (0.21327), correlation (0.489786)*/,
        8,-11, 10,-6/*mean (0.214159), correlation (0.488246)*/,
        2,-13, 3,-6/*mean (0.216993), correlation (0.50287)*/,
        7,-13, 12,-9/*mean (0.223639), correlation (0.470502)*/,
        -10,-10, -5,-7/*mean (0.224089), correlation (0.500852)*/,
        -10,-8, -8,-13/*mean (0.228666), correlation (0.502629)*/,
        4,-6, 8,5/*mean (0.22906), correlation (0.498305)*/,
        3,12, 8,-13/*mean (0.233378), correlation (0.503825)*/,
        -4,2, -3,-3/*mean (0.234323), correlation (0.476692)*/,
        5,-13, 10,-12/*mean (0.236392), correlation (0.475462)*/,
        4,-13, 5,-1/*mean (0.236842), correlation (0.504132)*/,
        -9,9, -4,3/*mean (0.236977), correlation (0.497739)*/,
        0,3, 3,-9/*mean (0.24314), correlation (0.499398)*/,
        -12,1, -6,1/*mean (0.243297), correlation (0.489447)*/,
        3,2, 4,-8/*mean (0.00155196), correlation (0.553496)*/,
        -10,-10, -10,9/*mean (0.00239541), correlation (0.54297)*/,
        8,-13, 12,12/*mean (0.0034413), correlation (0.544361)*/,
        -8,-12, -6,-5/*mean (0.003565), correlation (0.551225)*/,
        2,2, 3,7/*mean (0.00835583), correlation (0.55285)*/,
        10,6, 11,-8/*mean (0.00885065), correlation (0.540913)*/,
        6,8, 8,-12/*mean (0.0101552), correlation (0.551085)*/,
        -7,10, -6,5/*mean (0.0102227), correlation (0.533635)*/,
        -3,-9, -3,9/*mean (0.0110211), correlation (0.543121)*/,
        -1,-13, -1,5/*mean (0.0113473), correlation (0.550173)*/,
        -3,-7, -3,4/*mean (0.0140913), correlation (0.554774)*/,
        -8,-2, -8,3/*mean (0.017049), correlation (0.55461)*/,
        4,2, 12,12/*mean (0.01778), correlation (0.546921)*/,
        2,-5, 3,11/*mean (0.0224022), correlation (0.549667)*/,
        6,-9, 11,-13/*mean (0.029161), correlation (0.546295)*/,
        3,-1, 7,12/*mean (0.0303081), correlation (0.548599)*/,
        11,-1, 12,4/*mean (0.0355151), correlation (0.523943)*/,
        -3,0, -3,6/*mean (0.0417904), correlation (0.543395)*/,
        4,-11, 4,12/*mean (0.0487292), correlation (0.542818)*/,
        2,-4, 2,1/*mean (0.0575124), correlation (0.554888)*/,
        -10,-6, -8,1/*mean (0.0594242), correlation (0.544026)*/,
        -13,7, -11,1/*mean (0.0597391), correlation (0.550524)*/,
        -13,12, -11,-13/*mean (0.0608974), correlation (0.55383)*/,
        6,0, 11,-13/*mean (0.065126), correlation (0.552006)*/,
        0,-1, 1,4/*mean (0.074224), correlation (0.546372)*/,
        -13,3, -9,-2/*mean (0.0808592), correlation (0.554875)*/,
        -9,8, -6,-3/*mean (0.0883378), correlation (0.551178)*/,
        -13,-6, -8,-2/*mean (0.0901035), correlation (0.548446)*/,
        5,-9, 8,10/*mean (0.0949843), correlation (0.554694)*/,
        2,7, 3,-9/*mean (0.0994152), correlation (0.550979)*/,
        -1,-6, -1,-1/*mean (0.10045), correlation (0.552714)*/,
        9,5, 11,-2/*mean (0.100686), correlation (0.552594)*/,
        11,-3, 12,-8/*mean (0.101091), correlation (0.532394)*/,
        3,0, 3,5/*mean (0.101147), correlation (0.525576)*/,
        -1,4, 0,10/*mean (0.105263), correlation (0.531498)*/,
        3,-6, 4,5/*mean (0.110785), correlation (0.540491)*/,
        -13,0, -10,5/*mean (0.112798), correlation (0.536582)*/,
        5,8, 12,11/*mean (0.114181), correlation (0.555793)*/,
        8,9, 9,-6/*mean (0.117431), correlation (0.553763)*/,
        7,-4, 8,-12/*mean (0.118522), correlation (0.553452)*/,
        -10,4, -10,9/*mean (0.12094), correlation (0.554785)*/,
        7,3, 12,4/*mean (0.122582), correlation (0.555825)*/,
        9,-7, 10,-2/*mean (0.124978), correlation (0.549846)*/,
        7,0, 12,-2/*mean (0.127002), correlation (0.537452)*/,
        -1,-6, 0,-11/*mean (0.127148), correlation (0.547401)*/
    };

wester committed
350
    void initializeOrbPattern(const Point* pattern0, Mat& pattern, int ntuples, int tupleSize, int poolSize)
wester committed
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
    {
        RNG rng(0x12345678);

        pattern.create(2, ntuples * tupleSize, CV_32SC1);
        pattern.setTo(Scalar::all(0));

        int* pattern_x_ptr = pattern.ptr<int>(0);
        int* pattern_y_ptr = pattern.ptr<int>(1);

        for (int i = 0; i < ntuples; i++)
        {
            for (int k = 0; k < tupleSize; k++)
            {
                for(;;)
                {
                    int idx = rng.uniform(0, poolSize);
                    Point pt = pattern0[idx];

                    int k1;
                    for (k1 = 0; k1 < k; k1++)
                        if (pattern_x_ptr[tupleSize * i + k1] == pt.x && pattern_y_ptr[tupleSize * i + k1] == pt.y)
                            break;

                    if (k1 == k)
                    {
                        pattern_x_ptr[tupleSize * i + k] = pt.x;
                        pattern_y_ptr[tupleSize * i + k] = pt.y;
                        break;
                    }
                }
            }
        }
    }

wester committed
385
    void makeRandomPattern(int patchSize, Point* pattern, int npoints)
wester committed
386 387 388 389 390 391 392 393 394 395 396
    {
        // we always start with a fixed seed,
        // to make patterns the same on each run
        RNG rng(0x34985739);

        for (int i = 0; i < npoints; i++)
        {
            pattern[i].x = rng.uniform(-patchSize / 2, patchSize / 2 + 1);
            pattern[i].y = rng.uniform(-patchSize / 2, patchSize / 2 + 1);
        }
    }
wester committed
397
}
wester committed
398

wester committed
399 400 401 402 403 404
cv::gpu::ORB_GPU::ORB_GPU(int nFeatures, float scaleFactor, int nLevels, int edgeThreshold, int firstLevel, int WTA_K, int scoreType, int patchSize) :
    nFeatures_(nFeatures), scaleFactor_(scaleFactor), nLevels_(nLevels), edgeThreshold_(edgeThreshold), firstLevel_(firstLevel), WTA_K_(WTA_K),
    scoreType_(scoreType), patchSize_(patchSize),
    fastDetector_(DEFAULT_FAST_THRESHOLD)
{
    CV_Assert(patchSize_ >= 2);
wester committed
405

wester committed
406 407 408
    // fill the extractors and descriptors for the corresponding scales
    float factor = 1.0f / scaleFactor_;
    float n_desired_features_per_scale = nFeatures_ * (1.0f - factor) / (1.0f - std::pow(factor, nLevels_));
wester committed
409

wester committed
410 411 412 413 414 415 416 417 418
    n_features_per_level_.resize(nLevels_);
    size_t sum_n_features = 0;
    for (int level = 0; level < nLevels_ - 1; ++level)
    {
        n_features_per_level_[level] = cvRound(n_desired_features_per_scale);
        sum_n_features += n_features_per_level_[level];
        n_desired_features_per_scale *= factor;
    }
    n_features_per_level_[nLevels_ - 1] = nFeatures - sum_n_features;
wester committed
419

wester committed
420 421 422 423 424
    // pre-compute the end of a row in a circular patch
    int half_patch_size = patchSize_ / 2;
    vector<int> u_max(half_patch_size + 2);
    for (int v = 0; v <= half_patch_size * std::sqrt(2.f) / 2 + 1; ++v)
        u_max[v] = cvRound(std::sqrt(static_cast<float>(half_patch_size * half_patch_size - v * v)));
wester committed
425

wester committed
426 427 428 429
    // Make sure we are symmetric
    for (int v = half_patch_size, v_0 = 0; v >= half_patch_size * std::sqrt(2.f) / 2; --v)
    {
        while (u_max[v_0] == u_max[v_0 + 1])
wester committed
430
            ++v_0;
wester committed
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
        u_max[v] = v_0;
        ++v_0;
    }
    CV_Assert(u_max.size() < 32);
    cv::gpu::device::orb::loadUMax(&u_max[0], static_cast<int>(u_max.size()));

    // Calc pattern
    const int npoints = 512;
    Point pattern_buf[npoints];
    const Point* pattern0 = (const Point*)bit_pattern_31_;
    if (patchSize_ != 31)
    {
        pattern0 = pattern_buf;
        makeRandomPattern(patchSize_, pattern_buf, npoints);
    }
wester committed
446

wester committed
447
    CV_Assert(WTA_K_ == 2 || WTA_K_ == 3 || WTA_K_ == 4);
wester committed
448

wester committed
449
    Mat h_pattern;
wester committed
450

wester committed
451 452 453
    if (WTA_K_ == 2)
    {
        h_pattern.create(2, npoints, CV_32SC1);
wester committed
454

wester committed
455 456
        int* pattern_x_ptr = h_pattern.ptr<int>(0);
        int* pattern_y_ptr = h_pattern.ptr<int>(1);
wester committed
457

wester committed
458 459 460 461 462
        for (int i = 0; i < npoints; ++i)
        {
            pattern_x_ptr[i] = pattern0[i].x;
            pattern_y_ptr[i] = pattern0[i].y;
        }
wester committed
463
    }
wester committed
464
    else
wester committed
465
    {
wester committed
466 467
        int ntuples = descriptorSize() * 4;
        initializeOrbPattern(pattern0, h_pattern, ntuples, WTA_K_, npoints);
wester committed
468 469
    }

wester committed
470
    pattern_.upload(h_pattern);
a  
Kai Westerkamp committed
471

wester committed
472 473 474 475
    blurFilter = createGaussianFilter_GPU(CV_8UC1, Size(7, 7), 2, 2, BORDER_REFLECT_101);

    blurForDescriptor = false;
}
a  
Kai Westerkamp committed
476

wester committed
477 478 479
namespace
{
    inline float getScale(float scaleFactor, int firstLevel, int level)
a  
Kai Westerkamp committed
480 481
    {
        return pow(scaleFactor, level - firstLevel);
wester committed
482
    }
wester committed
483
}
wester committed
484

wester committed
485 486 487 488
void cv::gpu::ORB_GPU::buildScalePyramids(const GpuMat& image, const GpuMat& mask)
{
    CV_Assert(image.type() == CV_8UC1);
    CV_Assert(mask.empty() || (mask.type() == CV_8UC1 && mask.size() == image.size()));
wester committed
489

wester committed
490 491
    imagePyr_.resize(nLevels_);
    maskPyr_.resize(nLevels_);
wester committed
492

wester committed
493 494 495
    for (int level = 0; level < nLevels_; ++level)
    {
        float scale = 1.0f / getScale(scaleFactor_, firstLevel_, level);
wester committed
496

wester committed
497
        Size sz(cvRound(image.cols * scale), cvRound(image.rows * scale));
wester committed
498

wester committed
499 500 501
        ensureSizeIsEnough(sz, image.type(), imagePyr_[level]);
        ensureSizeIsEnough(sz, CV_8UC1, maskPyr_[level]);
        maskPyr_[level].setTo(Scalar::all(255));
wester committed
502

wester committed
503 504 505 506
        // Compute the resized image
        if (level != firstLevel_)
        {
            if (level < firstLevel_)
wester committed
507
            {
wester committed
508
                resize(image, imagePyr_[level], sz, 0, 0, INTER_LINEAR);
wester committed
509

wester committed
510 511
                if (!mask.empty())
                    resize(mask, maskPyr_[level], sz, 0, 0, INTER_LINEAR);
wester committed
512 513 514
            }
            else
            {
wester committed
515
                resize(imagePyr_[level - 1], imagePyr_[level], sz, 0, 0, INTER_LINEAR);
wester committed
516 517

                if (!mask.empty())
wester committed
518 519 520 521
                {
                    resize(maskPyr_[level - 1], maskPyr_[level], sz, 0, 0, INTER_LINEAR);
                    threshold(maskPyr_[level], maskPyr_[level], 254, 0, THRESH_TOZERO);
                }
wester committed
522
            }
wester committed
523 524 525 526
        }
        else
        {
            image.copyTo(imagePyr_[level]);
wester committed
527

wester committed
528 529
            if (!mask.empty())
                mask.copyTo(maskPyr_[level]);
wester committed
530
        }
wester committed
531 532 533 534 535 536 537 538

        // Filter keypoints by image border
        ensureSizeIsEnough(sz, CV_8UC1, buf_);
        buf_.setTo(Scalar::all(0));
        Rect inner(edgeThreshold_, edgeThreshold_, sz.width - 2 * edgeThreshold_, sz.height - 2 * edgeThreshold_);
        buf_(inner).setTo(Scalar::all(255));

        bitwise_and(maskPyr_[level], buf_, maskPyr_[level]);
wester committed
539
    }
wester committed
540
}
wester committed
541

wester committed
542 543 544 545
namespace
{
    //takes keypoints and culls them by the response
    void cull(GpuMat& keypoints, int& count, int n_points)
wester committed
546
    {
wester committed
547
        using namespace cv::gpu::device::orb;
wester committed
548 549 550 551 552 553 554 555 556 557

        //this is only necessary if the keypoints size is greater than the number of desired points.
        if (count > n_points)
        {
            if (n_points == 0)
            {
                keypoints.release();
                return;
            }

wester committed
558
            count = cull_gpu(keypoints.ptr<int>(FAST_GPU::LOCATION_ROW), keypoints.ptr<float>(FAST_GPU::RESPONSE_ROW), count, n_points);
wester committed
559 560
        }
    }
wester committed
561 562 563 564 565 566 567
}

void cv::gpu::ORB_GPU::computeKeyPointsPyramid()
{
    using namespace cv::gpu::device::orb;

    int half_patch_size = patchSize_ / 2;
wester committed
568

wester committed
569 570 571 572
    keyPointsPyr_.resize(nLevels_);
    keyPointsCount_.resize(nLevels_);

    for (int level = 0; level < nLevels_; ++level)
wester committed
573
    {
wester committed
574
        keyPointsCount_[level] = fastDetector_.calcKeyPointsLocation(imagePyr_[level], maskPyr_[level]);
wester committed
575

wester committed
576 577
        if (keyPointsCount_[level] == 0)
            continue;
wester committed
578

wester committed
579
        ensureSizeIsEnough(3, keyPointsCount_[level], CV_32FC1, keyPointsPyr_[level]);
wester committed
580

wester committed
581 582
        GpuMat fastKpRange = keyPointsPyr_[level].rowRange(0, 2);
        keyPointsCount_[level] = fastDetector_.getKeyPoints(fastKpRange);
wester committed
583

wester committed
584 585
        if (keyPointsCount_[level] == 0)
            continue;
wester committed
586

wester committed
587
        int n_features = static_cast<int>(n_features_per_level_[level]);
wester committed
588

wester committed
589 590 591 592
        if (scoreType_ == ORB::HARRIS_SCORE)
        {
            // Keep more points than necessary as FAST does not give amazing corners
            cull(keyPointsPyr_[level], keyPointsCount_[level], 2 * n_features);
wester committed
593

wester committed
594 595 596
            // Compute the Harris cornerness (better scoring than FAST)
            HarrisResponses_gpu(imagePyr_[level], keyPointsPyr_[level].ptr<short2>(0), keyPointsPyr_[level].ptr<float>(1), keyPointsCount_[level], 7, HARRIS_K, 0);
        }
wester committed
597

wester committed
598 599
        //cull to the final desired level, using the new Harris scores or the original FAST scores.
        cull(keyPointsPyr_[level], keyPointsCount_[level], n_features);
wester committed
600

wester committed
601 602 603 604
        // Compute orientation
        IC_Angle_gpu(imagePyr_[level], keyPointsPyr_[level].ptr<short2>(0), keyPointsPyr_[level].ptr<float>(2), keyPointsCount_[level], half_patch_size, 0);
    }
}
wester committed
605

wester committed
606 607 608
void cv::gpu::ORB_GPU::computeDescriptors(GpuMat& descriptors)
{
    using namespace cv::gpu::device::orb;
wester committed
609

wester committed
610
    int nAllkeypoints = 0;
wester committed
611

wester committed
612 613
    for (int level = 0; level < nLevels_; ++level)
        nAllkeypoints += keyPointsCount_[level];
wester committed
614

wester committed
615 616 617 618
    if (nAllkeypoints == 0)
    {
        descriptors.release();
        return;
wester committed
619 620
    }

wester committed
621
    ensureSizeIsEnough(nAllkeypoints, descriptorSize(), CV_8UC1, descriptors);
wester committed
622

wester committed
623
    int offset = 0;
wester committed
624

wester committed
625 626 627 628
    for (int level = 0; level < nLevels_; ++level)
    {
        if (keyPointsCount_[level] == 0)
            continue;
wester committed
629

wester committed
630 631 632
        GpuMat descRange = descriptors.rowRange(offset, offset + keyPointsCount_[level]);

        if (blurForDescriptor)
wester committed
633
        {
wester committed
634 635 636
            // preprocess the resized image
            ensureSizeIsEnough(imagePyr_[level].size(), imagePyr_[level].type(), buf_);
            blurFilter->apply(imagePyr_[level], buf_, Rect(0, 0, imagePyr_[level].cols, imagePyr_[level].rows));
wester committed
637 638
        }

wester committed
639 640
        computeOrbDescriptor_gpu(blurForDescriptor ? buf_ : imagePyr_[level], keyPointsPyr_[level].ptr<short2>(0), keyPointsPyr_[level].ptr<float>(2),
            keyPointsCount_[level], pattern_.ptr<int>(0), pattern_.ptr<int>(1), descRange, descriptorSize(), WTA_K_, 0);
wester committed
641

wester committed
642 643 644
        offset += keyPointsCount_[level];
    }
}
wester committed
645

wester committed
646 647 648
void cv::gpu::ORB_GPU::mergeKeyPoints(GpuMat& keypoints)
{
    using namespace cv::gpu::device::orb;
wester committed
649

wester committed
650
    int nAllkeypoints = 0;
wester committed
651

wester committed
652 653
    for (int level = 0; level < nLevels_; ++level)
        nAllkeypoints += keyPointsCount_[level];
wester committed
654

wester committed
655 656 657 658
    if (nAllkeypoints == 0)
    {
        keypoints.release();
        return;
wester committed
659 660
    }

wester committed
661
    ensureSizeIsEnough(ROWS_COUNT, nAllkeypoints, CV_32FC1, keypoints);
wester committed
662

wester committed
663
    int offset = 0;
wester committed
664

wester committed
665 666 667 668
    for (int level = 0; level < nLevels_; ++level)
    {
        if (keyPointsCount_[level] == 0)
            continue;
wester committed
669

wester committed
670
        float sf = getScale(scaleFactor_, firstLevel_, level);
wester committed
671

wester committed
672
        GpuMat keyPointsRange = keypoints.colRange(offset, offset + keyPointsCount_[level]);
wester committed
673

wester committed
674
        float locScale = level != firstLevel_ ? sf : 1.0f;
wester committed
675

wester committed
676
        mergeLocation_gpu(keyPointsPyr_[level].ptr<short2>(0), keyPointsRange.ptr<float>(0), keyPointsRange.ptr<float>(1), keyPointsCount_[level], locScale, 0);
wester committed
677

wester committed
678 679
        GpuMat range = keyPointsRange.rowRange(2, 4);
        keyPointsPyr_[level](Range(1, 3), Range(0, keyPointsCount_[level])).copyTo(range);
wester committed
680

wester committed
681 682
        keyPointsRange.row(4).setTo(Scalar::all(level));
        keyPointsRange.row(5).setTo(Scalar::all(patchSize_ * sf));
wester committed
683

wester committed
684 685 686
        offset += keyPointsCount_[level];
    }
}
wester committed
687

wester committed
688 689 690 691 692 693 694
void cv::gpu::ORB_GPU::downloadKeyPoints(GpuMat &d_keypoints, std::vector<KeyPoint>& keypoints)
{
    if (d_keypoints.empty())
    {
        keypoints.clear();
        return;
    }
wester committed
695

wester committed
696
    Mat h_keypoints(d_keypoints);
wester committed
697

wester committed
698 699
    convertKeyPoints(h_keypoints, keypoints);
}
wester committed
700

wester committed
701 702 703 704 705 706
void cv::gpu::ORB_GPU::convertKeyPoints(Mat &d_keypoints, std::vector<KeyPoint>& keypoints)
{
    if (d_keypoints.empty())
    {
        keypoints.clear();
        return;
wester committed
707 708
    }

wester committed
709
    CV_Assert(d_keypoints.type() == CV_32FC1 && d_keypoints.rows == ROWS_COUNT);
wester committed
710

wester committed
711 712 713 714 715 716
    const float* x_ptr = d_keypoints.ptr<float>(X_ROW);
    const float* y_ptr = d_keypoints.ptr<float>(Y_ROW);
    const float* response_ptr = d_keypoints.ptr<float>(RESPONSE_ROW);
    const float* angle_ptr = d_keypoints.ptr<float>(ANGLE_ROW);
    const float* octave_ptr = d_keypoints.ptr<float>(OCTAVE_ROW);
    const float* size_ptr = d_keypoints.ptr<float>(SIZE_ROW);
wester committed
717

wester committed
718
    keypoints.resize(d_keypoints.cols);
wester committed
719

wester committed
720 721 722
    for (int i = 0; i < d_keypoints.cols; ++i)
    {
        KeyPoint kp;
wester committed
723

wester committed
724 725 726 727 728 729
        kp.pt.x = x_ptr[i];
        kp.pt.y = y_ptr[i];
        kp.response = response_ptr[i];
        kp.angle = angle_ptr[i];
        kp.octave = static_cast<int>(octave_ptr[i]);
        kp.size = size_ptr[i];
wester committed
730

wester committed
731 732 733
        keypoints[i] = kp;
    }
}
wester committed
734

wester committed
735 736 737 738 739 740
void cv::gpu::ORB_GPU::operator()(const GpuMat& image, const GpuMat& mask, GpuMat& keypoints)
{
    buildScalePyramids(image, mask);
    computeKeyPointsPyramid();
    mergeKeyPoints(keypoints);
}
wester committed
741

wester committed
742 743 744 745 746 747 748
void cv::gpu::ORB_GPU::operator()(const GpuMat& image, const GpuMat& mask, GpuMat& keypoints, GpuMat& descriptors)
{
    buildScalePyramids(image, mask);
    computeKeyPointsPyramid();
    computeDescriptors(descriptors);
    mergeKeyPoints(keypoints);
}
wester committed
749

wester committed
750 751 752 753 754 755 756 757 758 759
void cv::gpu::ORB_GPU::operator()(const GpuMat& image, const GpuMat& mask, std::vector<KeyPoint>& keypoints)
{
    (*this)(image, mask, d_keypoints_);
    downloadKeyPoints(d_keypoints_, keypoints);
}

void cv::gpu::ORB_GPU::operator()(const GpuMat& image, const GpuMat& mask, std::vector<KeyPoint>& keypoints, GpuMat& descriptors)
{
    (*this)(image, mask, d_keypoints_, descriptors);
    downloadKeyPoints(d_keypoints_, keypoints);
wester committed
760 761
}

wester committed
762
void cv::gpu::ORB_GPU::release()
wester committed
763
{
wester committed
764 765 766 767 768 769 770 771 772 773
    imagePyr_.clear();
    maskPyr_.clear();

    buf_.release();

    keyPointsPyr_.clear();

    fastDetector_.release();

    d_keypoints_.release();
wester committed
774 775 776
}

#endif /* !defined (HAVE_CUDA) */